Journal Home > Volume 1 , Issue 1

Microneedles (µND) are promising devices that can be used to transport a wide variety of active compounds into the skin. To serve as an effective delivery system, µND must pierce the human stratum corneum (~10–20 µm), without breaking or buckling during penetration. In the current review, we discuss both the anatomical features and biomechanical properties of skin in order to understand the local environment and resistive forces relevant to µNDs insertion. Of particular importance are the factors that affect µND insertion, such as their geometry and material composition, as these can be manipulated in the design and development phase to optimise skin insertion. We review the research relevant to µND and how this interacts with skin properties. We have also reviewed the most commonly used skin drug diffusion modelling used to predict drug behaviour from µNDs, and discussed the current challenges faced by µNDs to enter clinical trials and provide positive clinical outcomes.

Full text
About this article

Skin biomechanics: Breaking the dermal barriers with microneedles

Show Author's information Masood Ali1Sarika Namjoshi1Heather A. E. Benson2,3( )Tushar Kumeria4,5( )Yousuf Mohammed1( )
Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
Curtin Medical School, Curtin University, Perth, WA 6845, Australia
School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia


Microneedles (µND) are promising devices that can be used to transport a wide variety of active compounds into the skin. To serve as an effective delivery system, µND must pierce the human stratum corneum (~10–20 µm), without breaking or buckling during penetration. In the current review, we discuss both the anatomical features and biomechanical properties of skin in order to understand the local environment and resistive forces relevant to µNDs insertion. Of particular importance are the factors that affect µND insertion, such as their geometry and material composition, as these can be manipulated in the design and development phase to optimise skin insertion. We review the research relevant to µND and how this interacts with skin properties. We have also reviewed the most commonly used skin drug diffusion modelling used to predict drug behaviour from µNDs, and discussed the current challenges faced by µNDs to enter clinical trials and provide positive clinical outcomes.

Keywords: microneedles, skin thickness, skin viscoelasticity, skin layers, skin penetration, stratum corneum, viable epidermis and dermis



Henry, S.; Mcallister, D. V.; Allen, M. G.; Prausnitz, M. R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1998, 87, 922–925.


Li, W.; Terry, R. N.; Tang, J.; Feng, M. R.; Schwendeman, S. P.; Prausnitz, M. R. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 2019, 3, 220–229.


Du, H. Y.; Liu, P.; Zhu, J. J.; Lan, J. J.; Li, Y.; Zhang, L. B.; Zhu, J. T.; Tao, J. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl. Mater. Interfaces 2019, 11, 43588–43598.


GhavamiNejad, A.; Li, J.; Lu, B.; Zhou, L. W.; Lam, L.; Giacca, A.; Wu, X. Y. Glucose-responsive composite microneedle patch for hypoglycemia-triggered delivery of native glucagon. Adv Mater. 2019, 31, e1901051.7.


Yin, Y.; Su, W.; Zhang, J.; Huang W. P.; Li, X. Y.; Ma, H. X.; Tan, M. X.; Song, H. H.; Cao, G. L.; Yu, S. J. et al. Separable microneedle patch to protect and deliver DNA nanovaccines against COVID-19. ACS Nano 2021, 15, 14347–14359.


Kuwentrai, C.; Yu, J. M.; Rong, L.; Zhang, B. Z.; Hu, Y. F.; Gong, H. R.; Dou, Y.; Deng, J.; Huang, J. D.; Xu, C. J. Intradermal delivery of receptor-binding domain of SARS-CoV-2 spike protein with dissolvable microneedles to induce humoral and cellular responses in mice. Bioeng. Trans. Med. 2021, 6, e10202.


Makvandi, P.; Kirkby, M.; Hutton, A. R. J.; Shabani, M.; Yiu, C. K. Y.; Baghbantaraghdari, Z.; Jamaledin, R.; Carlotti, M.; Mazzolai, B.; Mattoli, V. et al. Engineering microneedle patches for improved penetration: Analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 2021, 13, 93.


Paredes, A. J.; Ramöller, I. K.; Mckenna, P. E.; Abbate, M. T. A.; Volpe-Zanutto, F.; Vora, L. K.; Kilbourne-Brook, M.; Jarrahian, C.; Moffatt, K.; Zhang, C. Y. et al. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv. Drug Deliv. Rev. 2021, 173, 331–348.


McAlister, E.; Kearney, M. C.; Martin, E. L.; Donnelly, R. F. From the laboratory to the end-user: A primary packaging study for microneedle patches containing amoxicillin sodium. Drug Deliv. Trans. Res. 2021, 11, 2169–2185.

Donnelly, R. F. Clinical translation and industrial development of microneedle-based products. In Microneedles for Drug and Vaccine Delivery and Patient Monitoring. Ryan, F. D., Ed.; John Wiley & Sons, Ltd: Chichester, 2018; pp 307.

Economidou, S. N.; Douroumis, D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv. Drug Deliv. Rev. 2021, 173, 60–69.


Leone, M.; Van Oorschot, B. H.; Nejadnik, M. R.; Bocchino, A.; Rosato, M.; Kersten, G.; O'mahony, C.; Bouwstra, J.; Van Der maaden, K. Universal applicator for digitally-controlled pressing force and impact velocity insertion of microneedles into skin. Pharmaceutics 2018, 10, 211.


Larrañeta, E.; Lutton, R. E. M.; Woolfson, A. D.; Donnelly, R. F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R: Rep. 2016, 104, 1–32.


Egawa, M.; Hirao, T.; Takahashi, M. In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy. Acta Derm. Venereol. 2007, 87, 4–8.


Therkildsen, P.; Haedersdal, M.; Lock-Andersen, J.; Fine Olivarius, F.; Poulsen, T.; Wulf, H. C. Epidermal thickness measured by light microscopy: A methodological study. Skin Res. Technol. 1998, 4, 174–179.


Sandby-Møller, J.; Poulsen, T.; Wulf, H. C. Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 2003, 83, 410–413.


Dauendorffer, J. N.; Bastuji-Garin, S.; Guéro, S.; Brousse, N.; Fraitag, S. Shrinkage of skin excision specimens: Formalin fixation is not the culprit. Br. J. Dermatol. 2009, 160, 810–814.


Blasco-Morente, G.; Garrido-Colmenero, C.; Pérez-López, I.; Carretero- García, S.; Martín-Castro, A.; Arias-Santiago, S.; Tercedor- Sánchez, J. Study of shrinkage of cutaneous surgical specimens. J. Cutan. Pathol. 2015, 42, 253–257.


Crowther, J. M.; Sieg, A.; Blenkiron, P.; Marcott, C.; Matts, P. J.; Kaczvinsky, J. R.; Rawlings, A V. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br. J. Dermatol. 2008, 159, 567–577.

Berardesca, E.; Cameli, N. Factors influencing measurements. In Practical Aspects of Cosmetic Testing. Fluhr, J., Ed.; Springer: Cham, 2020; pp 91–101.

Monteiro-Riviere, N. A.; Bristol, D. G.; Manning, T. O.; Rogers, R. A.; Riviere, J. E. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J. Invest. Dermatol. 1990, 95, 582–586.


Ma, T.; Hara, M.; Sougrat, R.; Verbavatz, J. M.; Verkman, A. S. Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J. Biol. Chem. 2002, 277, 17147–17153.


Oznurlu, Y.; Celik, I.; Sur, E.; Telatar, T.; Özparlak, H. Comparative skin histology of the white New Zealand and Angora rabbits. J. Anim. Vet. Adv. 2009, 8, 1694–1701.


Elpelt, A.; Ivanov, D.; Nováčková, A.; Kováčik, A.; Sochorová, M.; Saeidpour, S.; Teutloff, C.; Lohan, S. B.; Lademann, J.; Vávrová, K. et al. Investigation of TEMPO partitioning in different skin models as measured by EPR spectroscopy—Insight into the stratum corneum. J. Magn. Reson. 2020, 310, 106637.


Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. Porcine ear skin: An in vitro model for human skin. Skin Res. Technol. 2007, 13, 19–24.


Mahrhauser, D. S.; Nagelreiter, C.; Gehrig, S.; Geyer, A.; Ogris, M.; Kwizda, K.; Valenta, C. Assessment of Raman spectroscopy as a fast and non-invasive method for total stratum corneum thickness determination of pig skin. Int. J. Pharm. 2015, 495, 482–484.


Herkenne, C.; Naik, A.; Kalia, Y. N.; Hadgraft, J.; Guy, R. H. Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man. Pharm. Res. 2006, 23, 1850–1856.


Wei, J. C. J.; Edwards, G. A.; Martin, D. J.; Huang, H.; Crichton, M. L.; Kendall, M. A. F. Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: From mice, rats, rabbits, pigs to humans. Sci. Rep. 2017, 7, 15885.


Lee, Y.; Hwang, K. Skin thickness of Korean adults. Surg. Radiol. Anat. 2002, 24, 183–189.


Huzaira, M.; Rius, F.; Rajadhyaksha, M.; Anderson, R. R.; González, S. Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J. Invest. Dermatol. 2001, 116, 846–852.


Ya-Xian, Z.; Suetake, T.; Tagami, H. Number of cell layers of the stratum corneum in normal skin—Relationship to the anatomical location on the body, age, sex and physical parameters. Arch. Dermatol. Res. 1999, 291, 555–559.


Böhling, A.; Bielfeldt, S.; Himmelmann, A.; Keskin, M.; Wilhelm, K. P. Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy. Skin Res. Technol. 2014, 20, 50–57.

Cucumel, K.; Botto, J. M.; Domloge, N.; Dal Farra, C. Age-related changes in human skin by confocal laser scanning microscope. 2012: INTECH Open Access Publisher.

Tsugita, T.; Nishijima, T.; Kitahara, T.; Takema, Y. Positional differences and aging changes in Japanese woman epidermal thickness and corneous thickness determined by OCT (optical coherence tomography). Skin Res. Technol. 2013, 19, 242–250.


Gambichler, T.; Matip, R.; Moussa, G.; Altmeyer, P.; Hoffmann, K. In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site. J. Dermatol. Sci. 2006, 44, 145–152.


Josse, G.; George, J.; Black, D. Automatic measurement of epidermal thickness from optical coherence tomography images using a new algorithm. Skin Res. Technol. 2011, 17, 314–319.


Maiti, R.; Gerhardt, L. C.; Lee, Z. S.; Byers, R. A.; Woods, D.; Sanz-Herrera, J. A.; Franklin, S. E.; Lewis, R.; Matcher, S. J.; Carré, M. J. In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching. J. Mech. Behav. Biomed. Mater. 2016, 62, 556–569.


O'Leary, S.; Fotouhi, A.; Turk, D.; Sriranga, P.; Rajabi-Estarabadi, A.; Nouri, K.; Daveluy, S.; Mehregan, D.; Nasiriavanaki, M. OCT image atlas of healthy skin on sun-exposed areas. Skin Res. Technol. 2018, 24, 570–586.

Griffiths, C.; Barker, J.; Bleiker, T.; Chalmers, R.; Creamer, D. Rook's Textbook of Dermatology; John Wiley & Sons: Chichester, 2016.

Benítez, J. M.; Montáns, F. J. The mechanical behavior of skin: Structures and models for the finite element analysis. Comput. Struct. 2017, 190, 75–107.


Zöllner, A. M.; Holland, M. A.; Honda, K. S.; Gosain, A. K.; Kuhl, E. Growth on demand: Reviewing the mechanobiology of stretched skin. J. Mech. Beha. Biomed. Mater. 2013, 28, 495–509.


Lhernould, M. S.; Deleers, M.; Delchambre, A. Hollow polymer microneedles array resistance and insertion tests. Int. J. Pharm. 2015, 480, 152–157.


Jor, J. W. Y.; Parker, M. D.; Taberner, A. J.; Nash, M. P.; Nielsen, P. M. F. Computational and experimental characterization of skin mechanics: Identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 539–556.


Schriefl, A. J.; Zeindlinger, G.; Pierce, D. M.; Regitnig, P.; Holzapfel, G. A. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J. Roy. Soc. Interface 2012, 9, 1275–1286.


Kim, J.; Park, S.; Nam, G.; Choi, Y.; Woo, S.; Yoon, S. H. . Bioinspired microneedle insertion for deep and precise skin penetration with low force: Why the application of mechanophysical stimuli should be considered. J. Mech. Behav. Biomed. Mater. 2018, 78, 480–490.


Verbaan, F. J.; Bal, S. M.; Van Den berg, D. J.; Dijksman, J. A.; Van Hecke, F. M.; Verpoorten, H.; Van Den berg, A.; Luttge, R.; Bouwstra, J. A. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J. Control. Release 2008, 128, 80–88.


Donnelly, R. F.; Garland, M. J.; Morrow, D. I. J.; Migalska, K.; Singh, T. R. R.; Majithiya, R.; Woolfson, A. D. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J. Control. Release 2010, 147, 333–341.


Sgouros, A.; Kalosakas, G.; Papagelis, K.; Galiotis, C. Compressive response and buckling of graphene nanoribbons. Sci. Rep. 2018, 8, 9593.


Römgens, A. M.; Bader, D. L.; Bouwstra, J. A.; Baaijens, F. P. T.; Oomens, C. W. J. Monitoring the penetration process of single microneedles with varying tip diameters. J. Mech. Behav. Biomed. Mater. 2014, 40, 397–405.


Johnson, A. R.; Caudill, C. L.; Tumbleston, J. R.; Bloomquist, C. J.; Moga, K. A.; Ermoshkin, A.; Shirvanyants, D.; Mecham, S. J.; Luft, J. C.; Desimone, J. M. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One 2016, 11, e0162518.


Olatunji, O.; Das, D. B.; Garland, M. J.; Belaid, L.; Donnelly, R. F. Influence of array interspacing on the force required for successful microneedle skin penetration: Theoretical and practical approaches. J. Pharm. Sci. 2013, 102, 1209–1221.


Ogunjimi, A. T.; Carr, J.; Lawson, C.; Ferguson, N.; Brogden, N. K. Micropore closure time is longer following microneedle application to skin of color. Sci. Rep. 2020, 10, 18963.


Haridass, I. N.; Wei, J. C. J.; Mohammed, Y. H.; Crichton, M. L.; Anderson, C. D.; Henricson, J.; Sanchez, W. Y.; Meliga, S. C.; Grice, J. E.; Benson, H. A. E. et al. Cellular metabolism and pore lifetime of human skin following microprojection array mediation. J. Control. Release 2019, 306, 59–68.


Gittard, S. D.; Chen, B.; Xu, H. D.; Ovsianikov, A.; Chichkov, B. N.; Monteiro-Riviere, N. A.; Narayan, R. J. The effects of geometry on skin penetration and failure of polymer microneedles. J. Adhes. Sci. Technol. 2013, 27, 227–243.


Ronnander, P.; Simon, L.; Spilgies, H.; Koch, A. Modelling the in-vitro dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. Eur. J. Pharm. Sci. 2018, 125, 54–63.


Zoudani, E. L.; Soltani, M. A new computational method of modeling and evaluation of dissolving microneedle for drug delivery applications: Extension to theoretical modeling of a novel design of microneedle (array in array) for efficient drug delivery. Eur. J. Pharm. Sci. 2020, 150, 105339.


Li, Y. Y.; Hu, X.; Dong, Z. Y.; Chen, Y. Z.; Zhao, W. M.; Wang, Y. S.; Zhang, L.; Chen, M. L.; Wu, C. B.; Wang, Q. Q. Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur. J. Pharm. Sci. 2020, 151, 105361.


McAllister, D. V.; Wang, P. M.; Davis, S. P.; Park, J. H.; Canatella, P. J.; Allen, M. G.; Prausnitz, M. R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA 2003, 100, 13755– 13760.


Couto, A.; Fernandes, R.; Cordeiro, M. N. S.; Reis, S. S.; Ribeiro, R. T.; Pessoa, A. M. Dermic diffusion and stratum corneum: A state of the art review of mathematical models. J. Control. Release 2014, 177, 74–83.


Yadav, P. R.; Han, T.; Olatunji, O.; Pattanayek, S. K.; Das, D. B. Mathematical modelling, simulation and optimisation of microneedles for transdermal drug delivery: Trends and progress. Pharmaceutics 2020, 12, 693.


Olatunji, O.; Das, D. B.; Nassehi, V. Modelling transdermal drug delivery using microneedles: Effect of geometry on drug transport behaviour. J. Pharm. Sci. 2012, 101, 164–175.


Wu, L.; Shrestha, P.; Iapichino, M.; Cai, Y.; Kim, B.; Stoeber, B. Characterization method for calculating diffusion coefficient of drug from polylactic acid (PLA) microneedles into the skin. J. Drug Deliv. Sci. Technol. 2021, 61, 102192.


Wei, J. C. J.; Haridass, I. N.; Crichton, M. L.; Mohammed, Y. H.; Meliga, S. C.; Sanchez, W. Y.; Grice, J. E.; Benson, H. A. E.; Roberts, M. S.; Kendall, M. A. F. Space- and time-resolved investigation on diffusion kinetics of human skin following macromolecule delivery by microneedle arrays. Sci. Rep. 2018, 8, 17759.


Ohn, J.; Jang, M.; Kang, B. M.; Yang, H.; Hong, J. T.; Kim, K. H.; Kwon, O.; Jung, H. Dissolving candlelit microneedle for chronic inflammatory skin diseases. Adv. Sci. 2021, 8, 2004873.


Sawutdeechaikul, P., Kanokrungsee, S.; Sahaspot, T.; Thadvibun, K.; Banlunara, W.; Limcharoen, B.; Sansureerungsikul, T.; Rutwaree, T.; Oungeun, M.; Wanichwecharungruang, S. Detachable dissolvable microneedles: Intra-epidermal and intradermal diffusion, effect on skin surface, and application in hyperpigmentation treatment. Sci. Rep. 2021, 11, 24114.


Kirkby, M.; Moffatt, K.; Rogers, A. M.; McCague, P. J.; McElnay, J. C.; Quinn, C.; McCullough, L. A.; Barry, J.; Donnelly, R. F. A drug content, stability analysis, and qualitative assessment of pharmacists' opinions of two exemplar extemporaneous formulations. Molecules 2020, 25, 3078.


Jung, J. H; Jin, S.G., Microneedle for transdermal drug delivery: Current trends and fabrication. Journal of Pharmaceutical Investigation 2021, 51, 503–517.


McAlister, E.; Kirkby, M.; Domínguez-Robles, J.; Paredes, A. J.; Anjani, Q. K.; Moffatt, K.; Vora, L. K.; Hutton, A. R. J.; Mckenna, P. E.; Larrañeta, E. et al. The role of microneedle arrays in drug delivery and patient monitoring to prevent diabetes induced fibrosis. Adv. Drug Deliv. Rev. 2021, 175, 113825.


Katsumi, H.; Tanaka, Y.; Hitomi, K.; Liu, S.; Quan, Y. S.; Kamiyama, F.; Sakane, T.; Yamamoto, A. Efficient transdermal delivery of alendronate, a nitrogen-containing bisphosphonate, using tip-loaded self-dissolving microneedle arrays for the treatment of osteoporosis. Pharmaceutics 2017, 9, 29.


Zhang, Y.; Wang, D. F.; Gao, M.Y.; Xu, B.; Zhu, J. Y.; Yu, W. J.; Liu, D. P.; Jiang, G. H. Separable microneedles for near-infrared light-triggered transdermal delivery of metformin in diabetic rats. ACS Biomater. Sci. Eng. 2018, 4, 2879–2888.


Donnelly, R. F.; McCrudden, M. T. C.; Alkilani, A. Z.; Larrañeta, E.; McAlister, E.; Courtenay, A. J.; Kearney, M. C.; Raj Singh, T. R.; McCarthy, H. O.; Kett, V. L. et al. Hydrogel-forming microneedles prepared from "Super Swelling" polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One 2014, 9, e111547.


Kearney, M. C.; Caffarel-Salvador, E.; Fallows, S. J.; Mccarthy, H. O.; Donnelly, R. F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer's disease. Eur. J. Pharm. Biopharm. 2016, 103, 43–50.


Wang, C.; Ye, Y. Q.; Hochu, G. M.; Sadeghifar, H.; Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016, 16, 2334–2340.


Yang, P. P.; Lu, C.; Qin, W. B.; Chen, M. L.; Quan, G. L.; Liu, H.; Wang, L. L.; Bai, X. Q.; Pan, X.; Wu, C. B. Construction of a core–shell microneedle system to achieve targeted co-delivery of checkpoint inhibitors for melanoma immunotherapy. Acta Biomater. 2020, 104, 147–157.


Chen, Y. L.; Yang, Y. K.; Xian, Y. W.; Singh, P.; Feng, J. L.; Cui, S. F.; Carrier, A.; Oakes, K.; Luan, T. G.; Zhang, X. Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS Appl. Mater. Interfaces 2019, 12, 352–360.

Publication history
Rights and permissions

Publication history

Received: 05 January 2022
Revised: 29 January 2022
Accepted: 16 February 2022
Published: 26 February 2022
Issue date: March 2022


© The Author(s) 2022. Nano TransMed published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.