Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The versatile, and tunable surface chemistry of two-dimensional (2D) MXenes coupled with their distinct properties including hydrophilic nature, favorable ion transport and metallic conductivity make them an ideal candidate for energy storage devices. Modifying surface terminations by doping heteroatom is an efficient approach to improve layer spacing and electrochemical active sites of the MXenes. However, nitrogen doping in 2D materials has been an effective way to enhance their electrochemical characteristics. In this study, N-Nb2CTx MXene was synthesized by utilizing the hydrothermal method in which nitrogen doping in MXene was confirmed through several characterization techniques. Tuning of MXene surface by a cost-effective strategy has shown improved performance for energy storage. After doping nitrogen in Nb2CTx MXene, it has shown enhanced pseudocapacitance performance in 1 M potassium hydroxide (KOH), elevating the electrochemical properties. N-Nb2CTx MXene has displayed a better specific capacitance of up to 640 F·g–1 while pristine Nb2CTx MXene has shown 276 F·g–1 from the cyclic voltammogram (CV) at a scan rate of 5 mV·s–1. In addition, an asymmetric device of activated carbon/N-Nb2CTx was assembled for real-world applications, it has exhibited refined results. The asymmetric device has shown remarkable cyclic stability of 90% capacity retention at a current density of 5 A·g–1 for 5000 cycles. Additionally, the detailed density functional theory (DFT) calculations support the stability of nitrogen replacing the fluorine functional group, complementing the experiment.
Al Shaqsi, A. Z.; Sopian, K.; Al-Hinai, A. Review of energy storage services, applications, limitations, and benefits. Energy Rep. 2020, 6, 288–306.
Mathis, T. S.; Kurra, N.; Wang, X. H.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007.
Iro, Z. S.; Subramani, C.; Dash, S. S. A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643.
Reenu; Sonia; Phor, L.; Kumar, A.; Chahal, S. Electrode materials for supercapacitors: A comprehensive review of advancements and performance. J. Energy Storage 2024, 84, 110698.
Mitali, J.; Dhinakaran, S.; Mohamad, A. A. Energy storage systems: A review. Energy Storage Sav. 2022, 1, 166–216.
Dong, H. Y.; Xiao, P.; Jin, N.; Wang, B. B.; Liu, Y.; Lin, Z. F. Molten salt derived Nb2CTx MXene anode for Li-ion batteries. ChemElectroChem 2021, 8, 957–962.
Qian, A.; Wu, H.; Wang, G.; Sun, N.; Cheng, H.; Zhang, K.; Cheng, F. Freeing fluoride termination of Ti3C2Tx via electrochemical etching for high-performance capacitive deionization. ACS Appl. Mater. Interfaces 2023, 15, 9203–9211.
Tan, K. H.; Samylingam, L.; Aslfattahi, N.; Saidur, R.; Kadirgama, K. Optical and conductivity studies of polyvinyl alcohol-MXene (PVA-MXene) nanocomposite thin films for electronic applications. Opt. Laser Technol. 2021, 136, 106772.
Tang, H.; Hu, Q.; Zheng, M. B.; Chi, Y.; Qin, X. Y.; Pang, H.; Xu, Q. MXene-2D layered electrode materials for energy storage. Prog. Nat. Sci.: Mater. Int. 2018, 28, 133–147.
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
Xiong, D. B.; Li, X. F.; Bai, Z. M.; Lu, S. G. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018, 14, 1703419.
Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.
Fatima, M.; Fatheema, J.; Monir, N. B.; Siddique, A. H.; Khan, B.; Islam, A.; Akinwande, D.; Rizwan, S. Nb-doped MXene with enhanced energy storage capacity and stability. Front. Chem. 2020, 8, 168.
Nasir, A.; Sajid, I. H.; Syed, A.; Adnan, F.; Rizwan, S. Promising antibacterial performance of Ag-nanoparticles intercalated Nb2CTx MXene towards E. coli and S. aureus. Nano-Struct. Nano-Objects 2024, 40, 101415.
Fatima, S.; Tahir, R.; Rizwan, S. Ferroelectric-controlled all MXene nonvolatile flexible memory devices for data storage application. Appl. Phys. Lett. 2023, 123, 013503.
Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.
Riaz, M. B.; Hussain, D.; Awan, S. U.; Rizwan, S.; Zainab, S.; Shah, S. A. 2-Dimensional Ti3C2Tx/NaF nano-composites as electrode materials for hybrid battery-supercapacitor applications. Sci. Rep. 2024, 14, 1654.
Mazhar, E.; Ali, I.; Awan, S. U.; Rizwan, S. Efficient hydrogen and oxygen evolution reactions by using the V2CTx@Sm nanocomposite. Energy Fuels 2024, 38, 10087–10095.
Zahra, S. A.; Murshed, M. M.; Naeem, U.; Gesing, T. M.; Rizwan, S. Cation-assisted self-assembled pillared V2CTx MXene electrodes for efficient energy storage. Chem. Eng. J. 2023, 474, 145526.
Hakim, M. W.; Fatima, S.; Tahir, R.; Iqbal, M. Z.; Li, H.; Rizwan, S. Ni-intercalated Mo2TiC2Tx free-standing MXene for excellent gravimetric capacitance prepared via electrostatic self-assembly. J. Energy Storage 2023, 61, 106662.
Bilibana, M. P. Electrochemical properties of MXenes and applications. Adv. Sensor Energy Mater. 2023, 2, 100080.
Ali, I.; Zahra, S. A.; Sajid, I. H.; Rizwan, S. Efficient electrochemical performance of electrostatically self-assembled Nb2CTx/AgNPs-CTAB nanocomposite in both basic and neutral electrolytes. J. Energy Storage 2024, 88, 111629.
Syed, A.; Zahra, S. A.; Nasir, A.; Yousaf, M.; Rizwan, S. Improved electrocatalytic efficiency of nitrogen-doped Nb2CTx MXene in basic electrolyte for overall water splitting. Int. J. Hydrogen Energy 2024, 83, 39–50.
Fatima, S.; Sajid, I. H.; Khan, M. F.; Rizwan, S. Synthesis and characterization of erbium decorated V2CTx for water splitting properties. Int. J. Hydrogen Energy 2024, 55, 110–117.
Yu, T. T.; Li, S. B.; Li, F. B.; Zhang, L.; Wang, Y. P.; Sun, J. Y. In-situ synthesized and induced vertical growth of cobalt vanadium layered double hydroxide on few-layered V2CTx MXene for high energy density supercapacitors. J. Colloid Interface Sci. 2024, 661, 460–471.
Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lyu, M.; Dai, L. M.; Wang, L. Z. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 2017, 38, 368–376.
Keshipour, S.; Eyvari-Ashnak, F. Nitrogen-doped electrocatalysts, and photocatalyst in water splitting: Effects, and doping protocols. ChemElectroChem 2023, 10, e202201153.
Luo, Y. Y.; Jia, S. T.; Yi, Y. J.; Liu, X.; Zhang, G. N.; Yang, H. J.; Li, W. B.; Wang, J. J.; Li, X. F. Nitrogen-doped Ti3C2 MXene films with low -F terminal groups achieving an ultrahigh volumetric capacitance. J. Alloys Compd. 2024, 977, 173355.
Cai, M.; Wei, X. C.; Huang, H. F.; Yuan, F. L.; Li, C.; Xu, S. K.; Liang, X. Q.; Zhou, W. Z.; Guo, J. Nitrogen-doped Ti3C2Tx MXene prepared by thermal decomposition of ammonium salts and its application in flexible quasi-solid-state supercapacitor. Chem. Eng. J. 2023, 458, 141338.
Mahalingam, S.; Durai, M.; Sengottaiyan, C.; Ahn, Y. H. Effective chemical vapor deposition and characterization of N-doped graphene for high electrochemical performance. J. Nanosci. Nanotechnol. 2021, 21, 3183–3191.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Zhou, X. L.; Guo, Y. B.; Wang, D. G.; Xu, Q. Nano friction and adhesion properties on Ti3C2 and Nb2C MXene studied by AFM. Tribol. Int. 2021, 153, 106646.
Wang, X. H.; Zhou, Y. C. Stability and selective oxidation of aluminum in nano-laminate Ti3AlC2 upon heating in argon. Chem. Mater. 2003, 15, 3716–3720.
Yang, L.; May, P. W.; Yin, L.; Smith, J. A.; Rosser, K. N. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution. J. Nanopart. Res. 2007, 9, 1181–1185.
Liu, R.; Li, W. H. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) composites. ACS Omega 2018, 3, 2609–2617.
Huang, J. L.; Feng, M.; Peng, Y.; Huang, C. R.; Yue, X.; Huang, S. M. Encapsulating Ni nanoparticles into interlayers of nitrogen-doped Nb2CTx MXene to boost hydrogen evolution reaction in acid. Small 2023, 19, 2206098.
Yu, H.; Wang, Y. H.; Jing, Y.; Ma, J. M.; Du, C. F.; Yan, Q. Y. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 2019, 15, 1901503.
Cao, H. L.; Peng, X.; Zhao, M.; Liu, P. Z.; Xu, B. S.; Guo, J. J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RSC Adv. 2018, 8, 2858–2865.
Zhao, M. Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C. F.; Van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339–345.
Li, L.; Zhang, N.; Zhang, M. Y.; Wu, L. L.; Zhang, X. T.; Zhang, Z. G. Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 7442–7450.
Wang, X.; Wang, Y. M.; Liu, D. D.; Li, X. L.; Xiao, H. H.; Ma, Y.; Xu, M.; Yuan, G. H.; Chen, G. R. Opening Mxene ion transport channels by intercalating PANI nanoparticles from the self-assembly approach for high volumetric and areal energy density supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 30633–30642.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.