Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The Fe single-atom catalyst (Fe-N-C) with Fe-Nx active sites is considered a promising alternative to Pt-based catalysts for oxygen reduction reaction (ORR). However, the exposure and utilization efficiency of the Fe-Nx site in Fe-N-C lead to a certain competitive distance with Pt-based catalysts in the ORR process. Herein, a space-confinement strategy triggered by SiO2 templates to optimize the ORR triple-phase boundary of Fe-N-C, is reported. As expected, the optimized SiO2(4)/Fe-N-C exhibits excellent ORR activity with a half-wave potential of 0.886 V in 0.1 M KOH. More importantly, the E1/2 loss of SiO2(4)/Fe-N-C is merely 32 mV after 30,000 cycles. Density functional theory (DFT) calculations confirm SiO2-induced carbon defects critically modulate electronic configurations of FeN4 centers, optimizing adsorption energetics of oxygen intermediates. Remarkably, when utilized as air cathodes for zinc-air batteries (ZABs), the device based on SiO2(4)/Fe-N-C displays record-breaking power density (444.10 mW·cm–2) with superior long-term durability over 1013 h, outperforming most reported noble-metal-free electrocatalysts. This work provides a new route to optimize the triple-phase boundary of single-atom catalysts for energy storage applications.
Yang, X. H.; Wang, Y. C.; Zhang, G. X.; Du, L.; Yang, L. J.; Markiewicz, M.; Choi, J. Y.; Chenitz, R.; Sun, S. H. SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Appl. Catal. B: Environ. 2020, 264, 118523.
Li, J.; Xue, H. B.; Xu, N. N.; Zhang, X. C.; Wang, Y. X.; He, R.; Huang, H. T.; Qiao, J. L. Co/Ni dual-metal embedded in heteroatom doped porous carbon core-shell bifunctional electrocatalyst for rechargeable Zn-air batteries. Mater. Rep.: Energy 2022, 2, 100090.
Yin, Z. Y.; He, R.; Xue, H. B.; Chen, J. J.; Wang, Y.; Ye, X. X.; Xu, N. N.; Qiao, J. L.; Huang, H. T. A bimetallic-activated MnO2 self-assembly electrode with a dual heterojunction structure for high-performance rechargeable zinc-air batteries. Energy Mater. 2022, 2, 200021.
Su, Z. Y.; Huang, Q. P.; Guo, Q.; Hoseini, S. J.; Zheng, F. Q.; Chen, W. Metal-organic framework and carbon hybrid nanostructures: Fabrication strategies and electrocatalytic application for the water splitting and oxygen reduction reaction. Nano Res. Energy 2023, 2, e9120078.
Cheng, Y. J.; Wang, H.; Song, H. Q.; Zhang, K.; Waterhouse, G. I. N.; Chang, J. W.; Tang, Z. Y.; Lu, S. Y. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction-a review. Nano Res. Energy 2023, 2, e9120082.
Wu, M. J.; Dong, F.; Yang, Y. K.; Cui, X.; Liu, X. Q.; Zhu, Y. H.; Li, D. S.; Omanovic, S.; Sun, S. H.; Zhang, G. X. Emerging atomically precise metal nanoclusters and ultrasmall nanoparticles for efficient electrochemical energy catalysis: Synthesis strategies and surface/interface engineering. Electrochem. Energy Rev. 2024, 7, 10.
Zago, S.; Scarpetta-Pizo, L. C.; Zagal, J. H.; Specchia, S. PGM-free biomass-derived electrocatalysts for oxygen reduction in energy conversion devices: Promising materials. Electrochem. Energy Rev. 2024, 7, 1.
Shao, C. F.; Hua, J. H.; Li, Q.; Xia, Y. P.; Sun, L. X.; Wang, L. M.; Li, B. T. Near-range modulation of single-atomic Fe sites by simultaneously integrating heteroatom and nanocluster for efficient oxygen reduction. Nano Energy 2024, 126, 109668.
Wang, X. C.; Kang, Z. W.; Wang, D.; Zhao, Y. F.; Xiang, X.; Shang, H. S.; Zhang, B. Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis. Nano Energy 2024, 121, 109268.
Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.
Xie, X. Y.; Zhai, Z. Y.; Peng, L. S.; Zhang, J. B.; Shang, L.; Zhang, T. R. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries. Sci. Bull. 2023, 68, 2862–2875.
Wu, M. J.; Xu, Y. H.; Luo, J.; Yang, S. Y.; Zhang, G. X.; Du, L.; Luo, H. X.; Cui, X.; Yang, Y. K.; Sun, S. H. A rechargeable urea-assisted Zn-air battery with high energy efficiency and fast-charging enabled by engineering high-energy interfacial structures. Angew. Chem., Int. Ed. 2024, 63, e202410845.
Liu, S. W.; Li, C. Z.; Zachman, M. J.; Zeng, Y. C.; Yu, H. R.; Li, B. Y.; Wang, M. Y.; Braaten, J.; Liu, J. W.; Meyer III, H. M. et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 2022, 7, 652–663.
He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.
Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.
Wei, T. C.; Zhou, J.; An, X. Q. Recent advances in single-atom catalysts (SACs) for photocatalytic applications. Mater. Rep.: Energy 2024, 4, 100285.
Wang, Q.; Lu, R. H.; Yang, Y. Q.; Li, X. Z.; Chen, G. B.; Shang, L.; Peng, L. S.; Sun-Waterhouse, D.; Cowie, B. C. C.; Meng, X. M. et al. Tailoring the microenvironment in Fe–N–C electrocatalysts for optimal oxygen reduction reaction performance. Sci. Bull. 2022, 67, 1264–1273.
Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.
Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.
Chen, M. X.; Zhu, M. Z.; Zuo, M.; Chu, S. Q.; Zhang, J.; Wu, Y. E.; Liang, H. W.; Feng, X. L. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 1627–1633.
Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558.
Malko, D.; Kucernak, A.; Lopes, T. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nat. Commun. 2016, 7, 13285.
Shao, C. F.; Zhuang, S. G.; Zhang, H. C.; Jiang, Q. K.; Xu, X. Y.; Ye, J. S.; Li, B. T.; Wang, X. J. Enhancement of mass transport for oxygen reduction reaction using petal-like porous Fe-NC nanosheet. Small 2021, 17, 2006178.
Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Mil-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.
Fu, X. G.; Zamani, P.; Choi, J. Y.; Hassan, F. M.; Jiang, G. P.; Higgins, D. C.; Zhang, Y. N.; Hoque, M. A.; Chen, Z. W. In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells. Adv. Mater. 2017, 29, 1604456.
Zhou, Y.; Yu, Y. N.; Ma, D. S.; Foucher, A. C.; Xiong, L.; Zhang, J. H.; Stach, E. A.; Yue, Q.; Kang, Y. J. Atomic Fe dispersed hierarchical mesoporous Fe–N–C nanostructures for an efficient oxygen reduction reaction. ACS Catal. 2021, 11, 74–81.
Yao, W.; Hu, A. Q.; Ding, J. T.; Wang, N. S.; Qin, Z.; Yang, X. F.; Shen, K.; Chen, L. Y.; Li, Y. W. Hierarchically ordered macro-mesoporous electrocatalyst with hydrophilic surface for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2301894.
Kyotani, T.; Tsai, L. F.; Tomita, A. Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template. Chem. Mater. 1995, 7, 1427–1428.
Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C. X.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998, 282, 897–901.
Xu, H.; Wang, D.; Yang, P. X.; Du, L.; Lu, X. Y.; Li, R. P.; Liu, L. L.; Zhang, J. Q.; An, M. Z. A hierarchically porous Fe–N–C synthesized by dual melt-salt-mediated template as advanced electrocatalyst for efficient oxygen reduction in zinc-air battery. Appl. Catal. B: Environ. 2022, 305, 121040.
Zhang, Y.; Pan, D. L.; Tao, Y.; Shang, H.; Zhang, D. Q.; Li, G. S.; Li, H. X. Photoelectrocatalytic reduction of CO2 to syngas via SnOx-enhanced Cu2O nanowires photocathodes. Adv. Funct. Mater. 2022, 32, 2109600.
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.
Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.
Sa, Y. J.; Seo, D. J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S. et al. A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056.
Zhong, J. Q.; Yan, K. J.; Yang, J.; Yang, W. H.; Yang, X. D. Microenvironment alters the oxygen reduction activity of metal/N/C catalysts at the triple-phase boundary. ACS Catal. 2022, 12, 9003–9010.
Choi, S.; Do, H. W.; Jin, D. N.; Kim, S.; Lee, J.; Soon, A.; Moon, J.; Shim, W. Revisiting the role of the triple-phase boundary in promoting the oxygen reduction reaction in aluminum-air batteries. Adv. Funct. Mater. 2021, 31, 2101720.
Wang, Y. C.; Huang, W.; Wan, L. Y.; Yang, J.; Xie, R. J.; Zheng, Y. P.; Tan, Y. Z.; Wang, Y. S.; Zaghib, K.; Zheng, L. R. et al. Identification of the active triple-phase boundary of a non-Pt catalyst layer in fuel cells. Sci. Adv. 2022, 8, eadd8873.
Yang, L. J.; Larouche, N.; Chenitz, R.; Zhang, G. X.; Lefèvre, M.; Dodelet, J. P. Activity, performance, and durability for the reduction of oxygen in PEM fuel cells, of Fe/N/C electrocatalysts obtained from the pyrolysis of metal-organic-framework and iron porphyrin precursors. Electrochim. Acta 2015, 159, 184–197.
Wang, Y. C.; Zhu, P. F.; Yang, H.; Huang, L.; Wu, Q. H.; Rauf, M.; Zhang, J. Y.; Dong, J.; Wang, K.; Zhou, Z. Y. et al. Surface fluorination to boost the stability of the Fe/N/C cathode in proton exchange membrane fuel cells. ChemElectroChem 2018, 5, 1914–1921.
Zhao, Q.; An, J. K.; Wang, S.; Qiao, Y. J.; Liao, C. M.; Wang, C.; Wang, X.; Li, N. Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 35410–35419.
Dong, H.; Yu, H. B.; Wang, X.; Zhou, Q. X.; Feng, J. L. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Res. 2012, 46, 5777–5787.
Dong, H.; Yu, H. B.; Wang, X. Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells. Environ. Sci. Technol. 2012, 46, 13009–13015.
Zhang, F.; Chen, G.; Hickner, M. A.; Logan, B. E. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes. J. Power Sources 2012, 218, 100–105.
Yang, W. L.; Wang, X.; Son, M.; Logan, B. E. Simultaneously enhancing power density and Coulombic efficiency with a hydrophobic Fe–N4/activated carbon air cathode for microbial fuel cells. J. Power Sources 2020, 465, 228264.
Chen, R.; Liu, W.; Sang, Z. Y.; Jia, J. J.; Li, Z. X.; Nie, J. H.; Jiang, Q.; Mao, Z. X.; Guo, B. T.; Wang, Q. Y. et al. Identification of the highly active Zn–N4 sites with pyrrole/pyridine-N synergistic coordination by dz2+s-band center for electrocatalytic H2O2 production. J. Energy Chem. 2024, 98, 105–113.
Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 12322–12329.
Yi, X. Y.; Yang, H. J.; Yang, X. X.; Li, X. K.; Yan, C.; Zhang, J. H.; Chen, L. N.; Dong, J. J.; Qin, J.; Zhang, G. N. et al. Local single Co sites at the second shell of Fe–N4 active sites to boost oxygen reduction reaction. Adv. Funct. Mater. 2024, 34, 2309728.
Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.
Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.
Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.
Palaniselvam, T.; Kashyap, V.; Bhange, S. N.; Baek, J. B.; Kurungot, S. Nanoporous graphene enriched with Fe/Co–N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells. Adv. Funct. Mater. 2016, 26, 2150–2162.
Strickland, K.; Miner, E.; Jia, Q. Y.; Tylus, U.; Ramaswamy, N.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 2015, 6, 7343.
Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.
Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co,N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.
Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.
Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K. Selective nitrogen doping in graphene for oxygen reduction reactions. Chem. Commun. 2013, 49, 9627–9629.
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.
Lee, K. R.; Lee, K. U.; Lee, J. W.; Ahn, B. T.; Woo, S. I. Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem. Commun. 2010, 12, 1052–1055.
Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe–N4 center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 2018, 8, 1701345.
Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.
Britton, B.; Holdcroft, S. The control and effect of pore size distribution in AEMFC catalyst layers. J. Electrochem. Soc. 2016, 163, F353–F358.
Yang, B. Y.; Zhao, W. Q.; Gao, Z.; Yang, J. W.; Shi, W. H.; Zhang, Y. F.; Su, Q. M.; Xu, B. S.; Du, G. H. Flexible CNT@porous carbon sponge cathode with large mesopores for high-rate zinc-ion hybrid capacitors. Carbon 2024, 218, 118695.
Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.
Li, F.; Han, G. F.; Noh, H. J.; Kim, S. J.; Lu, Y. L.; Jeong, H. Y.; Fu, Z. P.; Baek, J. B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263–2269.
Wang, L.; Tian, W. W.; Zhang, W. L.; Yu, F. S.; Yuan, Z. Y. Boosting oxygen electrocatalytic performance of Cu atom by engineering the d-band center via secondary heteroatomic phosphorus modulation. Appl. Catal. B: Environ. 2023, 338, 123043.
Wang, H. F.; Li, X. P.; Jiang, Y.; Li, M. H.; Xiao, Q.; Zhao, T.; Yang, S.; Qi, C. H.; Qiu, P. P.; Yang, J. P. et al. A universal single-atom coating strategy based on tannic acid chemistry for multifunctional heterogeneous catalysis. Angew. Chem., Int. Ed. 2022, 61, e202200465.
Guo, Y. Y.; Wang, C. H.; Xiao, Y. H.; Tan, X. H.; He, W. D.; Chen, J. P.; Li, Y.; Cui, H.; Wang, C. X. Stabilizing Fe single atom catalysts by implanting Cr atomic clusters to boost oxygen reduction reaction. Appl. Catal. B: Environ. Energy 2024, 344, 123679.
Pang, R. Y.; Xia, H. Y.; Dong, X. Y. M.; Zeng, Q.; Li, J.; Wang, E. K. Zinc assisted thermal etching for rich edge-located Fe–N4 active sites in defective carbon nanofiber for activity enhancement of oxygen electroreduction. Adv. Sci. 2024, 11, 2407294.
Zhao, Y. L.; Chen, H. C.; Ma, X. L.; Li, J. Y.; Yuan, Q.; Zhang, P.; Wang, M. M.; Li, J. X.; Li, M.; Wang, S. F. et al. Vacancy defects inductive effect of asymmetrically coordinated single-atom Fe–N3S1 active sites for robust electrocatalytic oxygen reduction with high turnover frequency and mass activity. Adv. Mater. 2024, 36, 2308243.
Yang, X.; Zhu, B. H.; Gao, Z. Y.; Yang, C.; Zhou, J. B.; Han, A. J.; Liu, J. F. A vacuum vapor deposition strategy to Fe single-atom catalysts with densely active sites for high-performance Zn-air battery. Adv. Sci. 2024, 11, 2306594.
Yi, S. Y.; Choi, E.; Jang, H. Y.; Lee, S.; Park, J.; Choi, D.; Jang, Y.; Kang, H.; Back, S.; Jang, S. et al. Insight into defect engineering of atomically dispersed iron electrocatalysts for high-performance proton exchange membrane fuel cell. Adv. Mater. 2023, 35, 2302666.
Yan, L.; Xie, B. B.; Yang, C.; Wang, Y. H.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Engineering self-supported hydrophobic-aerophilic air cathode with CoS/Fe3S4 nanoparticles embedded in S, N co-doped carbon plate arrays for long-life rechargeable Zn-air batteries. Adv. Energy Mater. 2023, 13, 2204245.
Yan, L.; Wang, H. Y.; Shen, J. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of mesoporous Co/CoS/Metal-N–C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 2021, 403, 126385.
Ding, K. X.; Yang, Y.; Hu, J. G.; Zhao, L. M.; Yu, H. N.; Zhu, Z. J.; Liu, Y. P.; Cai, S.; Zou, G. Q.; Hou, H. S. et al. P-block anion compressed d/p band center of bifunctional oxygen electrocatalysts for durable aqueous Zn-air batteries. Energy Storage Mater. 2024, 71, 103654.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.