Journal Home > Volume 1 , Issue 1

Cancer immunotherapy, including immune checkpoint blockade, has emerged as a powerful and effective clinical strategy for the treatment of tumors. However, the low response rates or systemic adverse effects owing to the heterogeneity of the tumor microenvironment limit the efficacy of cancer immunotherapy. Pyroptosis, featuring inflammation and lysis, can promote the release of large amounts of proinflammatory agents that reprogram the tumor microenvironment and is expected to achieve the transition from "cold" tumors to "hot" tumors. Therefore, understanding how to particularly evoke tumor cell pyroptosis is crucial in overcoming the adverse effects associated with the tumor microenvironment. The development of emerging nanotechnology offers an avenue for tumor-targeted drug development. Nanomaterials that can trigger tumor-specific pyroptosis have promising applications in improving the efficacy of cancer immunotherapy while reducing systemic adverse effects. Herein, we review the fundamentals of pyroptosis, and summarize the strategies of pyroptosis-based nanomaterials that have been developed recently, with emphasis on their utility and benefits in cancer immunotherapy. Furthermore, we put forth our viewpoints regarding the investigation of nanomaterials and suggest future directions for this rapidly developing field.

Full text
About this article

Evoking pyroptosis with nanomaterials for cancer immunotherapy: Current boom and novel outlook

Show Author's information Wen-Da Wang1Zhi-Jun Sun1,2 ( )
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China


Cancer immunotherapy, including immune checkpoint blockade, has emerged as a powerful and effective clinical strategy for the treatment of tumors. However, the low response rates or systemic adverse effects owing to the heterogeneity of the tumor microenvironment limit the efficacy of cancer immunotherapy. Pyroptosis, featuring inflammation and lysis, can promote the release of large amounts of proinflammatory agents that reprogram the tumor microenvironment and is expected to achieve the transition from "cold" tumors to "hot" tumors. Therefore, understanding how to particularly evoke tumor cell pyroptosis is crucial in overcoming the adverse effects associated with the tumor microenvironment. The development of emerging nanotechnology offers an avenue for tumor-targeted drug development. Nanomaterials that can trigger tumor-specific pyroptosis have promising applications in improving the efficacy of cancer immunotherapy while reducing systemic adverse effects. Herein, we review the fundamentals of pyroptosis, and summarize the strategies of pyroptosis-based nanomaterials that have been developed recently, with emphasis on their utility and benefits in cancer immunotherapy. Furthermore, we put forth our viewpoints regarding the investigation of nanomaterials and suggest future directions for this rapidly developing field.

Keywords: nanomaterials, cancer immunotherapy, pyroptosis



Duan, X. P.; Chan, C.; Lin, W. B. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 670–680.


Yang, Y. P. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest. 2015, 125, 3335–3337.


Kubli, S. P.; Berger, T.; Araujo, D. V.; Siu, L. L.; Mak, T. W. Beyond immune checkpoint blockade: Emerging immunological strategies. Nat. Rev. Drug Dis. 2021, 20, 899–919.


Couzin-Frankel, J. Cancer immunotherapy. Science 2013, 342, 1432–1433.


Ribas, A.; Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355.


Wei, S. C.; Duffy, C. R.; Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018, 8, 1069–1086.


Morad, G.; Helmink, B. A.; Sharma, P.; Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021, 184, 5309–5337.


Hegde, P. S.; Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 2020, 52, 17–35.


Menon, S.; Shin, S.; Dy, G. Advances in cancer immunotherapy in solid tumors. Cancers 2016, 8, 106.


Musetti, S.; Huang, L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano 2018, 12, 11740–11755.


Suarez-Lopez, L.; Sriram, G.; Kong, Y. W.; Morandell, S.; Merrick, K. A.; Hernandez, Y.; Haigis, K, M.; Yaffe, M. B. MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. Proc. Natl. Acad. Sci. USA 2018, 115, E4236–E4244.


Veglia, F.; Perego, M.; Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 2018, 19, 108–119.


Wing, J. B.; Tanaka, A.; Sakaguchi, S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 2019, 50, 302–316.


Liu, Y. T.; Sun, Z. J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 2021, 11, 5365–5386.


Shao, F. Gasdermins: Making pores for pyroptosis. Nat. Rev. Immunol. 2021, 21, 620–621.


Broz, P.; Pelegrín, P.; Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 2020, 20, 143–157.


Galluzzi, L.; Vitale, I.; Aaronson, S. A.; Abrams, J. M.; Adam, D.; Agostinis, P.; Alnemri, E. S.; Altucci, L.; Amelio, I.; Andrews, D. W. et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541.


Mulvihill, E.; Sborgi, L.; Mari, S. A.; Pfreundschuh, M.; Hiller, S.; Müller, D. J. Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 2018, 37, e98321.


Ding, J. J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J. J.; Sun, H. Z.; Wang, D. C.; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016, 535, 111–116.


Evavold, C. L.; Hafner-Bratkovič, I.; Devant, P.; D'Andrea, J. M.; Ngwa, E. M.; Boršić, E.; Doench, J. G.; LaFleur, M. W.; Sharpe, A. H.; Thiagarajah, J. R. et al. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell 2021, 184, 4495–4511. e19.


Shi, J. J.; Gao, W. Q.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 2017, 42, 245–254.


Jorgensen, I.; Miao, E. A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 2015, 265, 130–142.


Gajewski, T. F.; Woo, S. R.; Zha, Y. Y.; Spaapen, R.; Zheng, Y.; Corrales, L.; Spranger, S. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 2013, 25, 268–276.


Schumacher, T. N.; Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74.


Su, F.; Duan, J. Z.; Zhu, J.; Fu, H. J.; Zheng, X. F.; Ge, C. H. Long non-coding RNA nuclear paraspeckle assembly transcript 1 regulates ionizing radiation-induced pyroptosis via microRNA-448/gasdermin E in colorectal cancer cells. Int. J. Oncol. 2021, 59, 79.


Liu, Y. G.; Chen, J. K.; Zhang, Z. T.; Ma, X. J.; Chen, Y. C.; Du, X. M.; Liu, H.; Zong, Y.; Lu, G. C. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis. 2017, 8, e2579.


Yan, H. L.; Luo, B.; Wu, X. Y.; Guan, F.; Yu, X. X.; Zhao, L. N.; Ke, X. K.; Wu, J.; Yuan, J. P. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int. J. Biol. Sci. 2021, 17, 2606–2621.


Hu, L.; Chen, M.; Chen, X. R.; Zhao, C. G.; Fang, Z. Y.; Wang, H. Z.; Dai, H. M. Chemotherapy-induced pyroptosis is mediated by BAK/ BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020, 11, 281.


Wang, L.; Li, K.; Lin, X. J.; Yao, Z. M.; Wang, S. H.; Xiong, X.; Ning, Z. F.; Wang, J.; Xu, X. Z.; Jiang, Y. et al. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 2019, 450, 22–31.


Wang, Y. P.; Gao, W. Q.; Shi, X. Y.; Ding, J. J.; Liu, W.; He, H. B.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 2017, 547, 99–103.


Hage, C.; Hoves, S.; Strauss, L.; Bissinger, S.; Prinz, Y.; Pöschinger, T.; Kiessling, F.; Ries, C. H. Sorafenib induces pyroptosis in macrophages and triggers natural killer cell-mediated cytotoxicity against hepatocellular carcinoma. Hepatology 2019, 70, 1280–1297.


Lu, Y.; Xu, F.; Wang, Y.; Shi, C.; Sha, Y. Z.; He, G. L.; Yao, Q. C.; Shao, K.; Sun, W.; Du, J. J. et al. Cancer immunogenic cell death via photo-pyroptosis with light-sensitive indoleamine, 2, 3-dioxygenase inhibitor conjugate. Biomaterials 2021, 278, 121167.


Bollino, D.; Colunga, A.; Li, B. Q.; Aurelian, L. ΔPK oncolytic activity includes modulation of the tumour cell milieu. J. Gen. Virol. 2016, 97, 496–508.


Douzandegan, Y.; Tahamtan, A.; Gray, Z.; Nikoo, H. R.; Tabarraei, A.; Moradi, A. Cell death mechanisms in esophageal squamous cell carcinoma induced by vesicular stomatitis virus matrix protein. Osong Public Health Res. Perspect. 2019, 10, 246–252.


Zhao, P. F.; Wang, M.; Chen, M.; Chen, Z.; Peng, X.; Zhou, F. F.; Song, J.; Qu, J. L. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials 2020, 254, 120142.


Wu, M.; Liu, X. G.; Chen, H.; Duan, Y. K.; Liu, J. J.; Pan, Y. T.; Liu, B. Activation of pyroptosis by membrane-anchoring AIE photosensitizer design: New prospect for photodynamic cancer cell ablation. Angew. Chem., Int. Ed. 2021, 60, 9093–9098.


Li, L. S.; Song, D. F.; Qi, L.; Jiang, M. X.; Wu, Y. M.; Gan, J. Q.; Cao, K.; Li, Y. J.; Bai, Y. X.; Zheng, T. S. Photodynamic therapy induces human esophageal carcinoma cell pyroptosis by targeting the PKM2/caspase-8/caspase-3/GSDME axis. Cancer Lett. 2021, 520, 143–159.


Yang, W.; Xu, H. T.; Liu, Q. H.; Liu, C. X.; Hu, J. H.; Liu, P.; Fang, T. Y.; Bai, Y. X.; Zhu, J. X.; Xie, R. 5-Aminolevulinic acid hydrochloride loaded microbubbles-mediated sonodynamic therapy in pancreatic cancer cells. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1178–1188.


Zhu, J. X.; Zhu, W. T.; Hu, J. H.; Yang, W.; Liu, P.; Liu, Q. H.; Bai, Y. X.; Xie, R. Curcumin-loaded poly(L-lactide-co-glycolide) microbubble- mediated sono-photodynamic therapy in liver cancer cells. Ultrasound Med. Biol. 2020, 46, 2030–2043.


Liu, Y.; Zhen, W. Y.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Na2S2O8 nanoparticles trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 2020, 142, 21751–21757.


Yang, Y.; Liu, P. Y.; Bao, W.; Chen, S. J.; Wu, F. S.; Zhu, P. Y. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/ GSDMD-mediated pyroptotic pathway. BMC Cancer 2020, 20, 28.


Song, N.; Li, X. J.; Cui, Y.; Zhang, T. Y.; Xu, S. W.; Li, S. Hydrogen sulfide exposure induces pyroptosis in the trachea of broilers via the regulatory effect of circRNA-17828/miR-6631-5p/DUSP6 crosstalk on ROS production. J. Hazard. Mater. 2021, 418, 126172.


Xiong, H. G.; Ma, X. B.; Wang, X. L.; Su, W.; Wu, L.; Zhang, T.; Xu, Z. G.; Sun, Z. J. Inspired epigenetic modulation synergy with adenosine inhibition elicits pyroptosis and potentiates cancer immunotherapy. Adv. Funct. Mater. 2021, 31, 2100007.


Bazak, R.; Houri, M.; El Achy, S.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol. 2014, 2, 904–908.


Shen, Z. Y.; Wu, H.; Yang, S.; Ma, X. H.; Li, Z. H.; Tan, M. Q.; Wu, A. G. A novel Trojan-horse targeting strategy to reduce the non- specific uptake of nanocarriers by non-cancerous cells. Biomaterials 2015, 70, 1–11.


Chu, C. C.; Lin, H. R.; Liu, H.; Wang, X. Y.; Wang, J. Q.; Zhang, P. F.; Gao, H. Y.; Huang, C.; Zeng, Y.; Tan, Y. Z. et al. Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Adv. Mater. 2017, 29, 1605928.


Dong, R. J.; Zhou, Y. F.; Huang, X. H.; Zhu, X. Y.; Lu, Y. F.; Shen, J. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015, 27, 498–526.


Wang, L.; Li, L. L.; Fan, Y. S.; Wang, H. Host–guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater. 2013, 25, 3888–3898.


Yu, G. C.; Yang, Z.; Fu, X.; Yung, B. C.; Yang, J.; Mao, Z. W.; Shao, L.; Hua, B.; Liu, Y. J.; Zhang, F. W. et al. Polyrotaxane-based supramolecular theranostics. Nat. Commun. 2018, 9, 766.


Yu, G. C.; Zhao, X. L.; Zhou, J.; Mao, Z. W.; Huang, X. L.; Wang, Z. T.; Hua, B.; Liu, Y. J.; Zhang, F. W.; He, Z. M. et al. Supramolecular polymer-based nanomedicine: High therapeutic performance and negligible long-term immunotoxicity. J. Am. Chem. Soc. 2018, 140, 8005–8019.


Gallo, P. M.; Gallucci, S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front. Immunol. 2013, 4, 138.


Pallardy, M. J.; Turbica, I.; Biola-Vidamment, A. Why the immune system should be concerned by nanomaterials?. Front. Immunol. 2017, 8, 544.


Kayagaki, N.; Stowe, I. B.; Lee, B. L.; O'Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q. T. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015, 526, 666–671.


Shi, J. J.; Zhao, Y.; Wang, K.; Shi, X. Y.; Wang, Y.; Huang, H. W.; Zhuang, Y. H.; Cai, T.; Wang, F. C.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665.


He, W. T.; Wan, H. Q.; Hu, L. C.; Chen, P. D.; Wang, X.; Huang, Z.; Yang, Z. H.; Zhong, C. Q.; Han, J. H. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015, 25, 1285–1298.


Tsuchiya, K. Inflammasome-associated cell death: Pyroptosis, apoptosis, and physiological implications. Microbiol. Immunol. 2020, 64, 252–269.


Tsuchiya, K.; Nakajima, S.; Hosojima, S.; Nguyen, D. T.; Hattori, T.; Le, T. M.; Hori, O.; Mahib, M. R.; Yamaguchi, Y.; Miura, M. et al. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat. Commun. 2019, 10, 2091.


Wang, Q.; Imamura, R.; Motani, K.; Kushiyama, H.; Nagata, S.; Suda, T. Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages. Int. Immunol. 2013, 25, 363–372.


Tsuchiya, K. Switching from apoptosis to pyroptosis: Gasdermin- elicited inflammation and antitumor immunity. Int. J. Mol. Sci. 2021, 22, 426.


Volchuk, A.; Ye, A. N.; Chi, L.; Steinberg, B. E.; Goldenberg, N. M. Indirect regulation of HMGB1 release by gasdermin D. Nat. Commun. 2020, 11, 4561.


Franklin, B. S.; Bossaller, L.; De Nardo, D.; Ratter, J. M.; Stutz, A.; Engels, G.; Brenker, C.; Nordhoff, M.; Mirandola, S. R.; Al-Amoudi, A. et al. The adaptor ASC has extracellular and "prionoid" activities that propagate inflammation. Nat. Immunol. 2014, 15, 727–737.


Davis, M. A.; Fairgrieve, M. R.; Den Hartigh, A.; Yakovenko, O.; Duvvuri, B.; Lood, C.; Thomas, W. E.; Fink, S. L.; Gale, M. Jr. Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proc. Natl. Acad. Sci. USA 2019, 116, 5061–5070.


Rühl, S.; Shkarina, K.; Demarco, B.; Heilig, R.; Santos, J. C.; Broz, P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 2018, 362, 956–960.


Knodler, L. A.; Crowley, S. M.; Sham, H. P.; Yang, H.; Wrande, M.; Ma, C. X.; Ernst, R. K.; Steele-Mortimer, O.; Celli, J.; Vallance, B. A. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 2014, 16, 249–256.


Kayagaki, N.; Warming, S.; Lamkanfi, M.; Walle, L. V.; Louie, S.; Dong, J.; Newton, K.; Qu, Y.; Liu, J. F.; Heldens, S. et al. Non- canonical inflammasome activation targets caspase-11. Nature 2011, 479, 117–121.


Shi, J. J.; Zhao, Y.; Wang, Y. P.; Gao, W. Q.; Ding, J. J.; Li, P.; Hu, L. Y.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014, 514, 187–192.


Vanaja, S. K.; Russo, A. J.; Behl, B.; Banerjee, I.; Yankova, M.; Deshmukh, S. D.; Rathinam, V. A. K. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 2016, 165, 1106–1119.


Deng, M. H.; Tang, Y. T.; Li, W. B.; Wang, X. Y.; Zhang, R.; Zhang, X. Y.; Zhao, X.; Liu, J.; Tang, C.; Liu, Z. H. et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 2018, 49, 740–753. e7.


Kayagaki, N.; Wong, M. T.; Stowe, I. B.; Ramani, S. R.; Gonzalez, L. C.; Akashi-Takamura, S.; Miyake, K.; Zhang, J.; Lee, W. P.; Muszyński, A. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013, 341, 1246–1249.


Tamura, M.; Tanaka, S.; Fujii, T.; Aoki, A.; Komiyama, H.; Ezawa, K.; Sumiyama, K.; Sagai, T.; Shiroishi, T. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 2007, 89, 618–629.


Fujikane, T.; Nishikawa, N.; Toyota, M.; Suzuki, H.; Nojima, M.; Maruyama, R.; Ashida, M.; Ohe-Toyota, M.; Kai, M.; Nishidate, T. et al. Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res. Treat. 2010, 122, 699–710.


Nagata, S.; Tanaka, M. Programmed cell death and the immune system. Nat. Rev. Immunol. 2017, 17, 333–340.


Zhang, Z. B.; Zhang, Y.; Xia, S. Y.; Kong, Q.; Li, S. Y.; Liu, X.; Junqueira, C.; Meza-Sosa, K. F.; Mok, T. M. Y.; Ansara, J. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 2020, 579, 415–420.


Voskoboinik, I.; Whisstock, J. C.; Trapani, J. A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015, 15, 388–400.


Chowdhury, D.; Lieberman, J. Death by a thousand cuts: Granzyme pathways of programmed cell death. Annu. Rev. Immunol. 2008, 26, 389–420.


Chao, K. L.; Kulakova, L.; Herzberg, O. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc. Natl. Acad. Sci. USA 2017, 114, E1128–E1137.


Zhou, Z. W.; He, H. B.; Wang, K.; Shi, X. Y.; Wang, Y. P.; Su, Y.; Wang, Y.; Li, D.; Liu, W.; Zhang, Y. L. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 2020, 368, eaaz7548.


Watabe, K.; Ito, A.; Asada, H.; Endo, Y.; Kobayashi, T.; Nakamoto, K.; Itami, S.; Takao, S.; Shinomura, Y.; Aikou, T. et al. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn. J. Cancer Res. 2001, 92, 140–151.


Orning, P.; Weng, D.; Starheim, K.; Ratner, D.; Best, Z.; Lee, B.; Brooks, A.; Xia, S. Y.; Wu, H.; Kelliher, M. A. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 2018, 362, 1064–1069.


Sollberger, G.; Choidas, A.; Burn, G. L.; Habenberger, P.; Di Lucrezia, R.; Kordes, S.; Menninger, S.; Eickhoff, J.; Nussbaumer, P.; Klebl, B. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 2018, 3, eaar6689.


Kambara, H.; Liu, F.; Zhang, X. Y.; Liu, P.; Bajrami, B.; Teng, Y.; Zhao, L.; Zhou, S. Y.; Yu, H. B.; Zhou, W. D. et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 2018, 22, 2924–2936.


Ye, Y. Q.; Wang, C.; Zhang, X. D.; Hu, Q. Y.; Zhang, Y. Q.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2017, 2, eaan5692.


Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.


Chen, Q.; Hu, Q. Y.; Dukhovlinova, E.; Chen, G. J.; Ahn, S.; Wang, C.; Ogunnaike, E. A.; Ligler, F. S.; Dotti, G.; Gu, Z. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 2019, 31, 1900192.


Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281.


Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.


Chen, Q.; Wang, C.; Zhan, Z. X.; He, W. W.; Cheng, Z. P.; Li, Y. Y.; Liu, Z. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials 2014, 35, 8206–8214.


Day, E. S.; Morton, J. G.; West, J. L. Nanoparticles for thermal cancer therapy. J. Biomech. Eng. 2009, 131, 074001.


Boni, L.; David, G.; Mangano, A.; Dionigi, G.; Rausei, S.; Spampatti, S.; Cassinotti, E.; Fingerhut, A. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg. Endosc. 2015, 29, 2046–2055.


Kuo, W. S.; Chang, Y. T.; Cho, K. C.; Chiu, K. C.; Lien, C. H.; Yeh, C. S.; Chen, S. J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012, 33, 3270–3278.


Wang, H. L.; Li, X. X.; Tse, B. W. C.; Yang, H. T.; Thorling, C. A.; Liu, Y. X.; Touraud, M.; Chouane, J. B.; Liu, X.; Roberts, M. S. et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018, 8, 1227–1242.

Su, X. X.; Wang, W. J.; Cao, Q.; Zhang, H.; Liu, B.; Ling, Y. Y.; Zhou, X. T.; Mao, Z. W. A carbonic anhydrase IX (CAIX)-anchored rhenium(I) photosensitizer evokes pyroptosis for enhanced anti- tumor immunity. Angew. Chem., Int. Ed. 2021, e202115800, in press,

Wu, L. H.; Mendoza-Garcia, A.; Li, Q.; Sun, S. H. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016, 116, 10473–10512.


Gavilán, H.; Avugadda, S. K.; Fernández-Cabada, T.; Soni, N.; Cassani, M.; Mai, B. T.; Chantrell, R.; Pellegrino, T. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 2021, 50, 11614–11667.


Clerc, P.; Jeanjean, P.; Hallali, N.; Gougeon, M.; Pipy, B.; Carrey, J.; Fourmy, D.; Gigoux, V. Targeted magnetic intra-lysosomal hyperthermia produces lysosomal reactive oxygen species and causes caspase-1 dependent cell death. J. Control. Release 2018, 270, 120–134.


Muckenthaler, M. U.; Rivella, S.; Hentze, M. W.; Galy, B. A red carpet for iron metabolism. Cell 2017, 168, 344–361.


Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.


Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.


Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J. et al. The current status of MOF and COF applications. Angew. Chem., Int. Ed. 2021, 60, 23975–24001.


Ploetz, E.; Zimpel, A.; Cauda, V.; Bauer, D.; Lamb, D. C.; Haisch, C.; Zahler, S.; Vollmar, A. M.; Wuttke, S.; Engelke, H. Metal–organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular pH. Adv. Mater. 2020, 32, 1907267.


Xu, R.; Yang, J.; Qian, Y.; Deng, H. Z.; Wang, Z. H.; Ma, S. Y.; Wei, Y. W.; Yang, N.; Shen, Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz. 2021, 6. 348–356.


Rongvaux, A.; Jackson, R.; Harman, C. C. D.; Li, T.; West, A. P.; de Zoete, M. R.; Wu, Y. T.; Yordy, B.; Lakhani, S. A.; Kuan, C. Y. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014, 159, 1563–1577.


Zhou, S. Y.; Shang, Q.; Ji, J. B.; Luan, Y. X. A nanoplatform to amplify apoptosis-to-pyroptosis immunotherapy via immunomodulation of myeloid-derived suppressor cells. ACS Appl. Mater. Interfaces 2021, 13, 47407–47417.


Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?. Nat. Rev. Drug Discov. 2009, 8, 579–591.


Szatrowski, T. P.; Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991, 51, 794–798.


Lee, S. H.; Gupta, M. K.; Bang, J. B.; Bae, H.; Sung, H. J. Current progress in reactive oxygen species (ROS)-responsive materials for biomedical applications. Adv. Healthc. Mater. 2013, 2, 908–915.


Zhang, D. L.; Wei, Y. L.; Chen, K.; Zhang, X. J.; Xu, X. Q.; Shi, Q.; Han, S. L.; Chen, X.; Gong, H.; Li, X. H. et al. Biocompatible reactive oxygen species (ROS)-responsive nanoparticles as superior drug delivery vehicles. Adv. Healthc. Mater. 2015, 4, 69–76.


Xu, X. D.; Saw, P. E.; Tao, W.; Li, Y. J.; Ji, X. Y.; Bhasin, S.; Liu, Y. L.; Ayyash, D.; Rasmussen, J.; Huo, M. et al. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 2017, 29, 1700141.


Li, J. J.; Anraku, Y.; Kataoka, K. Self-boosting catalytic nanoreactors integrated with triggerable crosslinking membrane networks for initiation of immunogenic cell death by pyroptosis. Angew. Chem., Int. Ed. 2020, 59, 13526–13530.


Wang, K. W.; Xiao, X.; Jiang, M. L.; Li, J. S.; Zhou, J. L.; Yuan, Y. Y. An NIR-fluorophore-based theranostic for selective initiation of tumor pyroptosis-induced immunotherapy. Small 2021, 17, 2102610.


Xiao, Y.; Zhang, T.; Ma, X. B.; Yang, Q. C.; Yang, L. L.; Yang, S. C.; Liang, M. Y.; Xu, Z. G.; Sun, Z. J. Microenvironment-responsive prodrug-induced pyroptosis boosts cancer immunotherapy. Adv. Sci. 2021, 8, 2101840.

Zhou, J. J.; Ma, X. B.; Li, H.; Chen, D. R.; Mao, L.; Yang, L. L.; Zhang, T.; Qiu, W.; Xu, Z. G.; Sun, Z. J. Inspired heat shock protein alleviating prodrug enforces immunogenic photodynamic therapy by eliciting pyroptosis. Nano Res., in press,

Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric vesicles: From drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res. 2011, 44, 1039–1049.


Ahmed, K. S.; Hussein, S. A.; Ali, A. H.; Korma, S. A.; Qiu, L. P.; Chen, J. H. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J. Drug Target. 2019, 27, 742–761.


Zahednezhad, F.; Saadat, M.; Valizadeh, H.; Zakeri-Milani, P.; Baradaran, B. Liposome and immune system interplay: Challenges and potentials. J. Control. Release 2019, 305, 194–209.


Akino, K.; Toyota, M.; Suzuki, H.; Imai, T.; Maruyama, R.; Kusano, M.; Nishikawa, N.; Watanabe, Y.; Sasaki, Y.; Abe, T. et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 2007, 98, 88–95.


Kim, M. S.; Chang, X.; Yamashita, K.; Nagpal, J. K.; Baek, J. H.; Wu, G.; Trink, B.; Ratovitski, E. A.; Mori, M.; Sidransky, D. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 2008, 27, 3624–3634.


Fan, J. X.; Deng, R. H.; Wang, H.; Liu, X. H.; Wang, X. N.; Qin, R.; Jin, X.; Lei, T. R.; Zheng, D. W.; Zhou, P. H. et al. Epigenetics-based tumor cells pyroptosis for enhancing the immunological effect of chemotherapeutic nanocarriers. Nano Lett. 2019, 19, 8049–8058.


Song, M. M.; Xia, W. T.; Tao, Z. X.; Zhu, B.; Zhang, W. X.; Liu, C.; Chen, S. Y. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Deliv. 2021, 28, 594–606.


Serna, N.; Sánchez-García, L.; Unzueta, U.; Díaz, R.; Vázquez, E.; Mangues, R. Protein-based therapeutic killing for cancer therapies. Trends Biotechnol. 2018, 36, 318–335.


Serna, N.; Álamo, P.; Ramesh, P.; Vinokurova, D.; Sánchez-García, L.; Unzueta, U.; Gallardo, A.; Céspedes, M. V.; Vázquez, E.; Villaverde, A. et al. Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells. J. Control. Release 2020, 320, 96–104.


Wang, Q. Y.; Wang, Y. P.; Ding, J. J.; Wang, C. H.; Zhou, X. H.; Gao, W. Q.; Huang, H. W.; Shao, F.; Liu, Z. B. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 2020, 579, 421–426.


Elion, D. L.; Jacobson, M. E.; Hicks, D. J.; Rahman, B.; Sanchez, V.; Gonzales-Ericsson, P. I.; Fedorova, O.; Pyle, A. M.; Wilson, J. T.; Cook, R. S. Therapeutically active RIG-I agonist induces immunogenic tumor cell killing in breast cancers. Cancer Res. 2018, 78, 6183–6195.


Hu, J.; Dong, Y.; Ding, L.; Dong, Y.; Wu, Z. H.; Wang, W. P.; Shen, M.; Duan, Y. R. Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment. Signal Transduct. Target. Ther. 2019, 4, 28.


Nadeem, S.; Yang, C.; Du, Y.; Li, F. Y.; Chen, Z.; Zhou, Y.; Lee, J. Y.; Ding, Q.; Ling, D. S. A virus-spike tumor-activatable pyroptotic agent. Small 2021, 17, 2006599.


Ding, B. B.; Sheng, J. Y.; Zheng, P.; Li, C. X.; Li, D.; Cheng, Z. Y.; Ma, P. A.; Lin, J. Biodegradable upconversion nanoparticles induce pyroptosis for cancer immunotherapy. Nano Lett. 2021, 21, 8281–8289.


Grivennikov, S. I.; Greten, F. R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899.


Vakkila, J.; Lotze, M. T. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 2004, 4, 641–648.


Xia, X. J.; Wang, X.; Cheng, Z.; Qin, W. H.; Lei, L. C.; Jiang, J. Q.; Hu, J. H. The role of pyroptosis in cancer: Pro-cancer or pro-"host"?. Cell Death Dis. 2019, 10, 650.


Segovia, M.; Russo, S.; Jeldres, M.; Mahmoud, Y. D.; Perez, V.; Duhalde, M.; Charnet, P.; Rousset, M.; Victoria, S.; Veigas, F. et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation. Cancer Cell 2019, 35, 767–781. e6.


Zhang, M.; Xin, W.; Yu, Y.; Yang, X. Y.; Ma, C.; Zhang, H. Y.; Liu, Y.; Zhao, X. J.; Guan, X.; Wang, X. Y. et al. Programmed death-ligand 1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in pulmonary hypertension. J. Mol. Cell. Cardiol. 2020, 138, 23–33.

Publication history
Rights and permissions

Publication history

Received: 01 January 2022
Revised: 26 January 2022
Accepted: 26 January 2022
Published: 06 February 2022
Issue date: March 2022


© The Author(s) 2022. Nano TransMed published by Tsinghua University Press.



This work was financially supported by the National Natural Science Foundation of China (Nos. 82072996 and 81874131), and the Fundamental Research Funds for the Central Universities (No. 2042021kf0216).

Rights and permissions

The articles published in this open access journal are distributedunder the terms of the Creative Commons Attribution 4.0 International License (, which permits use,distribution and reproduction in any medium, provided the original work is properly cited.