Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Based on the interference effect of surface self-oxidation peak on the oxygen evolution reaction (OER) performance, appropriate experimental strategies and data processing methods are crucial to correctly identify and address the oxidation peak in nickel-based materials to ensure data accuracy. Considering these facts that frequent OER performance misjudgment would confuse the readers, we revealed this reason and proposed the use of multi-potential step method to avoid non-steady-state currents caused by capacitive charging effects or intermediate oxidation. Additionally, combining electrochemical impedance spectroscopy (EIS) analysis, we discussed high-frequency response characteristics to further reveal the surface self-oxidation process. These research findings are crucial for accurately evaluating the actual performance of some special materials in electrochemical catalysis.
Wu, M. J.; Dong, F.; Yang, Y. K.; Cui, X.; Liu, X. Q.; Zhu, Y. H.; Li, D. S.; Omanovic, S.; Sun, S. H.; Zhang, G. X. Emerging atomically precise metal nanoclusters and ultrasmall nanoparticles for efficient electrochemical energy catalysis: Synthesis strategies and surface/interface engineering. Electrochem. Energy Rev. 2024, 7, 10.
Bai, Y. K.; Wu, Y.; Zhou, X. C.; Ye, Y. F.; Nie, K. Q.; Wang, J. O.; Xie, M.; Zhang, Z. X.; Liu, Z. J.; Cheng, T. et al. Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 2022, 13, 6094.
Wu, M. J.; Zhang, G. X.; Chen, N.; Hu, Y. F.; Regier, T.; Rawach, D.; Sun, S. H. Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 2021, 6, 1153–1161.
Wu, M. J.; Zhang, G. X.; Chen, N.; Chen, W. F.; Qiao, J. L.; Sun, S. H. A self-supported electrode as a high-performance binder-and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Storage Mater. 2020, 24, 272–280.
Yan, Y. D.; Wang, R. Y.; Zheng, Q.; Zhong, J. Y.; Hao, W. C.; Yan, S. C.; Zou, Z. G. Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics. Nat. Commun. 2023, 14, 7987.
Li, Y. X.; Liu, J. L.; Li, S. Q.; Peng, S. Q. Codecoration of phosphate and iron for improving oxygen evolution reaction of layered Ni(OH)2/NiOOH. ACS Catal. 2024, 14, 4807–4819.
Zhou, Y. N.; Li, F. T.; Dong, B.; Chai, Y. M. Double self-reinforced coordination modulation constructing stable Ni4+ for water oxidation. Energy Environ. Sci. 2024, 17, 1468–1481.
Chen, W.; Shi, J. Q.; Wu, Y. D.; Jiang, Y. M.; Huang, Y. C.; Zhou, W.; Liu, J. L.; Dong, C. L.; Zou, Y. Q.; Wang, S. Y. Vacancy-induced catalytic mechanism for alcohol electrooxidation on nickel-based electrocatalyst. Angew. Chem., Int. Ed. 2023, 63, e202316449.
Huang, Y.; Han, J. R.; Wang, H. B.; Liu, L. H.; Liang, H. Y. Multiple metallic dopants in nickel nanoparticles for electrocatalytic oxygen evolution. Prog. Nat. Sci.: Mater. Int. 2023, 33, 67–73.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.