Journal Home > Volume 1 , Issue 2–4

Photodynamic therapy (PDT) is a promising approach to treat cancer and microbial infections due to its minimal invasiveness, high spatiotemporal selectivity, tissue specificity, and low toxicity. Depending on the reactive oxygen species generation mechanisms, PDT can be classified as type I and type II. To date, most reported photosensitizers are based on the type II PDT mechanism, which produces toxic singlet oxygen and requires an abundant and continuous supply of oxygen molecules. Unfortunately, in typical solid tumor microenvironments, vascular abnormalities and rapid metabolisms lead to oxygen deficiency, severely compromising type II PDT's effectiveness. To address this issue, type I PDT with less oxygen consumption has been developed as an effective way to overcome the limitations of traditional type II PDT. In this contribution, we focus on the recent advances in type I organic semiconducting photosensitizers (OSPs), including organic semiconducting small molecules, conjugated polymers, and covalent organic frameworks for advanced hypoxia-tolerant PDT. The conceptual framework and general properties of these OSPs are firstly introduced, followed by introducing OSPs with different chemical structures for type I PDT. Finally, the overall conclusion, insightful perspective, and future direction of the efforts of OSPs for advanced biological applications are outlined.


menu
Abstract
Full text
Outline
About this article

Insights into the organic semiconducting photosensitizers for hypoxia-tolerant type I photodynamic therapy

Show Author's information Xiaoming Hu1,2,§Caijun Zhu2,§Fengwei Sun1Jin Yang3Zejing Chen2Haiyong Ao2Cao Cui4( )Zhen Yang1( )Wei Huang1,5( )
Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013 China
Air Force Early Warning Academy, Wuhan 430019, China
Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei 441021, China
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China

§ Xiaoming Hu and Caijun Zhu contributed equally to this work.

Abstract

Photodynamic therapy (PDT) is a promising approach to treat cancer and microbial infections due to its minimal invasiveness, high spatiotemporal selectivity, tissue specificity, and low toxicity. Depending on the reactive oxygen species generation mechanisms, PDT can be classified as type I and type II. To date, most reported photosensitizers are based on the type II PDT mechanism, which produces toxic singlet oxygen and requires an abundant and continuous supply of oxygen molecules. Unfortunately, in typical solid tumor microenvironments, vascular abnormalities and rapid metabolisms lead to oxygen deficiency, severely compromising type II PDT's effectiveness. To address this issue, type I PDT with less oxygen consumption has been developed as an effective way to overcome the limitations of traditional type II PDT. In this contribution, we focus on the recent advances in type I organic semiconducting photosensitizers (OSPs), including organic semiconducting small molecules, conjugated polymers, and covalent organic frameworks for advanced hypoxia-tolerant PDT. The conceptual framework and general properties of these OSPs are firstly introduced, followed by introducing OSPs with different chemical structures for type I PDT. Finally, the overall conclusion, insightful perspective, and future direction of the efforts of OSPs for advanced biological applications are outlined.

Keywords: photodynamic therapy, type I photosensitizers, small molecules, conjugated polymer, covalent organic frameworks

References(85)

[1]

Zhao, Y.; Chen, B. Q.; Kankala, R. K.; Wang, S. B.; Chen, A. Z. Recent advances in combination of copper chalcogenide-based photothermal and reactive oxygen species-related therapies. ACS Biomater. Sci. Eng. 2020, 6, 4799–4815.

[2]

Yu, Y. J.; Tang, D. S.; Liu, C. Y.; Zhang, Q.; Tang, L.; Lu, Y. F.; Xiao, H. H. Biodegradable polymer with effective near-infrared-Ⅱ absorption as a photothermal agent for deep tumor therapy. Adv. Mater. 2022, 34, 2105976.

[3]

Roque Ⅲ, J. A.; Cole, H. D.; Barrett, P. C.; Lifshits, L. M.; Hodges, R. O.; Kim, S.; Deep, G.; Francés-Monerris, A.; Alberto, M. E.; Cameron, C. G. et al. Intraligand excited states turn a ruthenium oligothiophene complex into a light-triggered ubertoxin with anticancer effects in extreme hypoxia. J. Am. Chem. Soc. 2022, 144, 8317–8336.

[4]

Yang, L. L.; Zhang, L.; Wan, S. C.; Wang, S.; Wu, Z. Z.; Yang, Q. C.; Xiao, Y.; Deng, H. X.; Sun, Z. J. Two-photon absorption induced cancer immunotherapy using covalent organic frameworks. Adv. Funct. Mater. 2021, 31, 2103056.

[5]

Deng, X. Y.; Shao, Z. W.; Zhao, Y. L. Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv. Sci. 2021, 8, 2002504.

[6]

Hu, X. M.; Zhan, C.; Tang, Y. F.; Lu, F.; Li, Y. Y.; Pei, F.; Lu, X. M.; Ji, Y.; Li, J.; Wang, W. J. et al. Intelligent polymer-MnO2 nanoparticles for dual-activatable photoacoustic and magnetic resonance bimodal imaging in living mice. Chem. Commun. 2019, 55, 6006–6009.

[7]

Yu, Y. W.; Wu, S.; Zhang, L.; Xu, S. D.; Dai, C. H.; Gan, S. M.; Xie, G. F.; Feng, G. X.; Tang, B. Z. Cationization to boost both type I and type Ⅱ ROS generation for photodynamic therapy. Biomaterials 2022, 280, 121255.

[8]

Xiong, J. H.; Wang, P. Z.; Son, S.; Zhong, C.; Zhang, F.; Mao, Z. Q.; Liu, Z. H.; Kim, J. S. Engineering a theranostic platform for synergistic hypoxia-responsive photodynamic therapy and chemotherapy. Matter 2022, 5, 1502–1519.

[9]

Lan, M. H.; Zhao, S. J.; Liu, W. M.; Lee, C. S.; Zhang, W. J.; Wang, P. F. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater. 2019, 8, 1900132.

[10]

Dai, H.; Hosseinpour, S.; Hua, S.; Xu, C. Advances in porous inorganic nanomaterials for bone regeneration. Nano TransMed 2022, 1, e9130005.

[11]

Zhu, M. L.; Zhang, H.; Ran, G. L.; Yao, Y. H.; Yang, Z. S.; Ning, Y. Y.; Yu, Y.; Zhang, R. J.; Peng, X. X.; Wu, J. H. et al. Bioinspired design of seco-chlorin photosensitizers to overcome phototoxic effects in photodynamic therapy. Angew. Chem., Int. Ed. 2022, 61, e202204330.

[12]

Xiu, W.; Wan, L.; Yang, K. L.; Li, X.; Yuwen, L. H.; Dong, H.; Mou, Y. B.; Yang, D. L.; Wang, L. H. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat. Commun. 2022, 13, 3875.

[13]

Su, X. X.; Wang, W. J.; Cao, Q.; Zhang, H.; Liu, B.; Ling, Y. Y.; Zhou, X. T.; Mao, Z. W. A carbonic anhydrase IX (CAIX)-anchored rhenium(I) photosensitizer evokes pyroptosis for enhanced anti-tumor immunity. Angew. Chem., Int. Ed. 2022, 61, e202115800.

[14]

Liu, M. L.; Chen, Y. C.; Guo, Y.; Yuan, H.; Cui, T. X.; Yao, S. K.; Jin, S. X.; Fan, H. H.; Wang, C. J.; Xie, R. et al. Golgi apparatus-targeted aggregation-induced emission luminogens for effective cancer photodynamic therapy. Nat. Commun. 2022, 13, 2179.

[15]

Hu, H.; Wang, H.; Yang, Y. C.; Xu, J. F.; Zhang, X. A bacteriaresponsive porphyrin for adaptable photodynamic/photothermal therapy. Angew. Chem., Int. Ed. 2022, 61, e202200799.

[16]

Yuan, B.; Wu, H.; Wang, H.; Tang, B. H.; Xu, J. F.; Zhang, X. A selfdegradable supramolecular photosensitizer with high photodynamic therapeutic efficiency and improved safety. Angew. Chem., Int. Ed. 2021, 60, 706–710.

[17]

Tian, J.; Huang, B. X.; Nawaz, M. H.; Zhang, W. A. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev. 2020, 420, 213410.

[18]

Miao, J. F.; Huo, Y. Y.; Yao, G. X.; Feng, Y.; Weng, J. J.; Zhao, W.; Guo, W. Heavy atom-free, mitochondria-targeted, and activatable photosensitizers for photodynamic therapy with real-time in-situ therapeutic monitoring. Angew. Chem., Int. Ed. 2022, 61, e202201815.

[19]

Cong, Z. S.; Xie, S. J.; Jiang, Z. R.; Zheng, S.; Wang, W. H.; Wang, W. Y.; Song, H. In vivo photodynamic therapy based on near-infrared AIE cationic polymers. Chem. Eng. J. 2022, 431, 133748.

[20]

Zhao, X. X.; Dai, Y. P.; Ma, F. L.; Misal, S.; Hasrat, K.; Zhu, H. Y.; Qi, Z. J. Molecular engineering to accelerate cancer cell discrimination and boost AIE-active type I photosensitizer for photodynamic therapy under hypoxia. Chem. Eng. J. 2021, 410, 128133.

[21]

Liu, Z. Y.; Zou, H.; Zhao, Z.; Zhang, P. F.; Shan, G. G.; Kwok, R. T. K.; Lam, J. W. Y.; Zheng, L.; Tang, B. Z. Tuning organelle specificity and photodynamic therapy efficiency by molecular function design. ACS Nano 2019, 13, 11283–11293.

[22]

Zhang, Y. Y.; Tian, S. D.; Huang, L. P.; Li, Y. N.; Lu, Y.; Li, H. Y.; Chen, G. P.; Meng, F. L.; Liu, G. L.; Yang, X. L. et al. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment. Nat. Commun. 2022, 13, 4553.

[23]

Wang, R.; Kim, K. H.; Yoo, J.; Li, X. S.; Kwon, N.; Jeon, Y. H.; Shin, S. K.; Han, S. S.; Lee, D. S.; Yoon, J. A nanostructured phthalocyanine/albumin supramolecular assembly for fluorescence turn-on imaging and photodynamic immunotherapy. ACS Nano 2022, 16, 3045–3058.

[24]

Sun, Q. W.; Yang, J. M.; Shen, W.; Lu, H. Y.; Hou, X. H.; Liu, Y.; Xu, Y. J.; Wu, Q. H.; Xuan, Z. H.; Yang, Y. et al. Engineering mitochondrial uncoupler synergistic photodynamic nanoplatform to harness immunostimulatory pro-death autophagy/mitophagy. Biomaterials 2022, 289, 121796.

[25]

Ji, B.; Wei, M. J.; Yang, B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022, 12, 434–458.

[26]
Jing, S. L.; Zhou, H.; Zou, C.; Chen, D. P. C.; Ye, Q. S.; Ai, Y. L.; He, Y. Application of telomere biology and telomerase in mesenchymal stem cells. Nano TransMed, in press, DOI: 10.26599/NTM.2022.9130007.
[27]

Wei, F. M.; Karges, J.; Shen, J. C.; Xie, L. N.; Xiong, K.; Zhang, X. T.; Ji, L. N.; Chao, H. A mitochondria-localized oxygen self-sufficient two-photon nano-photosensitizer for ferroptosis-boosted photodynamic therapy under hypoxia. Nano Today 2022, 44, 101509.

[28]

Sun, J.; Cai, X. T.; Wang, C. J.; Du, K.; Chen, W. J.; Feng, F. D.; Wang, S. Cascade reactions by nitric oxide and hydrogen radical for antihypoxia photodynamic therapy using an activatable photosensitizer. J. Am. Chem. Soc. 2021, 143, 868–878.

[29]

Sai, D. L.; Lee, J.; Nguyen, D. L.; Kim, Y. P. Tailoring photosensitive ROS for advanced photodynamic therapy. Exp. Mol. Med. 2021, 53, 495–504.

[30]

Chen, D. P.; Xu, Q.; Wang, W. J.; Shao, J. J.; Huang, W.; Dong, X. C. Type I photosensitizers revitalizing photodynamic oncotherapy. Small 2021, 17, 2006742.

[31]

Wei, X.; Zhang, C.; He, S. S.; Huang, J. G.; Huang, J. S.; Liew, S. S.; Zeng, Z. L.; Pu, K. Y. A dual-locked activatable phototheranostic probe for biomarker-regulated photodynamic and photothermal cancer therapy. Angew. Chem., Int. Ed. 2022, 61, 202202966.

[32]

Cui, S. S.; Dai, S. X.; Lin, N.; Wu, X. H.; Shi, J. B.; Tong, B.; Liu, P.; Cai, Z. X.; Dong, Y. P. Constructing hypoxia-tolerant and host tumor-enriched aggregation-induced emission photosensitizer for suppressing malignant tumors relapse and metastasis. Small 2022, 18, 2203825.

[33]

Li, J. Q.; Zhuang, Z. Y.; Zhao, Z. J.; Tang, B. Z. Type I AIE photosensitizers: Mechanism and application. View 2022, 3, 20200121.

[34]

Du, J. J.; Shi, T. C.; Long, S. R.; Chen, P. Z.; Sun, W.; Fan, J. L.; Peng, X. J. Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Coord. Chem. Rev. 2021, 427, 213604.

[35]

Shigemitsu, H.; Ohkubo, K.; Sato, K.; Bunno, A.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T. Fluorescein-based type I supramolecular photosensitizer via induction of charge separation by self-assembly. JACS Au 2022, 2, 1472–1478.

[36]

Jiang, Y. H.; Zhu, W.; Xu, Z. R.; Zhang, Z. J.; Tang, S.; Fan, M. Z.; Li, Z. Z.; Zhang, J. Y.; Yang, C. B.; Law, W. C. et al. A mitochondriontargeting two-photon photosensitizer with aggregation-induced emission characteristics for hypoxia-tolerant photodynamic therapy. Chem. Eng. J. 2022, 448, 137604.

[37]

Zhao, X. Z.; Liu, J. P.; Fan, J. L.; Chao, H.; Peng, X. J. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application. Chem. Soc. Rev. 2021, 50, 4185–4219.

[38]

Jiang, S.; Xiao, M.; Sun, W.; Crespy, D.; Mäilander, V.; Peng, X. J.; Fan, J. L.; Landfester, K. Synergistic anticancer therapy by ovalbumin encapsulation-enabled tandem reactive oxygen species generation. Angew. Chem., Int. Ed. 2020, 59, 20008–20016.

[39]

Zhao, T. T.; Hu, X. L.; Ma, R. J.; Dong, F. Q.; Liu, T.; Li, L.; Yan, H.; Xu, Y. L.; Liu, W.; Zou, B. S. et al. Photovoltaic polymer photosensitizer-doped nano-therapeutic reagent for in vivo enhanced bioimaging guided photodynamic therapy. Chem. Eng. J. 2022, 441, 135983.

[40]

Bloyet, C.; Sciortino, F.; Matsushita, Y.; Karr, P. A.; Liyanage, A.; Jevasuwan, W.; Fukata, N.; Maji, S.; Hynek, J.; D'Souza, F. et al. Photosensitizer encryption with aggregation enhanced singlet oxygen production. J. Am. Chem. Soc. 2022, 144, 10830–10843.

[41]

Huang, L.; Zhao, S. J.; Wu, J. S.; Yu, L.; Singh, N.; Yang, K.; Lan, M. H.; Wang, P. F.; Kim, J. S. Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coord. Chem. Rev. 2021, 438, 213888.

[42]

Chen, D. P.; Wang, Z. C.; Dai, H. M.; Lv, X. Y.; Ma, Q. L.; Yang, D. P.; Shao, J. J.; Xu, Z. G.; Dong, X. C. Boosting O2•- photogeneration via promoting intersystem-crossing and electron-donating efficiency of aza-BODIPY-based nanoplatforms for hypoxic-tumor photodynamic therapy. Small Methods 2020, 4, 2000013.

[43]

Zhu, D. M.; Zhang, T. F.; Li, Y.; Huang, C. Y.; Suo, M.; Xia, L. G.; Xu, Y. H.; Li, G. X.; Tang, B. Z. Tumor-derived exosomes co-delivering aggregation-induced emission luminogens and proton pump inhibitors for tumor glutamine starvation therapy and enhanced type-I photodynamic therapy. Biomaterials 2022, 283, 121462.

[44]

An, J.; Tang, S. L.; Hong, G. B.; Chen, W. L.; Chen, M. M.; Song, J. T.; Li, Z. L.; Peng, X. J.; Song, F. L.; Zheng, W. H. An unexpected strategy to alleviate hypoxia limitation of photodynamic therapy by biotinylation of photosensitizers. Nat. Commun. 2022, 13, 2225.

[45]

Chen, K. Q.; He, P.; Wang, Z. M.; Tang, B. Z. A feasible strategy of fabricating type I photosensitizer for photodynamic therapy in cancer cells and pathogens. ACS Nano 2021, 15, 7735–7743.

[46]

Wang, Y. Y.; Liu, Y. C.; Sun, H. W.; Guo, D. S. Type I photodynamic therapy by organic-inorganic hybrid materials: From strategies to applications. Coord. Chem. Rev. 2019, 395, 46–62.

[47]

Sun, W.; Zhao, X. Z.; Fan, J. L.; Du, J. J.; Peng, X. J. Boron dipyrromethene nano-photosensitizers for anticancer phototherapies. Small 2019, 15, 1804927.

[48]

Hu, X. M.; Chen, Z. J.; Ao, H. Y.; Fan, Q. L.; Yang, Z.; Huang, W. Rational molecular engineering of organic semiconducting nanoplatforms for advancing NIR-Ⅱ fluorescence theranostics. Adv. Opt. Mater. 2022, 10, 2201067.

[49]

Hu, X. M.; Chen, Z. J.; Jin, A. J.; Yang, Z.; Gan, D. Q.; Wu, A. F.; Ao, H. Y.; Huang, W.; Fan, Q. L. Rational design of all-organic nanoplatform for highly efficient MR/NIR-Ⅱ imaging-guided cancer phototheranostics. Small 2021, 17, 2007566.

[50]

Li, L. Q.; Shao, C.; Liu, T.; Chao, Z. C.; Chen, H. L.; Xiao, F.; He, H. M.; Wei, Z. X.; Zhu, Y. L.; Wang, H. et al. An NIR-Ⅱ-emissive photosensitizer for hypoxia-tolerant photodynamic theranostics. Adv. Mater. 2020, 32, 2003471.

[51]

Li, B. H.; Zhao, M. Y.; Zhang, F. Rational design of near-infrared-Ⅱ organic molecular dyes for bioimaging and biosensing. ACS Mater. Lett. 2020, 2, 905–917.

[52]

Li, J. C.; Pu, K. Y. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 2019, 48, 38–71.

[53]

Hu, X. M.; Tang, Y. F.; Hu, Y. X.; Lu, F.; Lu, X. M.; Wang, Y. Q.; Li, J.; Li, Y. Y.; Ji, Y.; Wang, W. J. et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-Ⅱ fluorescence imaging-guided cancer photothermal therapy. Theranostics 2019, 9, 4168–4181.

[54]

Hu, X. M.; Lu, F.; Chen, L.; Tang, Y. F.; Hu, W. B.; Lu, X. M.; Ji, Y.; Yang, Z.; Zhang, W. S.; Yin, C. et al. Perylene diimide-grafted polymeric nanoparticles chelated with Gd3+ for photoacoustic/T1-weighted magnetic resonance imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 30458–30469.

[55]

Dai, H. M.; Shen, Q.; Shao, J. J.; Wang, W. J.; Gao, F.; Dong, X. C. Small molecular NIR-Ⅱ fluorophores for cancer phototheranostics. Innovation 2021, 2, 100082.

[56]

Bronstein, H.; Nielsen, C. B.; Schroeder, B. C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4, 66–77.

[57]

Kousseff, C. J.; Halaksa, R.; Parr, Z. S.; Nielsen, C. B. Mixed ionic and electronic conduction in small-molecule semiconductors. Chem. Rev. 2022, 122, 4397–4419.

[58]

Guo, J. J.; Dai, J.; Peng, X. L.; Wang, Q.; Wang, S. X.; Lou, X. D.; Xia, F.; Zhao, Z. J.; Tang, B. Z. 9, 10-Phenanthrenequinone: A promising kernel to develop multifunctional antitumor systems for efficient type I photodynamic and photothermal synergistic therapy. ACS Nano 2021, 15, 20042–20055.

[59]

Yin, B. L.; Qin, Q. Q.; Li, Z.; Wang, Y. J.; Liu, X. L.; Liu, Y. C.; Huan, S. Y.; Zhang, X. B.; Song, G. S. Tongue cancer tailored photosensitizers for NIR-Ⅱ fluorescence imaging guided precise treatment. Nano Today 2022, 45, 101550.

[60]

Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang, J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

[61]

Wang, Y. B.; Xu, S. D.; Shi, L. L.; Teh, C.; Qi, G. B.; Liu, B. Cancer-cell-activated in situ synthesis of mitochondria-targeting AIE photosensitizer for precise photodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 14945–14953.

[62]

Choi, J.; Sun, I. C.; Sook Hwang, H.; Yeol Yoon, H.; Kim, K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv. Drug Deliv. Rev. 2022, 186, 114344.

[63]

Zhuang, Z. Y.; Dai, J.; Yu, M. X.; Li, J. Q.; Shen, P. C.; Hu, R.; Lou, X. D.; Zhao, Z. J.; Tang, B. Z. Type I photosensitizers based on phosphindole oxide for photodynamic therapy: Apoptosis and autophagy induced by endoplasmic reticulum stress. Chem. Sci. 2020, 11, 3405–3417.

[64]

Wu, M. M.; Zhang, X.; Zhang, W. J.; Chiou, Y. S.; Qian, W. C.; Liu, X. T.; Zhang, M.; Yan, H.; Li, S. L.; Li, T. et al. Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nat. Commun. 2022, 13, 1371.

[65]

Tasdogan, A.; Ubellacker, J. M.; Morrison, S. J. Redox regulation in cancer cells during metastasis. Cancer Discov. 2021, 11, 2682–2692.

[66]

Kapiainen, E.; Kihlström, M. K.; Pietilä, R.; Kaakinen, M.; Ronkainen, V. P.; Tu, H. M.; Heikkinen, A.; Devarajan, R.; Miinalainen, I.; Laitakari, A. et al. The amino-terminal oligomerization domain of angiopoietin-2 affects vascular remodeling, mammary gland tumor growth, and lung metastasis in mice. Cancer Res. 2021, 81, 129–143.

[67]

Giordo, R.; Wehbe, Z.; Paliogiannis, P.; Eid, A. H.; Mangoni, A. A.; Pintus, G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin. Cancer Biol. 2022, 86, 784–804.

[68]

Cheng, X. M.; Gao, J.; Ding, Y.; Lu, Y.; Wei, Q. C.; Cui, D. Z.; Fan, J. L.; Li, X. M.; Zhu, E. S.; Lu, Y. N. et al. Multi-functional liposome: A powerful theranostic nano-platform enhancing photodynamic therapy. Adv. Sci. 2021, 8, 2100876.

[69]

Chen, D. P.; Yu, Q.; Huang, X.; Dai, H. M.; Luo, T.; Shao, J. J.; Chen, P.; Chen, J.; Huang, W.; Dong, X. C. A highly-efficient type i photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy. Small 2020, 16, 2001059.

[70]

Wei, J. C.; Liu, Y.; Yu, J.; Chen, L.; Luo, M.; Yang, L. L.; Li, P.; Li, S. L.; Zhang, X. H. Conjugated polymers: Optical toolbox for bioimaging and cancer therapy. Small 2021, 17, 2103127.

[71]

Zhou, T. T.; Hu, R.; Wang, L. R.; Qiu, Y. P.; Zhang, G. Q.; Deng, Q. Y.; Zhang, H. Y.; Yin, P. G.; Situ, B.; Zhan, C. L. et al. An AIE-active conjugated polymer with high ROS-generation ability and biocompatibility for efficient photodynamic therapy of bacterial infections. Angew. Chem., Int. Ed. 2020, 59, 9952–9956.

[72]

Jiang, L. Y.; Bai, H. T.; Liu, L. B.; Lv, F. T.; Ren, X. Q.; Wang, S. Luminescent, oxygen-supplying, hemoglobin-linked conjugated polymer nanoparticles for photodynamic therapy. Angew. Chem., Int. Ed. 2019, 58, 10660–10665.

[73]

Tang, D. S.; Yu, Y. J.; Zhang, J. B.; Dong, X. Y.; Liu, C. Y.; Xiao, H. H. Self-sacrificially degradable pseudo-semiconducting polymer nanoparticles that integrate NIR-Ⅱ fluorescence bioimaging, photodynamic immunotherapy, and photo-activated chemotherapy. Adv. Mater. 2022, 34, 2203820.

[74]

Wen, K. K.; Tan, H.; Peng, Q.; Chen, H.; Ma, H.; Wang, L.; Peng, A. D.; Shi, Q. Q.; Cai, X. D.; Huang, H. Achieving efficient NIR-Ⅱ type-I photosensitizers for photodynamic/photothermal therapy upon regulating chalcogen elements. Adv. Mater. 2022, 34, 2108146.

[75]

Huang, H. Y.; Xie, W. S.; Wan, Q.; Mao, L. C.; Hu, D. N.; Sun, H.; Zhang, X. Y.; Wei, Y. A self-degradable conjugated polymer for photodynamic therapy with reliable postoperative safety. Adv. Sci. 2022, 9, 2104101.

[76]

Dutta, D.; Wang, J. B.; Li, X.; Zhou, Q. H.; Ge, Z. S. Covalent organic framework nanocarriers of singlet oxygen for oxygen-independent concurrent photothermal/photodynamic therapy to ablate hypoxic tumors. Small 2022, 18, 2202369.

[77]

Wang, S. B.; Chen, Z. X.; Gao, F.; Zhang, C.; Zou, M. Z.; Ye, J. J.; Zeng, X.; Zhang, X. Z. Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy. Biomaterials 2020, 234, 119772.

[78]

Chen, S.; Sun, T. T.; Zheng, M.; Xie, Z. G. Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy. Adv. Funct. Mater. 2020, 30, 2004680.

[79]

Zhang, L.; Wang, S. B.; Zhou, Y.; Wang, C.; Zhang, X. Z.; Deng, H. X. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew. Chem., Int. Ed. 2019, 58, 14213–14218.

[80]

Wang, K.; Zhang, Z.; Lin, L.; Chen, J.; Hao, K.; Tian, H. Y.; Chen, X. S. Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy. Chem. Mater. 2019, 31, 3313–3323.

[81]

Chen, L.; Zhang, J.; Cai, K. R.; Wang, L. K.; Zhu, X. J.; Yu, Z. P.; Zhong, F.; Zhou, H. P. Molecular engineering of covalent organic frameworks with elevated mitochondrial-targeting for cancer cell suppression. Sens. Actuators B Chem. 2022, 350, 130861.

[82]

Chen, C.; Wu, C. S.; Yu, J. M.; Zhu, X. H.; Wu, Y. H.; Liu, J. L.; Zhang, Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord. Chem. Rev. 2022, 461, 214495.

[83]

He, Z.; Zhao, L. L.; Zhang, Q.; Chang, M. J.; Li, C. X.; Zhang, H. S.; Lu, Y.; Chen, Y. S. An acceptor-donor-acceptor structured small molecule for effective NIR triggered dual phototherapy of cancer. Adv. Funct. Mater. 2020, 30, 1910301.

[84]
Hu, X.; Sun, F.; Zhu, C.; Yang, Z.; Huang, W. Repurposing organic semiconducting nanomaterials to accelerate clinical translation of NIR-Ⅱ fluorescence imaging. Nano Res, in press, https://doi.org/10.1007/s12274-022-5145-1.
[85]

Wang, W. D.; Sun, Z. J. Evoking pyroptosis with nanomaterials for cancer immunotherapy: Current boom and novel outlook. Nano TransMed 2022, 1, e9130001.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 October 2022
Revised: 24 October 2022
Accepted: 25 October 2022
Published: 30 November 2022
Issue date: December 2022

Copyright

© The Author(s) 2022. Nano TransMed published by Tsinghua University Press.

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Province (Nos. 20212BAB214005, 20212ACB214002, and 20202BAB214012), National Natural Science Foundation of China (No. 22001069), and the Research startup fund of East China Jiaotong University (465).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return