Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Clinical features and the dynamic changes of the immune response in coronavirus disease-2019 (COVID-19) patients play essential roles in the disease courses. We hypothesized that clinical features and longitudinal dynamic immune response of COVID-19 patients might be associated with viral shedding duration.
In this retrospective study, we documented 413 adult patients with laboratory-confirmed COVID-19 from Wuhan Huoshenshan Hospital. Demographic, clinical, and laboratory data were extracted from electronic medical records. Risk factors associated with viral shedding duration were examined using odds ratios (ORs) and 95% confidence intervals (CIs) in the multivariable logistic regression models.
The median duration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral shedding was 48 days (interquartile range, 40–58 days) among all patients. Fever symptom (OR, 2.23; 95% CI, 1.46–3.44), delayed admission after symptom onset (OR, 15.33; 95% CI, 9.14–26.65), CD8+ T cells (OR, 1.93; 95% CI, 1.10–3.44) were associated with prolonged viral shedding. In contrast, shorter viral shedding was associated with CD4+ T cells (OR, 0.38; 95% CI, 0.16–0.88), the ratios of CD4+ T cells to CD8+ T cells (OR, 0.79; 95% CI, 0.63–0.98). Longitudinal dynamic analyses demonstrate that sustained monocyte level was associated with shorter viral shedding (OR, 0.41; 95% CI, 0.22–0.76). More importantly, the associations of CD4+ T cells, CD8+ T cells, the ratio of CD4+ T cells to CD8+ T cells, and sustained monocyte level were confined to male patients.
Higher CD4+ T cells, sustained monocyte level, and lower CD8+ T cells might shorten the disease course. The male-specific associations supported the contribution of sex-dependent immune responses to the disease courses.
Zhu, N.; Zhang, D. Y.; Wang, W. L.; Li, X. W.; Yang, B.; Song, J. D.; Zhao, X.; Huang, B. Y.; Shi, W. F.; Lu, R. J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.
Wu, Z. Y.; McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese center for disease control and prevention. JAMA 2020, 323, 1239–1242.
Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273.
Young, B. E.; Ong, S. W. X.; Kalimuddin, S.; Low, J. G.; Tan, S. Y.; Loh, J.; Ng, O. T.; Marimuthu, K.; Ang, L. W.; Mak, T. M. et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020, 323, 1488–1494.
Li, N.; Wang, X.; Lv, T. F. Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. J. Med. Virol. 2020, 92, 2286–2287.
Le, T. Q. M.; Takemura, T.; Moi, M. L.; Nabeshima, T.; Nguyen, L. K. H.; Hoang, V. M. P.; Ung, T. H. T.; Le, T. T.; Nguyen, V. S.; Pham, H. Q. A. et al. Severe acute respiratory syndrome coronavirus 2 shedding by travelers, Vietnam, 2020. Emerg. Infect. Dis. 2020, 26, 1624–1626.
Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A. E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe. 2021, 2, e13–e22.
Zou, L. R.; Ruan, F.; Huang, M. X.; Liang, L. J.; Huang, H. T.; Hong, Z. S.; Yu, J. X.; Kang, M.; Song, Y. C.; Xia, J. Y. et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 2020, 382, 1177–1179.
Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M. A.; Niemeyer, D.; Jones, T. C.; Vollmar, P.; Rothe, C. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469.
van Kampen, J. J. A.; van de Vijver, D. A. M. C.; Fraaij, P. L. A.; Haagmans, B. L.; Lamers, M. M.; Okba, N.; van den Akker, J. P. C.; Endeman, H.; Gommers, D. A. M. P. J.; Cornelissen, J. J. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 2021, 12, 267.
Zheng, S. F.; Fan, J.; Yu, F.; Feng, B. H.; Lou, B.; Zou, Q. D.; Xie, G. L.; Lin, S.; Wang, R. N.; Yang, X. Z. et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January–March 2020: Retrospective cohort study. BMJ 2020, 369, m1443.
Xu, K. J.; Chen, Y. F.; Yuan, J.; Yi, P.; Ding, C.; Wu, W. R.; Li, Y. T.; Ni, Q.; Zou, R. R.; Li, X. H. et al. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 799–806.
Xiao, A. T.; Tong, Y. X.; Zhang, S. Profile of RT-PCR for SARS-CoV-2: A preliminary study from 56 COVID-19 patients. Clin. Infect. Dis. 2020, 71, 2249–2251.
Qi, L.; Yang, Y.; Jiang, D. X.; Tu, C.; Wan, L.; Chen, X. Y.; Li, Z. H. Factors associated with the duration of viral shedding in adults with COVID-19 outside of Wuhan, China: A retrospective cohort study. Int. J. Infect. Dis. 2020, 96, 531–537.
Fu, Y.; Han, P.; Zhu, R.; Bai, T.; Yi, J. H.; Zhao, X.; Tao, M. H.; Quan, R. Z.; Chen, C. Y.; Zhang, Y. et al. Risk factors for viral RNA shedding in COVID-19 patients. Eur. Respir. J. 2020, 56, 2001190.
Fontana, L. M.; Villamagna, A. H.; Sikka, M. K.; McGregor, J. C. Understanding viral shedding of severe acute respiratory coronavirus virus 2 (SARS-CoV-2): Review of current literature. Infect. Control Hosp. Epidemiol. 2021, 42, 659–668.
Zhou, M.; Yu, F. F.; Tan, L.; Zhu, Y. D.; Ma, N.; Song, L. J.; Li, Q.; Liu, Y.; Zou, Z.; Xu, T. Y.; et al. Clinical characteristics associated with long-term viral shedding in patients with coronavirus disease 2019. Am. J. Transl. Res. 2020, 12, 6954–6964.
Zhou, B.; She, J. Q.; Wang, Y. D.; Ma, X. C. Duration of viral shedding of discharged patients with severe COVID-19. Clin. Infect. Dis. 2020, 71, 2240–2242.
Takahashi, T.; Ellingson, M. K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T. Y.; Oh, J. E.; Tokuyama, M. et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320.
Li, K. N.; Huang, B.; Wu, M.; Zhong, A. F.; Li, L.; Cai, Y.; Wang, Z. H.; Wu, L. X.; Zhu, M. Y.; Li, J. et al. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat. Commun. 2020, 11, 6044.
Chen, Y. Z.; Zuiani, A.; Fischinger, S.; Mullur, J.; Atyeo, C.; Travers, M.; Lelis, F. J. N.; Pullen, K. M.; Martin, H.; Tong, P. et al. Quick COVID-19 healers sustain anti-SARS-CoV-2 antibody production. Cell 2020, 183, 1496–1507.e16.
Grifoni, A.; Weiskopf, D.; Ramirez, S. I.; Mateus, J.; Dan, J. M.; Moderbacher, C. R.; Rawlings, S. A.; Sutherland, A.; Premkumar, L.; Jadi, R. S. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020, 181, 1489–501.e15.
Chen, Z. Y.; John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 2020, 20, 529–536.
de Candia, P.; Prattichizzo, F.; Garavelli, S.; Matarese, G. T cells: Warriors of SARS-CoV-2 infection. Trends Immunol. 2021, 42, 18–30.
Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H. W.; Wang, T.; Zhang, X. Y.; Chen, H. L.; Yu, H. J. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020, 130, 2620–2629.
Chen, J.; Lau, Y. F.; Lamirande, E. W.; Paddock, C. D.; Bartlett, J. H.; Zaki, S. R.; Subbarao, K. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J. Virol. 2010, 84, 1289–1301.
Peng, Y. C.; Mentzer, A. J.; Liu, G. H.; Yao, X.; Yin, Z. X.; Dong, D. N.; Dejnirattisai, W.; Rostron, T.; Supasa, P.; Liu, C. et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2020, 21, 1336–1345.
Vibholm, L. K.; Nielsen, S. S. F.; Pahus, M. H.; Frattari, G. S.; Olesen, R.; Andersen, R.; Monrad, I.; Andersen, A. H. F.; Thomsen, M. M.; Konrad, C. V. et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. eBioMedicine 2021, 64, 103230.
Wen, W.; Su, W. R.; Tang, H.; Le, W. Q.; Zhang, X. P.; Zheng, Y. F.; Liu, X. X.; Xie, L. H.; Li, J. M.; Ye, J. G. et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020, 6, 31.
Liao, M. F.; Liu, Y.; Yuan, J.; Wen, Y. L.; Xu, G.; Zhao, J. J.; Cheng, L.; Li, J. X.; Wang, X.; Wang, F. X. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 2020, 26, 842–844.
Merad, M.; Martin, J. C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362.
Martinez, F. O.; Combes, T. W.; Orsenigo, F.; Gordon, S. Monocyte activation in systemic Covid-19 infection: Assay and rationale. eBioMedicine 2020, 59, 102964.
Zhang, D.; Guo, R.; Lei, L.; Liu, H. J.; Wang, Y. W.; Wang, Y. L.; Qian, H. B.; Dai, T. X.; Zhang, T. X.; Lai, Y. J. et al. Frontline science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes. J. Leukoc. Biol. 2021, 109, 13–22.
Vetter, P.; Eberhardt, C. S.; Meyer, B.; Martinez Murillo, P. A.; Torriani, G.; Pigny, F.; Lemeille, S.; Cordey, S.; Laubscher, F.; Vu, D. L. et al. Daily viral kinetics and innate and adaptive immune response assessment in COVID-19: A case series. mSphere 2020, 5, e00827-20.
Meng, Y. F.; Wu, P.; Lu, W. R.; Liu, K.; Ma, K.; Huang, L.; Cai, J. J.; Zhang, H.; Qin, Y.; Sun, H. Y. et al. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients. PLoS Pathog. 2020, 16, e1008520.
Jin, J. M.; Bai, P.; He, W.; Wu, F.; Liu, X. F.; Han, D. M.; Liu, S.; Yang, J. K. Gender differences in patients with COVID-19: Focus on severity and mortality. Front. Public Health 2020, 8, 152.
Chen, N. S.; Zhou, M.; Dong, X.; Qu, J. M.; Gong, F. Y.; Han, Y.; Qiu, Y.; Wang, J. L.; Liu, Y.; Wei, Y. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513.
Ursin, R. L.; Shapiro, J. R.; Klein, S. L. Sex-biased immune responses following SARS-CoV-2 infection. Trends Microbiol. 2020, 28, 952–954.
Scully, E. P.; Haverfield, J.; Ursin, R. L.; Tannenbaum, C.; Klein, S. L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 2020, 20, 442–447.
Ellegren, H.; Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 2007, 8, 689–698.
Ober, C.; Loisel, D. A.; Gilad, Y. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 2008, 9, 911–922.
Sieurin, J.; Brandén, G.; Magnusson, C.; Hergens, M. P.; Kosidou, K. A population-based cohort study of sex and risk of severe outcomes in covid-19. Eur. J. Epidemiol. 2022, 37, 1159–1169.
Zhao, G. L.; Xu, Y. Z.; Li, J.; Cui, X. L.; Tan, X. W.; Zhang, H. Y.; Dang, L. Y. Sex differences in immune responses to SARS-CoV-2 in patients with COVID-19. Biosci. Rep. 2021, 41, BSR20202074.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.