AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Hydrophobicity engineering of hierarchically ordered SiO2/Fe-N-C catalyst with optimized triple-phase boundary for boosting oxygen reduction reaction

Yang Zhang1Bingbing Gong3Benji Zhou1Zhibo Liu6Nengneng Xu1Yongxia Wang1Xiaoqian Xu1Qing Cao1Daniil I. Kolokolov4Haitao Huang5Shuaifeng Lou6Guicheng Liu7Woochul Yang8Jinli Qiao1,2( )
State Key Laboratory of Advanced Fiber Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Beijing Laboratory of New Energy Storage Technology, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

The Fe single-atom catalyst (Fe-N-C) with Fe-Nx active sites is considered a promising alternative to Pt-based catalysts for oxygen reduction reaction (ORR). However, the exposure and utilization efficiency of the Fe-Nx site in Fe-N-C lead to a certain competitive distance with Pt-based catalysts in the ORR process. Herein, a space-confinement strategy triggered by SiO2 templates to optimize the ORR triple-phase boundary of Fe-N-C, is reported. As expected, the optimized SiO2(4)/Fe-N-C exhibits excellent ORR activity with a half-wave potential of 0.886 V in 0.1 M KOH. More importantly, the E1/2 loss of SiO2(4)/Fe-N-C is merely 32 mV after 30,000 cycles. Density functional theory (DFT) calculations confirm SiO2-induced carbon defects critically modulate electronic configurations of FeN4 centers, optimizing adsorption energetics of oxygen intermediates. Remarkably, when utilized as air cathodes for zinc-air batteries (ZABs), the device based on SiO2(4)/Fe-N-C displays record-breaking power density (444.10 mW·cm–2) with superior long-term durability over 1013 h, outperforming most reported noble-metal-free electrocatalysts. This work provides a new route to optimize the triple-phase boundary of single-atom catalysts for energy storage applications.

Electronic Supplementary Material

Download File(s)
0180_ESM.pdf (6.3 MB)

References

[1]

Yang, X. H.; Wang, Y. C.; Zhang, G. X.; Du, L.; Yang, L. J.; Markiewicz, M.; Choi, J. Y.; Chenitz, R.; Sun, S. H. SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Appl. Catal. B: Environ. 2020, 264, 118523.

[2]

Li, J.; Xue, H. B.; Xu, N. N.; Zhang, X. C.; Wang, Y. X.; He, R.; Huang, H. T.; Qiao, J. L. Co/Ni dual-metal embedded in heteroatom doped porous carbon core-shell bifunctional electrocatalyst for rechargeable Zn-air batteries. Mater. Rep.: Energy 2022, 2, 100090.

[3]

Yin, Z. Y.; He, R.; Xue, H. B.; Chen, J. J.; Wang, Y.; Ye, X. X.; Xu, N. N.; Qiao, J. L.; Huang, H. T. A bimetallic-activated MnO2 self-assembly electrode with a dual heterojunction structure for high-performance rechargeable zinc-air batteries. Energy Mater. 2022, 2, 200021.

[4]

Su, Z. Y.; Huang, Q. P.; Guo, Q.; Hoseini, S. J.; Zheng, F. Q.; Chen, W. Metal-organic framework and carbon hybrid nanostructures: Fabrication strategies and electrocatalytic application for the water splitting and oxygen reduction reaction. Nano Res. Energy 2023, 2, e9120078.

[5]

Cheng, Y. J.; Wang, H.; Song, H. Q.; Zhang, K.; Waterhouse, G. I. N.; Chang, J. W.; Tang, Z. Y.; Lu, S. Y. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction-a review. Nano Res. Energy 2023, 2, e9120082.

[6]

Wu, M. J.; Dong, F.; Yang, Y. K.; Cui, X.; Liu, X. Q.; Zhu, Y. H.; Li, D. S.; Omanovic, S.; Sun, S. H.; Zhang, G. X. Emerging atomically precise metal nanoclusters and ultrasmall nanoparticles for efficient electrochemical energy catalysis: Synthesis strategies and surface/interface engineering. Electrochem. Energy Rev. 2024, 7, 10.

[7]

Zago, S.; Scarpetta-Pizo, L. C.; Zagal, J. H.; Specchia, S. PGM-free biomass-derived electrocatalysts for oxygen reduction in energy conversion devices: Promising materials. Electrochem. Energy Rev. 2024, 7, 1.

[8]

Shao, C. F.; Hua, J. H.; Li, Q.; Xia, Y. P.; Sun, L. X.; Wang, L. M.; Li, B. T. Near-range modulation of single-atomic Fe sites by simultaneously integrating heteroatom and nanocluster for efficient oxygen reduction. Nano Energy 2024, 126, 109668.

[9]

Wang, X. C.; Kang, Z. W.; Wang, D.; Zhao, Y. F.; Xiang, X.; Shang, H. S.; Zhang, B. Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis. Nano Energy 2024, 121, 109268.

[10]

Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.

[11]

Xie, X. Y.; Zhai, Z. Y.; Peng, L. S.; Zhang, J. B.; Shang, L.; Zhang, T. R. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries. Sci. Bull. 2023, 68, 2862–2875.

[12]

Wu, M. J.; Xu, Y. H.; Luo, J.; Yang, S. Y.; Zhang, G. X.; Du, L.; Luo, H. X.; Cui, X.; Yang, Y. K.; Sun, S. H. A rechargeable urea-assisted Zn-air battery with high energy efficiency and fast-charging enabled by engineering high-energy interfacial structures. Angew. Chem., Int. Ed. 2024, 63, e202410845.

[13]

Liu, S. W.; Li, C. Z.; Zachman, M. J.; Zeng, Y. C.; Yu, H. R.; Li, B. Y.; Wang, M. Y.; Braaten, J.; Liu, J. W.; Meyer III, H. M. et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 2022, 7, 652–663.

[14]

He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

[15]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[16]

Wei, T. C.; Zhou, J.; An, X. Q. Recent advances in single-atom catalysts (SACs) for photocatalytic applications. Mater. Rep.: Energy 2024, 4, 100285.

[17]

Wang, Q.; Lu, R. H.; Yang, Y. Q.; Li, X. Z.; Chen, G. B.; Shang, L.; Peng, L. S.; Sun-Waterhouse, D.; Cowie, B. C. C.; Meng, X. M. et al. Tailoring the microenvironment in Fe–N–C electrocatalysts for optimal oxygen reduction reaction performance. Sci. Bull. 2022, 67, 1264–1273.

[18]

Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

[19]

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

[20]

Chen, M. X.; Zhu, M. Z.; Zuo, M.; Chu, S. Q.; Zhang, J.; Wu, Y. E.; Liang, H. W.; Feng, X. L. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 1627–1633.

[21]

Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558.

[22]

Malko, D.; Kucernak, A.; Lopes, T. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nat. Commun. 2016, 7, 13285.

[23]

Shao, C. F.; Zhuang, S. G.; Zhang, H. C.; Jiang, Q. K.; Xu, X. Y.; Ye, J. S.; Li, B. T.; Wang, X. J. Enhancement of mass transport for oxygen reduction reaction using petal-like porous Fe-NC nanosheet. Small 2021, 17, 2006178.

[24]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Mil-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[25]

Fu, X. G.; Zamani, P.; Choi, J. Y.; Hassan, F. M.; Jiang, G. P.; Higgins, D. C.; Zhang, Y. N.; Hoque, M. A.; Chen, Z. W. In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells. Adv. Mater. 2017, 29, 1604456.

[26]

Zhou, Y.; Yu, Y. N.; Ma, D. S.; Foucher, A. C.; Xiong, L.; Zhang, J. H.; Stach, E. A.; Yue, Q.; Kang, Y. J. Atomic Fe dispersed hierarchical mesoporous Fe–N–C nanostructures for an efficient oxygen reduction reaction. ACS Catal. 2021, 11, 74–81.

[27]

Yao, W.; Hu, A. Q.; Ding, J. T.; Wang, N. S.; Qin, Z.; Yang, X. F.; Shen, K.; Chen, L. Y.; Li, Y. W. Hierarchically ordered macro-mesoporous electrocatalyst with hydrophilic surface for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2301894.

[28]

Kyotani, T.; Tsai, L. F.; Tomita, A. Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template. Chem. Mater. 1995, 7, 1427–1428.

[29]

Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C. X.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998, 282, 897–901.

[30]

Xu, H.; Wang, D.; Yang, P. X.; Du, L.; Lu, X. Y.; Li, R. P.; Liu, L. L.; Zhang, J. Q.; An, M. Z. A hierarchically porous Fe–N–C synthesized by dual melt-salt-mediated template as advanced electrocatalyst for efficient oxygen reduction in zinc-air battery. Appl. Catal. B: Environ. 2022, 305, 121040.

[31]

Zhang, Y.; Pan, D. L.; Tao, Y.; Shang, H.; Zhang, D. Q.; Li, G. S.; Li, H. X. Photoelectrocatalytic reduction of CO2 to syngas via SnOx-enhanced Cu2O nanowires photocathodes. Adv. Funct. Mater. 2022, 32, 2109600.

[32]

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

[33]

Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

[34]

Sa, Y. J.; Seo, D. J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S. et al. A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056.

[35]

Zhong, J. Q.; Yan, K. J.; Yang, J.; Yang, W. H.; Yang, X. D. Microenvironment alters the oxygen reduction activity of metal/N/C catalysts at the triple-phase boundary. ACS Catal. 2022, 12, 9003–9010.

[36]

Choi, S.; Do, H. W.; Jin, D. N.; Kim, S.; Lee, J.; Soon, A.; Moon, J.; Shim, W. Revisiting the role of the triple-phase boundary in promoting the oxygen reduction reaction in aluminum-air batteries. Adv. Funct. Mater. 2021, 31, 2101720.

[37]

Wang, Y. C.; Huang, W.; Wan, L. Y.; Yang, J.; Xie, R. J.; Zheng, Y. P.; Tan, Y. Z.; Wang, Y. S.; Zaghib, K.; Zheng, L. R. et al. Identification of the active triple-phase boundary of a non-Pt catalyst layer in fuel cells. Sci. Adv. 2022, 8, eadd8873.

[38]

Yang, L. J.; Larouche, N.; Chenitz, R.; Zhang, G. X.; Lefèvre, M.; Dodelet, J. P. Activity, performance, and durability for the reduction of oxygen in PEM fuel cells, of Fe/N/C electrocatalysts obtained from the pyrolysis of metal-organic-framework and iron porphyrin precursors. Electrochim. Acta 2015, 159, 184–197.

[39]

Wang, Y. C.; Zhu, P. F.; Yang, H.; Huang, L.; Wu, Q. H.; Rauf, M.; Zhang, J. Y.; Dong, J.; Wang, K.; Zhou, Z. Y. et al. Surface fluorination to boost the stability of the Fe/N/C cathode in proton exchange membrane fuel cells. ChemElectroChem 2018, 5, 1914–1921.

[40]

Zhao, Q.; An, J. K.; Wang, S.; Qiao, Y. J.; Liao, C. M.; Wang, C.; Wang, X.; Li, N. Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 35410–35419.

[41]

Dong, H.; Yu, H. B.; Wang, X.; Zhou, Q. X.; Feng, J. L. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Res. 2012, 46, 5777–5787.

[42]

Dong, H.; Yu, H. B.; Wang, X. Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells. Environ. Sci. Technol. 2012, 46, 13009–13015.

[43]

Zhang, F.; Chen, G.; Hickner, M. A.; Logan, B. E. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes. J. Power Sources 2012, 218, 100–105.

[44]

Yang, W. L.; Wang, X.; Son, M.; Logan, B. E. Simultaneously enhancing power density and Coulombic efficiency with a hydrophobic Fe–N4/activated carbon air cathode for microbial fuel cells. J. Power Sources 2020, 465, 228264.

[45]

Chen, R.; Liu, W.; Sang, Z. Y.; Jia, J. J.; Li, Z. X.; Nie, J. H.; Jiang, Q.; Mao, Z. X.; Guo, B. T.; Wang, Q. Y. et al. Identification of the highly active Zn–N4 sites with pyrrole/pyridine-N synergistic coordination by dz2+s-band center for electrocatalytic H2O2 production. J. Energy Chem. 2024, 98, 105–113.

[46]

Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 12322–12329.

[47]

Yi, X. Y.; Yang, H. J.; Yang, X. X.; Li, X. K.; Yan, C.; Zhang, J. H.; Chen, L. N.; Dong, J. J.; Qin, J.; Zhang, G. N. et al. Local single Co sites at the second shell of Fe–N4 active sites to boost oxygen reduction reaction. Adv. Funct. Mater. 2024, 34, 2309728.

[48]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[49]

Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

[50]

Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.

[51]

Palaniselvam, T.; Kashyap, V.; Bhange, S. N.; Baek, J. B.; Kurungot, S. Nanoporous graphene enriched with Fe/Co–N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells. Adv. Funct. Mater. 2016, 26, 2150–2162.

[52]

Strickland, K.; Miner, E.; Jia, Q. Y.; Tylus, U.; Ramaswamy, N.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 2015, 6, 7343.

[53]

Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

[54]

Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co,N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.

[55]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[56]

Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K. Selective nitrogen doping in graphene for oxygen reduction reactions. Chem. Commun. 2013, 49, 9627–9629.

[57]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[58]

Lee, K. R.; Lee, K. U.; Lee, J. W.; Ahn, B. T.; Woo, S. I. Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem. Commun. 2010, 12, 1052–1055.

[59]

Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe–N4 center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 2018, 8, 1701345.

[60]

Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.

[61]

Britton, B.; Holdcroft, S. The control and effect of pore size distribution in AEMFC catalyst layers. J. Electrochem. Soc. 2016, 163, F353–F358.

[62]

Yang, B. Y.; Zhao, W. Q.; Gao, Z.; Yang, J. W.; Shi, W. H.; Zhang, Y. F.; Su, Q. M.; Xu, B. S.; Du, G. H. Flexible CNT@porous carbon sponge cathode with large mesopores for high-rate zinc-ion hybrid capacitors. Carbon 2024, 218, 118695.

[63]

Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

[64]

Li, F.; Han, G. F.; Noh, H. J.; Kim, S. J.; Lu, Y. L.; Jeong, H. Y.; Fu, Z. P.; Baek, J. B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263–2269.

[65]

Wang, L.; Tian, W. W.; Zhang, W. L.; Yu, F. S.; Yuan, Z. Y. Boosting oxygen electrocatalytic performance of Cu atom by engineering the d-band center via secondary heteroatomic phosphorus modulation. Appl. Catal. B: Environ. 2023, 338, 123043.

[66]

Wang, H. F.; Li, X. P.; Jiang, Y.; Li, M. H.; Xiao, Q.; Zhao, T.; Yang, S.; Qi, C. H.; Qiu, P. P.; Yang, J. P. et al. A universal single-atom coating strategy based on tannic acid chemistry for multifunctional heterogeneous catalysis. Angew. Chem., Int. Ed. 2022, 61, e202200465.

[67]

Guo, Y. Y.; Wang, C. H.; Xiao, Y. H.; Tan, X. H.; He, W. D.; Chen, J. P.; Li, Y.; Cui, H.; Wang, C. X. Stabilizing Fe single atom catalysts by implanting Cr atomic clusters to boost oxygen reduction reaction. Appl. Catal. B: Environ. Energy 2024, 344, 123679.

[68]

Pang, R. Y.; Xia, H. Y.; Dong, X. Y. M.; Zeng, Q.; Li, J.; Wang, E. K. Zinc assisted thermal etching for rich edge-located Fe–N4 active sites in defective carbon nanofiber for activity enhancement of oxygen electroreduction. Adv. Sci. 2024, 11, 2407294.

[69]

Zhao, Y. L.; Chen, H. C.; Ma, X. L.; Li, J. Y.; Yuan, Q.; Zhang, P.; Wang, M. M.; Li, J. X.; Li, M.; Wang, S. F. et al. Vacancy defects inductive effect of asymmetrically coordinated single-atom Fe–N3S1 active sites for robust electrocatalytic oxygen reduction with high turnover frequency and mass activity. Adv. Mater. 2024, 36, 2308243.

[70]

Yang, X.; Zhu, B. H.; Gao, Z. Y.; Yang, C.; Zhou, J. B.; Han, A. J.; Liu, J. F. A vacuum vapor deposition strategy to Fe single-atom catalysts with densely active sites for high-performance Zn-air battery. Adv. Sci. 2024, 11, 2306594.

[71]

Yi, S. Y.; Choi, E.; Jang, H. Y.; Lee, S.; Park, J.; Choi, D.; Jang, Y.; Kang, H.; Back, S.; Jang, S. et al. Insight into defect engineering of atomically dispersed iron electrocatalysts for high-performance proton exchange membrane fuel cell. Adv. Mater. 2023, 35, 2302666.

[72]

Yan, L.; Xie, B. B.; Yang, C.; Wang, Y. H.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Engineering self-supported hydrophobic-aerophilic air cathode with CoS/Fe3S4 nanoparticles embedded in S, N co-doped carbon plate arrays for long-life rechargeable Zn-air batteries. Adv. Energy Mater. 2023, 13, 2204245.

[73]

Yan, L.; Wang, H. Y.; Shen, J. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of mesoporous Co/CoS/Metal-N–C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 2021, 403, 126385.

[74]

Ding, K. X.; Yang, Y.; Hu, J. G.; Zhao, L. M.; Yu, H. N.; Zhu, Z. J.; Liu, Y. P.; Cai, S.; Zou, G. Q.; Hou, H. S. et al. P-block anion compressed d/p band center of bifunctional oxygen electrocatalysts for durable aqueous Zn-air batteries. Energy Storage Mater. 2024, 71, 103654.

Nano Research Energy
Cite this article:
Zhang Y, Gong B, Zhou B, et al. Hydrophobicity engineering of hierarchically ordered SiO2/Fe-N-C catalyst with optimized triple-phase boundary for boosting oxygen reduction reaction. Nano Research Energy, 2025, https://doi.org/10.26599/NRE.2025.9120180

140

Views

44

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 31 March 2025
Revised: 08 May 2025
Accepted: 03 June 2025
Published: 20 June 2025
© The Author(s) 2025. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return