Journal Home > Online First

Flexible electronic devices with mechanical properties like the soft tissues of human organs have great potential for the next generation of wearable and implantable electronic devices. Self-healing hydrogel composites typically have high tensile strength, high electrical conductivity and damage repair properties and have wide applications in flexible electronics, such as human-computer interaction, health detection and soft robots. Various self-healing hydrogel composites have been developed to produce new stretchable conductive materials with satisfactory mechanical and self-healing properties. This paper presents the fabrication of self-healing hydrogel composites and their application in flexible electronic devices. Firstly, the repair mechanism of physically cross-linked and chemically cross-linked self-healing hydrogel composites is presented. Secondly, self-healing double network hydrogels, self-healing nanocomposite hydrogels and double crosslinked self-healing hydrogel composites and their applications in flexible sensors, energy harvesting devices, energy storage devices and optical devices are presented and discussed. Finally, the challenges and prospects of self-healing hydrogel composites in flexible electronic devices in the future are presented.


menu
Abstract
Full text
Outline
About this article

Recent advances in self-healing hydrogel composites for flexible wearable electronic devices

Show Author's information Xihan Tan1Kaibin Chu2( )Zhijie Chen3Ning Han4Xueliang Zhang4Hongwei Pan4Wei Guo4Guoxing Chen5Bing-Jie Ni3( )Zhenyu Zhou4( )Hui Song2( )
Department of Chemistry and Chemical Engineering, Lyuliang University, Lvliang 033001, China
School of Materials Science and Engineering, Linyi University, Linyi 276000, China
School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Alzenau, Germany

Abstract

Flexible electronic devices with mechanical properties like the soft tissues of human organs have great potential for the next generation of wearable and implantable electronic devices. Self-healing hydrogel composites typically have high tensile strength, high electrical conductivity and damage repair properties and have wide applications in flexible electronics, such as human-computer interaction, health detection and soft robots. Various self-healing hydrogel composites have been developed to produce new stretchable conductive materials with satisfactory mechanical and self-healing properties. This paper presents the fabrication of self-healing hydrogel composites and their application in flexible electronic devices. Firstly, the repair mechanism of physically cross-linked and chemically cross-linked self-healing hydrogel composites is presented. Secondly, self-healing double network hydrogels, self-healing nanocomposite hydrogels and double crosslinked self-healing hydrogel composites and their applications in flexible sensors, energy harvesting devices, energy storage devices and optical devices are presented and discussed. Finally, the challenges and prospects of self-healing hydrogel composites in flexible electronic devices in the future are presented.

Keywords: hydrogel composites, self-healing property, repair mechanism, network structures, wearable electronic devices

References(204)

[1]

Han, N.; Feng, S. H.; Liang, Y.; Wang, J.; Zhang, W.; Guo, X. L.; Ma, Q. R.; Liu, Q.; Guo, W.; Zhou, Z. Y. et al. Achieving efficient electrocatalytic oxygen evolution in acidic media on yttrium ruthenate pyrochlore through cobalt incorporation. Adv. Funct. Mater. 2023, 33, 2208399.

[2]

Han, N.; Zhang, W.; Guo, W.; Pan, H.; Jiang, B.; Xing, L. B.; Tian, H.; Wang, G. X.; Zhang, X.; Fransaer, J. Designing oxide catalysts for oxygen electrocatalysis: Insights from mechanism to application. Nano-Micro Lett. 2023, 15, 185.

[3]

Han, N.; Feng, S. H.; Guo, W.; Mora, O. M.; Zhao, X. L.; Zhang, W.; Xie, S. J.; Zhou, Z. Y.; Liu, Z. W.; Liu, Q. et al. Rational design of ruddlesden-popper perovskite electrocatalyst for oxygen reduction to hydrogen peroxide. SusMat 2022, 2, 456–465.

[4]

Mota-Morales, J. D.; Morales-Narváez, E. Transforming nature into the next generation of bio-based flexible devices: New avenues using deep eutectic systems. Matter 2021, 4, 2141–2162.

[5]

Hammock, M. L.; Chortos, A.; Tee, B. C. -K.; Tok, J. B. -H.; Bao, Z. N. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038.

[6]

Yang, Y.; Cui, T. R.; Li, D.; Ji, S. R.; Chen, Z. K.; Shao, W. C.; Liu, H. F.; Ren, T. L. Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 2022, 14, 161.

[7]

Jiang, S.; Liu, X. J.; Liu, J. P.; Ye, D.; Duan, Y. Q.; Li, K.; Yin, Z. P.; Huang, Y. A. Flexible metamaterial electronics. Adv. Mater. 2022, 34, 2200070.

[8]

Zheng, Y.; Gao, T.; Chen, S.; Ferguson, C. T. J.; Zhang, K. A. I.; Fang, F.; Shen, Y.; Khan, N. A.; Wang, L.; Ye, L. Q. CsPbBr3 quantum dots-decorated porous covalent triazine frameworks nanocomposites for enhanced solar-driven H2O2 production. Compos. Commun. 2022, 36, 101390.

[9]

Xu, C.; Sun, Y.; Zhang, J. J.; Xu, W.; Tian, H. Adaptable and wearable thermocell based on stretchable hydrogel for body heat harvesting. Adv. Energy Mater. 2022, 12, 2201542.

[10]

Ding, B. F.; Zeng, P. Y.; Huang, Z. Y.; Dai, L. X.; Lan, T. S.; Xu, H.; Pan, Y. K.; Luo, Y. T.; Yu, Q. M.; Cheng, H. M. et al. A 2D material-based transparent hydrogel with engineerable interference colours. Nat. Commun. 2022, 13, 1212.

[11]

Wang, Y. Y.; Jiang, X. Y.; Li, X. S.; Ding, K. X.; Liu, X. R.; Huang, B.; Ding, J. J.; Qu, K. Y.; Sun, W. Z.; Xue, Z. X. et al. Bionic ordered structured hydrogels: Structure types, design strategies, optimization mechanism of mechanical properties and applications. Mater. Horiz. 2023, 10, 4033–4058.

[12]

Liang, Y. P.; Qiao, L. P.; Qiao, B. W.; Guo, B. L. Conductive hydrogels for tissue repair. Chem. Sci. 2023, 14, 3091–3116.

[13]

Qin, J. J.; Chu, K. B.; Huang, Y. P.; Zhu, X. M.; Hofkens, J.; He, G, J.; Parkin, I. P.; Lai, F. L.; Liu, T. X. The bionic sunflower: A bio-inspired autonomous light tracking photocatalytic system. Energy Environ. Sci. 2021, 14, 3931–3937.

[14]

Nandakumar, D. K.; Ravi, S. K.; Zhang, Y. X.; Guo, N.; Zhang, C.; Tan, S. C. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting. Energy Environ. Sci. 2018, 11, 2179–2187.

[15]

Cho, C.; Kim, B.; Park, S.; Kim, E. Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films. Energy Environ. Sci. 2022, 15, 2049–2060.

[16]

Zhao, Y.; Liu, B. R.; Pan, L. J.; Yu, G. H. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856–2870.

[17]

Wang, C. C.; Zhang, J. J.; Niu, C. X.; Fu, Q.; Lu, L. B. Dual-mechanism-driven environmental-friendly fast self-healing ionic hydrogels with excellent sensitivity to strain responsiveness. Chem. Mater. 2023, 35, 1991–2005.

[18]

Ni, C. J.; Chen, D.; Yin, Y.; Wen, X.; Chen, X. L.; Yang, C.; Chen, G. C.; Sun, Z.; Wen, J. H.; Jiao, Y. R. et al. Shape memory polymer with programmable recovery onset. Nature 2023, 622, 748–753.

[19]

Qin, J. J.; Li, J. H.; Chu, K. B.; Yang, G, Z.; Zhang, L. Q.; Xia, X. M.; Xuan, P. Y.; Chen, X.; Weng, B.; Huang, H. W. et al. Biomimetic solar photocatalytic reactor for selective oxidation of aromatic alcohols with enhanced solar-energy utilization. Adv. Funct. Mater. 2024, 34, 2311214.

[20]

Li, Y. P.; Li, L.; Zhang, Z. P.; Cheng, J. R.; Fei, Y. S.; Lu, L. B. An all-natural strategy for versatile interpenetrating network hydrogels with self-healing, super-adhesion and high sensitivity. Chem. Eng. J. 2021, 420, 129736.

[21]

Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Self-healing fibrous membranes. Angew. Chem., Int. Ed. 2022, 61, e202208949.

[22]

Kawai, M.; Nie, M. H.; Oda, H.; Morimoto, Y.; Takeuchi, S. Living skin on a robot. Matter 2022, 5, 2190–2208.

[23]

Lee, J. N.; Lee, S. Y.; Park, W. H. Bioinspired self-healable polyallylamine-based hydrogels for wet adhesion: Synergistic contributions of catechol-amino functionalities and nanosilicate. ACS Appl. Mater. Interfaces 2021, 13, 18324–18337.

[24]

Sumerlin, B. S. Next-generation self-healing materials: Adjusting molecular structure tackles a long-standing problem of synthetic material longevity. Science 2018, 362, 150–151.

[25]

Li, S. X.; Wang, L.; Zheng, W. F.; Yang, G.; Jiang, X. Y. Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body. Adv. Funct. Mater. 2020, 30, 2002370.

[26]

Li, F. B.; Li, N.; Wang, S. X.; Qiao, L. F.; Yu, L. M.; Murto, P.; Xu, X. F. Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination. Adv. Funct. Mater. 2021, 31, 2104464.

[27]

Kang, J.; Tok, J. B. H.; Bao, Z. N. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.

[28]

Qi, M.; Yang, R. Q.; Wang, Z.; Liu, Y. T.; Zhang, Q. C.; He, B.; Li, K. W.; Yang, Q.; Wei, L.; Pan, C. F. et al. Bioinspired self-healing soft electronics. Adv. Funct. Mater. 2023, 33, 2214479.

[29]

Zhang, Y.; Khanbareh, H.; Roscow, J.; Pan, M.; Bowen, C.; Wan, C. Y. Self-healing of materials under high electrical stress. Matter 2020, 3, 989–1008.

[30]

Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X. F.; Wang, T. Y.; Wang, Y. Z.; Kang, F. Y.; Li, B. H.; Wang, G. X. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 9134–9142.

[31]

Li, B. R.; Cao, P. F.; Saito, T.; Sokolov, A. P. Intrinsically self-healing polymers: From mechanistic insight to current challenges. Chem. Rev. 2023, 123, 701–735.

[32]

Wang, C.; Liu, Y.; Qu, X. C.; Shi, B. J.; Zheng, Q.; Lin, X. B.; Chao, S. Y.; Wang, C. Y.; Zhou, J.; Sun, Y. et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv. Mater. 2022, 34, 2105416.

[33]

Wang, S. Y.; Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583.

[34]

Yang, Y.; Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 2013, 42, 7446–7467.

[35]

Hillewaere, X. K. D.; Du Prez, F. E. Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci. 2015, 49–50, 121–153.

[36]

Hafeez, S.; Decarli, M. C.; Aldana, A.; Ebrahimi, M.; Ruiter, F. A. A.; Duimel, H. ; van Blitterswijk, C.; Pitet, L. M.; Moroni, L.; Baker, M. B. In situ covalent reinforcement of a benzene-1,3,5-tricarboxamide supramolecular polymer enables biomimetic, tough, and fibrous hydrogels and bioinks. Adv. Mater. 2023, 35, 2301242.

[37]

Zhao, Y. Y.; Ohm, Y.; Liao, J. H.; Luo, Y. C.; Cheng, H. Y.; Won, P.; Roberts, P.; Carneiro, M. R.; Islam, M. F.; Ahn, J. H. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 2023, 6, 206–215.

[38]

Roppolo, I.; Caprioli, M.; Pirri, C. F.; Magdassi, S. 3D printing of self-healing materials. Adv. Mater. 2024, 36, 2305537.

[39]

Li, D. R.; Fei, X.; Wang, K.; Xu, L. Q.; Wang, Y.; Tian, J.; Li, Y. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing. J. Mater. Chem. B 2021, 9, 6844–6855.

[40]

Zheng, S. Y.; Mao, S. H.; Yuan, J. F.; Wang, S. B.; He, X. M.; Zhang, X. N.; Du, C.; Zhang, D.; Wu, Z. L.; Yang, J. T. Molecularly engineered zwitterionic hydrogels with high toughness and self-healing capacity for soft electronics applications. Chem. Mater. 2021, 33, 8418–8429.

[41]

Grosjean, M.; Gangolphe, L.; Nottelet, B. Degradable self-healable networks for use in biomedical applications. Adv. Funct. Mater. 2023, 33, 2205315.

[42]

Wang, X. Y.; Zhang, H. J.; Yang, Y. X.; Chen, Y. M.; Zhu, X. L.; You, X. Y. Biopolymer-based self-healing hydrogels: A short review. Giant 2023, 16, 100188.

[43]

Ai, J. Y.; Li, K.; Li, J. B.; Yu, F.; Ma, J. Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network. Int. J. Biol. Macromol. 2021, 172, 66–73.

[44]

Su, G. H.; Yin, S. Y.; Guo, Y. H.; Zhao, F.; Guo, Q. Q.; Zhang, X. X.; Zhou, T.; Yu, G. H. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 2021, 8, 1795–1804.

[45]

Jing, B. B.; Evans, C. M. Catalyst-free dynamic networks for recyclable, self-healing solid polymer electrolytes. J. Am. Chem. Soc. 2019, 141, 18932–18937.

[46]

Cai, L. L.; Liu, S.; Guo, J. W.; Jia, Y. G. Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomater. 2020, 113, 84–100.

[47]

Wang, W.; Zhang, Y. Y.; Liu, W. G. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 2017, 71, 1–25.

[48]

Cao, J.; Lu, C. H.; Zhuang, J.; Liu, M. X.; Zhang, X. X.; Yu, Y. M.; Tao, Q. C. Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew. Chem., Int. Ed. 2017, 56, 8795–8800.

[49]

Neal, J. A.; Mozhdehi, D.; Guan, Z. B. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 2015, 137, 4846–4850.

[50]

Du, C.; Zhang, X. N.; Sun, T. L.; Du, M.; Zheng, Q.; Wu, Z. L. Hydrogen-bond association-mediated dynamics and viscoelastic properties of tough supramolecular hydrogels. Macromolecules 2021, 54, 4313–4325.

[51]

Caprioli, M.; Roppolo, I.; Chiappone, A.; Larush, L.; Pirri, C. F.; Magdassi, S. 3D-printed self-healing hydrogels via digital light processing. Nat. Commun. 2021, 12, 2462.

[52]

Shi, Y. K.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Aqueous spinning of robust, self-healable, and crack-resistant hydrogel microfibers enabled by hydrogen bond nanoconfinement. Nat. Commun. 2023, 14, 1370.

[53]

Huang, S.; Wan, F.; Bi, S. S.; Zhu, J. C.; Niu, Z. Q.; Chen, J. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem., Int. Ed. 2019, 58, 4313–4317.

[54]

Huang, H. Y.; Dong, Z. C.; Ren, X. Y.; Jia, B.; Li, G. W.; Zhou, S. W.; Zhao, X.; Wang, W. Z. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Res. 2023, 16, 3475–3515.

[55]

Guo, B. L.; Liang, Y. P.; Dong, R. N. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair. Nat. Protoc. 2023, 18, 3322–3354.

[56]

Dai, X. Y.; Zhang, Y. Y.; Gao, L. N.; Bai, T.; Wang, W.; Cui, Y. L.; Liu, W. G. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 2015, 27, 3566–3571.

[57]

Ren, Y. L.; Zhang, Y. Y.; Sun, W. H.; Gao, F.; Fu, W. G.; Wu, P. Y.; Liu, W. G. Methyl matters: An autonomic rapid self-healing supramolecular poly(N-methacryloyl glycinamide) hydrogel. Polymer 2017, 126, 1–8.

[58]

Yu, J.; Wang, K.; Fan, C. C.; Zhao, X. Y.; Gao, J. S.; Jing, W. H.; Zhang, X. P.; Li, J.; Li, Y.; Yang, J. H. et al. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv. Mater. 2021, 33, 2008395.

[59]

Long, T. J.; Li, Y. X.; Fang, X.; Sun, J. Q. Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity. Adv. Funct. Mater. 2018, 28, 1804416.

[60]

Ho, D. H.; Kim, Y. M.; Kim, U. J.; Yu, K. S.; Kwon, J. H.; Moon, H. C.; Cho, J. H. Zwitterionic polymer gel-based fully self-healable ionic thermoelectric generators with pressure-activated electrodes. Adv. Energy Mater. 2023, 13, 2301133.

[61]

Song, H.; Yu, X. H.; Nguyen, D. H.; Zhang, C.; Liu, T. X. Highly stretchable, self-healable and self-adhesive polyzwitterion ionogels enabled with binary noncovalent interactions. Compos. Commun. 2022, 34, 101251.

[62]

Bai, T.; Liu, S. J.; Sun, F.; Sinclair, A.; Zhang, L.; Shao, Q.; Jiang, S. Y. Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials 2014, 35, 3926–3933.

[63]

Shao, C. Y.; Wang, M.; Meng, L.; Chang, H. L.; Wang, B.; Xu, F.; Yang, J.; Wan, P. B. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 2018, 30, 3110–3121.

[64]

Ma, Z. P.; Liu, Z. H.; Zou, J.; Mi, H. Y.; Liu, Y. J.; Jing, X. Self-healable and robust silicone elastomer for ultrasensitive flexible sensors. ACS Sustain. Chem. Eng. 2023, 11, 10496–10508.

[65]

Huang, Y. W.; Xiao, L. Y.; Zhou, J.; Liu, T.; Yan, Y. Q.; Long, S. J.; Li, X. F. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal-ligand bonds. Adv. Funct. Mater. 2021, 31, 2103917.

[66]

Song, H.; Sun, Y, L.; Zhu, J. X.; Xu, J. S.; Zhang, C.; Liu, T. X. Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Compos. Part B Eng. 2021, 217, 108901.

[67]

Liu, Y. Q.; Wang, L.; Jiang, J. T.; Wang, X. K.; Dai, C. H.; Weng, G. S. Fast healing of covalently cross-linked polymeric hydrogels by interfacially ignited fast gelation. Macromolecules 2023, 56, 49–58.

[68]

Li, X. F.; Jiang, M.; Du, Y. M.; Ding, X.; Xiao, C.; Wang, Y. Y.; Yang, Y. Y.; Zhuo, Y. Z.; Zheng, K.; Liu, X. L. et al. Self-healing liquid metal hydrogel for human-computer interaction and infrared camouflage. Mater. Horiz. 2023, 10, 2945–2957.

[69]

Shi, L. Y.; Ding, P. H.; Wang, Y. Z.; Zhang, Y.; Ossipov, D.; Hilborn, J. Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: Design, fabrication, and biomedical applications. Macromol. Rapid Commun. 2019, 40, 1800837.

[70]

Wang, Y. F.; Tebyetekerwa, M.; Liu, Y.; Wang, M.; Zhu, J. X.; Xu, J. S.; Zhang, C.; Liu, T. X. Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem. Eng. J. 2021, 420, 127637.

[71]

Wang, Y. F.; Liu, Y.; Wang, Z. T.; Nguyen, D. H.; Zhang, C.; Liu, T. X. Polymerization-driven self-wrinkling on a frozen hydrogel surface toward ultra-stretchable polypyrrole-based supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 45910–45920.

[72]

Liu, X. Y.; He, X.; Yang, B.; Lai, L.; Chen, N. X.; Hu, J. G.; Lu, Q. Y. Dual physically cross-linked hydrogels incorporating hydrophobic interactions with promising repairability and ultrahigh elongation. Adv. Funct. Mater. 2021, 31, 2008187.

[73]

Fang, X.; Li, Y. X.; Li, X.; Liu, W. M.; Yu, X. H.; Yan, F.; Sun, J. Q. Dynamic hydrophobic domains enable the fabrication of mechanically robust and highly elastic poly(vinyl alcohol)-based hydrogels with excellent self-healing ability. ACS Mater. Lett. 2020, 2, 764–770.

[74]

Fan, L. L.; Zeng, Z.; Zhu, R. X.; Liu, A. P.; Che, H. L.; Huo, M. Polymerization-induced self-assembly toward micelle-crosslinked tough and ultrastretchable hydrogels. Chem. Mater. 2022, 34, 6408–6419.

[75]

Li, Y. Y.; Wang, D. Q.; Wen, J.; Liu, J. M.; Zhang, D. Y.; Li, J. S.; Chu, H. T. Ultra-stretchable, variable modulus, shape memory multi-purpose low hysteresis hydrogel derived from solvent-induced dynamic micelle sea-island structure. Adv. Funct. Mater. 2021, 31, 2011259.

[76]

Song, H.; Zhang, B.; Feng, Q. C.; Nguyen, D. H.; Zhang, C.; Liu, T. X. Ultra-stretchable, self-healable, and reprocessable ionic conductive hydrogels enabled by dual dynamic networks. J. Polym. Sci. 2022, 60, 2817–2827.

[77]

Hu, D. N.; Zeng, M.; Sun, Y. F.; Yuan, J. Y.; Wei, Y. Cellulose-based hydrogels regulated by supramolecular chemistry. SusMat 2021, 1, 266–284.

[78]

Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun. 2011, 2, 511.

[79]

Wang, Z. F.; An, G.; Zhu, Y.; Liu, X. M.; Chen, Y. H.; Wu, H. K.; Wang, Y. J.; Shi, X. T.; Mao, C. B. 3D-printable self-healing and mechanically reinforced hydrogels with host-guest non-covalent interactions integrated into covalently linked networks. Mater. Horiz. 2019, 6, 733–742.

[80]

Kakuta, T.; Takashima, Y.; Nakahata, M.; Otsubo, M.; Yamaguchi, H.; Harada, A. Preorganized hydrogel: Self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 2013, 25, 2849–2853.

[81]

Li, P. P.; Zhong, Y. B.; Wang, X.; Hao, J. C. Enzyme-regulated healable polymeric hydrogels. ACS Cent. Sci. 2020, 6, 1507–1522.

[82]

Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

[83]
Li, Z. K.; Lu, J. J.; Ji, T.; Xue, Y. M.; Zhao, L. B.; Zhao, K.; Jia, B. Q.; Wang, B.; Wang, J. X.; Zhang, S. M. et al. Self-healing hydrogel bioelectronics. Adv. Mater., in press, DOI: 10.1002/adma.202306350.
DOI
[84]

Mo, J. Y.; Dai, Y. H.; Zhang, C.; Zhou, Y. S.; Li, W. B.; Song, Y. X.; Wu, C. Y.; Wang, Z. K. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions. Mater. Horiz. 2021, 8, 3409–3416.

[85]

Liu, S. L.; Kang, M. M.; Li, K. W.; Yao, F.; Oderinde, O.; Fu, G. D.; Xu, L. Q. Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels. Chem. Eng. J. 2018, 334, 2222–2230.

[86]

Jiang, Z.; Diggle, B.; Shackleford, I. C. G.; Connal, L. A. Tough, self-healing hydrogels capable of ultrafast shape changing. Adv. Mater. 2019, 31, 1904956.

[87]

Li, Z. Y.; Liu, L. X.; Chen, Y. M. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Carbohyd. Polym. 2022, 291, 119616.

[88]

Jiang, X. Y.; Zeng, F. W.; Yang, X. F.; Jian, C.; Zhang, L. N.; Yu, A. X.; Lu, A. Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomater. 2022, 141, 102–113.

[89]

Li, S. Z.; Dong, Q.; Peng, X. T.; Chen, Y.; Yang, H. J.; Xu, W. L.; Zhao, Y. T.; Xiao, P.; Zhou, Y. S. Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration. ACS Nano 2022, 16, 11346–11359.

[90]

Yang, L.; Sun, L. J.; Huang, H. F.; Zhu, W. F.; Wang, Y. H.; Wu, Z. K.; Neisiany, R. E.; Gu, S. J.; You, Z. W. Mechanically robust and room temperature self-healing ionogel based on ionic liquid inhibited reversible reaction of disulfide bonds. Adv. Sci. 2023, 10, 2207527.

[91]

Huang, S.; Shen, Y. K.; Bisoyi, H. K.; Tao, Y.; Liu, Z. C.; Wang, M.; Yang, H.; Li, Q. Covalent adaptable liquid crystal networks enabled by reversible ring-opening cascades of cyclic disulfides. J. Am. Chem. Soc. 2021, 143, 12543–12551.

[92]

Choi, C.; Self, J. L.; Okayama, Y.; Levi, A. E.; Gerst, M.; Speros, J. C.; Hawker, C. J.; Read de Alaniz, J.; Bates, C. M. Light-mediated synthesis and reprocessing of dynamic bottlebrush elastomers under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9866–9871.

[93]

Yang, X. F.; Liu, G. Q.; Peng, L.; Guo, J. H.; Tao, L.; Yuan, J. Y.; Chang, C. Y.; Wei, Y.; Zhang, L. N. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv. Funct. Mater. 2017, 27, 1703174.

[94]

Sun, H. L.; Zhong, Z. Y. 100th anniversary of macromolecular science viewpoint: Biological stimuli-sensitive polymer prodrugs and nanoparticles for tumor-specific drug delivery. ACS Macro Lett. 2020, 9, 1292–1302.

[95]

Xu, K. W.; Wang, Y. F.; Zhang, B.; Zhang, C.; Liu, T. X. Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Compos. Commun. 2021, 24, 100677.

[96]

Jiang, C. G.; Zeng, W. J.; Ding, X. X.; Wu, D. F. Regulating boronic ester bonds in bilayer hydrogels toward fabricating multistimuli-triggered actuators. ACS Sustain. Chem. Eng. 2023, 11, 14094–14102.

[97]

Bertsch, P.; Diba, M.; Mooney, D. J.; Leeuwenburgh, S. C. G. Self-healing injectable hydrogels for tissue regeneration. Chem. Rev. 2023, 123, 834–873.

[98]

Hu, D. N.; Huang, H. Y.; Li, R. X.; Yuan, J. Y.; Wei, Y. “Living” fluorophores: Thermo-driven reversible acq-aie transformation and ultra-sensitive in-situ monitor for dynamic Diels-Alder reactions. Sci. China Chem. 2022, 65, 1532–1537.

[99]

Wei, Z.; Yang, J. H.; Du, X. J.; Xu, F.; Zrinyi, M.; Osada, Y.; Li, F.; Chen, Y. M. Dextran-based self-healing hydrogels formed by reversible Diels-Alder reaction under physiological conditions. Macromol. Rapid Commun. 2013, 34, 1464–1470.

[100]

Chen, Q.; Zhu, L.; Chen, H.; Yan, H. L.; Huang, L. N.; Yang, J.; Zheng, J. A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv. Funct. Mater. 2015, 25, 1598–1607.

[101]

Liang, Y. Q.; Li, Z. L.; Huang, Y.; Yu, R.; Guo, B. L. Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 2021, 15, 7078–7093.

[102]

Afewerki, S.; Wang, X. C.; Ruiz-Esparza, G. U.; Tai, C. W.; Kong, X. Y.; Zhou, S. Y.; Welch, K.; Huang, P.; Bengtsson, R.; Xu, C. et al. Combined catalysis for engineering bioinspired, lignin-based, long-lasting, adhesive, self-mending, antimicrobial hydrogels. ACS Nano 2020, 14, 17004–17017.

[103]

Wang, Y. T.; Fang, X.; Li, S. H.; Pan, H. Y.; Sun, J. Q. Complexation of sulfonate-containing polyurethane and polyacrylic acid enables fabrication of self-healing hydrogel membranes with high mechanical strength and excellent elasticity. ACS Appl. Mater. Interfaces 2023, 15, 25082–25090.

[104]

Jin, X. T.; Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Xiao, Y. K.; Gao, J.; Zhang, Z. P.; Qu, L. T. A graphene oxide-mediated polyelectrolyte with high ion-conductivity for highly stretchable and self-healing all-solid-state supercapacitors. J. Mater. Chem. A 2018, 6, 19463–19469.

[105]

Liu, D.; Qiu, J. J.; Xu, R.; Liu, J. Y.; Feng, J. Y.; Ouyang, L. P.; Qian, S.; Qiao, Y. Q.; Liu, X. Y. β-CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Compos. Part B Eng. 2022, 238, 109921.

[106]

Hu, R. F.; Zhao, J.; Wang, Y. H.; Li, Z. X.; Zheng, J. P. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chem. Eng. J. 2019, 360, 334–341.

[107]

Li, M. Z.; Zhao, G.; Liu, X. Y.; Xie, X. M.; Zhang, C.; Yu, H. T.; Jian, X. G.; Song, Y. J.; Xu, J. Self-healing interface of carbon fiber reinforced composites based on reversible hydrogen-bonded interactions. Compos. Commun. 2023, 40, 101631.

[108]

Li, Y. J.; Yang, D.; Wu, Z. Y.; Gao, F. L.; Gao, X. Z.; Zhao, H. Y.; Li, X. F.; Yu, Z. Z. Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors. Nano Energy 2023, 109, 108324.

[109]

Zhao, D. W.; Feng, M.; Zhang, L.; He, B.; Chen, X. Y.; Sun, J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohyd. Polym. 2021, 256, 117580.

[110]

Liao, H. Y.; Zhong, W. Z.; Li, C.; Han, J. L.; Sun, X.; Xia, X. H.; Li, T.; Noori, A.; Mousavi, M. F.; Liu, X. et al. An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries. J. Energy Chem. 2024, 89, 565–578.

[111]

Jing, X.; Feng, P. Y.; Chen, Z.; Xie, Z. H.; Li, H.; Peng, X. F.; Mi, H. Y.; Liu, Y. J. Highly stretchable, self-healable, freezing-tolerant, and transparent polyacrylic acid/nanochitin composite hydrogel for self-powered multifunctional sensors. ACS Sustain. Chem. Eng. 2021, 9, 9209–9220.

[112]

Jing, X.; Mi, H. Y.; Napiwocki, B. N.; Peng, X. F.; Turng, L. S. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 2017, 125, 557–570.

[113]

Chakraborty, P.; Das, S.; Nandi, A. K. Conducting gels: A chronicle of technological advances. Prog. Polym. Sci. 2019, 88, 189–219.

[114]

Yang, M.; Chen, P.; Qu, X. Y.; Zhang, F. C.; Ning, S.; Ma, L.; Yang, K.; Su, Y. M.; Zang, J. F.; Jiang, W. et al. Robust neural interfaces with photopatternable, bioadhesive, and highly conductive hydrogels for stable chronic neuromodulation. ACS Nano 2023, 17, 885–895.

[115]

Wu, M.; Chen, J. S.; Ma, Y. H.; Yan, B.; Pan, M. F.; Peng, Q. Y.; Wang, W. D.; Han, L. B.; Liu, J. F.; Zeng, H. B. Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors. J. Mater. Chem. A 2020, 8, 24718–24733.

[116]

Song, J. C.; Chen, S.; Sun, L. J.; Guo, Y. F.; Zhang, L. Z.; Wang, S. L.; Xuan, H. X.; Guan, Q. B.; You, Z. W. Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 2020, 32, 1906994.

[117]

Yang, Y.; Yao, C.; Huang, W. Y.; Liu, C. L.; Zhang, Y. Wearable sensor based on a tough conductive gel for real-time and remote human motion monitoring. ACS Appl. Mater. Interfaces 2024, 16, 11957–11972.

[118]

Jeon, I.; Cui, J. X.; Illeperuma, W. R. K.; Aizenberg, J.; Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 2016, 28, 4678–4683.

[119]

Jiang, S. H.; Deng, J. J.; Jin, Y. H.; Qian, B.; Lv, W. Q.; Zhou, Q. Q.; Mei, E. H.; Neisiany, R. E.; Liu, Y. H.; You, Z. W. et al. Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms. Bioact. Mater. 2023, 21, 313–323.

[120]

Liu, M. L.; Jiang, S. H.; Witman, N.; Wang, H. J.; Wang, W.; Fu, W.; You, Z. W. Intrinsically cryopreservable, bacteriostatic, durable glycerohydrogel inks for 3D bioprinting. Matter 2023, 6, 983–999.

[121]

Zhu, T.; Jiang, C.; Wang, M. L.; Zhu, C. Z.; Zhao, N.; Xu, J. Skin-inspired double-hydrophobic-coating encapsulated hydrogels with enhanced water retention capacity. Adv. Funct. Mater. 2021, 31, 2102433.

[122]

Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

[123]

Sun, L. J.; Huang, H. F.; Zhang, L. Z.; Neisiany, R. E.; Ma, X. P.; Tan, H.; You, Z. W. Spider-silk-inspired tough, self-healing, and melt-spinnable ionogels. Adv. Sci. 2024, 11, 2305697.

[124]

Sun, L. J.; Huang, H. F.; Ding, Q. Y.; Guo, Y. F.; Sun, W.; Wu, Z. C.; Qin, M. L.; Guan, Q. B.; You, Z. W. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 2022, 4, 98–107.

[125]

Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158.

[126]

Wei, G. M.; Kudo, Y.; Matsuda, T.; Wang, Z. J.; Mu, Q. F.; King, D. R.; Nakajima, T.; Gong, J. P. Sustainable mechanochemical growth of double-network hydrogels supported by vascular-like perfusion. Mater. Horiz. 2023, 10, 4882–4891.

[127]

Gu, C. N.; Xie, X. Q.; Liang, Y. J.; Li, J. J.; Wang, H.; Wang, K. F.; Liu, J. P.; Wang, M. K.; Zhang, Y. F.; Li, M. X. et al. Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 °C. Energy Environ. Sci. 2021, 14, 4451–4462.

[128]

Wang, Z. J.; Jiang, J. L.; Mu, Q. F.; Maeda, S.; Nakajima, T.; Gong, J. P. Azo-crosslinked double-network hydrogels enabling highly efficient mechanoradical generation. J. Am. Chem. Soc. 2022, 144, 3154–3161.

[129]

Mu, Q. F.; Cui, K. P.; Wang, Z. J.; Matsuda, T.; Cui, W.; Kato, H.; Namiki, S.; Yamazaki, T.; Frauenlob, M.; Nonoyama, T. et al. Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun. 2022, 13, 6213.

[130]

Suzuka, J.; Tsuda, M.; Wang, L.; Kohsaka, S.; Kishida, K.; Semba, S.; Sugino, H.; Aburatani, S.; Frauenlob, M.; Kurokawa, T. et al. Rapid reprogramming of tumour cells into cancer stem cells on double-network hydrogels. Nat. Biomed. Eng. 2021, 5, 914–925.

[131]

Li, X. Y.; Cui, K. P.; Sun, T. L.; Meng, L. P.; Yu, C. T.; Li, L. B.; Creton, C.; Kurokawa, T.; Gong, J. P. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proc. Natl. Acad. Sci. USA 2020, 117, 7606–7612.

[132]

Zhang, Y. L.; Song, M. W.; Diao, Y. F.; Li, B. W.; Shi, L. Y.; Ran, R. Preparation and properties of polyacrylamide/polyvinyl alcohol physical double network hydrogel. RSC Adv. 2016, 6, 112468–112476.

[133]

Peng, W. W.; Han, L.; Huang, H. L.; Xuan, X. Y.; Pan, G. D.; Wan, L. J.; Lu, T.; Xu, M.; Pan, L. K. A direction-aware and ultrafast self-healing dual network hydrogel for a flexible electronic skin strain sensor. J. Mater. Chem. A 2020, 8, 26109–26118.

[134]

Yang, H. B.; Zheng, H. J.; Duan, Y. X.; Xu, T.; Xie, H. X.; Du, H. S.; Si, C. L. Nanocellulose-graphene composites: Preparation and applications in flexible electronics. Int. J. Biol. Macromol. 2023, 253, 126903.

[135]

Zou, Y. P.; Liang, H. F.; Wang, B.; Zhang, Q. C.; Su, D. H.; Lu, S. Y.; Zhang, Q. Y.; Wu, T.; Xiao, L.; Xiao, Y. et al. Precipitation-based silk fibroin fast gelling, highly adhesive, and magnetic nanocomposite hydrogel for repair of irregular bone defects. Adv. Funct. Mater. 2023, 33, 2302442.

[136]

Zarepour, A.; Ahmadi, S.; Rabiee, N.; Zarrabi, A.; Iravani, S. Self-healing mxene- and graphene-based composites: Properties and applications. Nano-Micro Lett. 2023, 15, 100.

[137]

Rose, S.; Dizeux, A.; Narita, T.; Hourdet, D.; Marcellan, A. Time dependence of dissipative and recovery processes in nanohybrid hydrogels. Macromolecules 2013, 46, 4095–4104.

[138]

Cong, H. P.; Wang, P.; Yu, S. H. Stretchable and self-healing graphene oxide-polymer composite hydrogels: A dual-network design. Chem. Mater. 2013, 25, 3357–3362.

[139]

Chen, L.; Yang, T. F.; Weng, L.; Chang, X. W.; Liu, J.; Peng, X. H.; Cheng, C.; Han, P.; Zhang, Y. M.; Chen, X. Integration of tumor elimination and tissue regeneration via selective manipulation of physiological microenvironments based on intelligent nanocomposite hydrogel for postoperative treatment of malignant melanoma. Adv. Funct. Mater. 2023, 33, 2304394.

[140]

Lavrador, P.; Esteves, M. R.; Gaspar, V. M.; Mano, J. F. Stimuli-responsive nanocomposite hydrogels for biomedical applications. Adv. Funct. Mater. 2021, 31, 2005941.

[141]

Qin, H. L.; Zhang, T.; Li, H. N.; Cong, H. P.; Antonietti, M.; Yu, S. H. Dynamic Au-thiolate interaction induced rapid self-healing nanocomposite hydrogels with remarkable mechanical behaviors. Chem 2017, 3, 691–705.

[142]

Shao, C. Y.; Meng, L.; Wang, M.; Cui, C.; Wang, B.; Han, C. R.; Xu, F.; Yang, J. Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels. ACS Appl. Mater. Interfaces 2019, 11, 5885–5895.

[143]

Yuan, T.; Cui, X. M.; Liu, X. K.; Qu, X. X.; Sun, J. Q. Highly tough, stretchable, self-healing, and recyclable hydrogels reinforced by in situ-formed polyelectrolyte complex nanoparticles. Macromolecules 2019, 52, 3141–3149.

[144]

Li, X. B.; He, L. Z.; Li, Y. F.; Chao, M. Y.; Li, M. K.; Wan, P. B.; Zhang, L. Q. Healable, degradable, and conductive mxene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 2021, 15, 7765–7773.

[145]

Zhao, N. Y.; Yuan, W. Z. Highly adhesive and dual-crosslinking hydrogel via one-pot self-initiated polymerization for efficient antibacterial, antifouling and full-thickness wound healing. Compos. Part B Eng. 2022, 230, 109525.

[146]

Zhao, J. Y.; Diaz-Dussan, D.; Wu, M.; Peng, Y. Y.; Wang, J. Q.; Zeng, H. B.; Duan, W.; Kong, L. X.; Hao, X. J.; Narain, R. Dual-cross-linked network hydrogels with multiresponsive, self-healing, and shear strengthening properties. Biomacromolecules 2021, 22, 800–810.

[147]

Dou, X. Y.; Cao, Q. C.; Sun, F. F.; Wang, Y. Q.; Wang, H. F.; Shen, H.; Yang, F.; Wang, X.; Wu, D. C. Synergistic control of dual cross-linking strategy toward tailor-made hydrogels. Sci. China Chem. 2020, 63, 1793–1798.

[148]

Zhong, M.; Liu, Y. T.; Liu, X. Y.; Shi, F. K.; Zhang, L. Q.; Zhu, M. F.; Xie, X. M. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency. Soft Matter 2016, 12, 5420–5428.

[149]

Cui, W.; Ji, J.; Cai, Y. F.; Li, H.; Ran, R. Robust, anti-fatigue, and self-healing graphene oxide/hydrophobically associated composite hydrogels and their use as recyclable adsorbents for dye wastewater treatment. J. Mater. Chem. A 2015, 3, 17445–17458.

[150]

Chu, K. B.; Qin, J. J.; Zhu, H. Y.; De Ras, M.; Wang, C.; Xiong, L.; Zhang, L. S.; Zhang, N.; Martens, J. A.; Hofkens, J. et al. High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. Sci. China Mater. 2022, 65, 2711–2720.

[151]

Chu, K. B.; Liu, F. Z.; Zhu, J. W.; Fu, H.; Zhu, H. Y.; Zhu, Y. L.; Zhang, Y.; Lai, F. L.; Liu, T. X. A general strategy to boost electrocatalytic nitrogen reduction on perovskite oxides via the oxygen vacancies derived from a-site deficiency. Adv. Energy Mater. 2021, 11, 2003799.

[152]

Wang, L. L.; Zhao, Z. Q.; Dong, J. H.; Li, D. W.; Dong, W. H.; Li, H. X.; Zhou, Y. Q.; Liu, Q. S.; Deng, B. Y. Mussel-inspired multifunctional hydrogels with adhesive, self-healing, antioxidative, and antibacterial activity for wound healing. ACS Appl. Mater. Interfaces 2023, 15, 16515–16525.

[153]

Hui, Y.; Yao, Y.; Qian, Q. L.; Luo, J. H.; Chen, H. H.; Qiao, Z.; Yu, Y. T.; Tao, L.; Zhou, N. J. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 2022, 5, 893–903.

[154]

Wang, C. H.; Yang, B. B.; Xiang, R. H.; Ji, J. Y.; Wu, Y.; Tan, S. High-saline-enabled hydrophobic homogeneous cross-linking for extremely soft, tough, and stretchable conductive hydrogels as high-sensitive strain sensors. ACS Nano 2023, 17, 23194–23206.

[155]

Wu, J.; Wu, Z. X.; Wei, Y. M.; Ding, H. J.; Huang, W. X.; Gui, X. C.; Shi, W. X.; Shen, Y.; Tao, K.; Xie, X. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels. ACS Appl. Mater. Interfaces 2020, 12, 19069–19079.

[156]

Niu, H. S.; Yin, F. F.; Kim, E. S.; Wang, W. X.; Yoon, D. Y.; Wang, C.; Liang, J. G.; Li, Y.; Kim, N. Y. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat 2023, 5, e12412.

[157]

Hu, L. X.; Chee, P. L.; Sugiarto, S.; Yu, Y.; Shi, C. Q.; Yan, R.; Yao, Z. Q.; Shi, X. W.; Zhi, J. C.; Kai, D. et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, 2205326.

[158]

Chae, A.; Murali, G.; Lee, S. Y.; Gwak, J.; Kim, S. J.; Jeong, Y. J.; Kang, H.; Park, S.; Lee, A. S.; Koh, D. Y. et al. Highly oxidation-resistant and self-healable mxene-based hydrogels for wearable strain sensor. Adv. Funct. Mater. 2023, 33, 2213382.

[159]

Fu, H. C.; Wang, B.; Li, J. P.; Xu, J.; Li, J.; Zeng, J. S.; Gao, W. H.; Chen, K. F. A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. Mater. Horiz. 2022, 9, 1412–1421.

[160]

Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.

[161]

Zhang, Z. X.; Tang, L.; Chen, C.; Yu, H. T.; Bai, H. H.; Wang, L.; Qin, M. M.; Feng, Y. Y.; Feng, W. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A 2021, 9, 875–883.

[162]

Chen, J. S.; Peng, Q. Y.; Thundat, T.; Zeng, H. B. Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 2019, 31, 4553–4563.

[163]

Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

[164]

Zhang, Z.; Gao, Z. L.; Wang, Y. T.; Guo, L. X.; Yin, C. H.; Zhang, X. L.; Hao, J. C.; Zhang, G. M.; Chen, L. S. Eco-friendly, self-healing hydrogels for adhesive and elastic strain sensors, circuit repairing, and flexible electronic devices. Macromolecules 2019, 52, 2531–2541.

[165]

Xu, W.; Huang, L. B.; Wong, M. C.; Chen, L.; Bai, G. X.; Hao, J. H. Self-powered sensors: Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors (Adv. Energy Mater. 1/2017). Adv. Energy Mater. 2017, 7, 1770003.

[166]

Parandeh, S.; Etemadi, N.; Kharaziha, M.; Chen, G. R.; Nashalian, A.; Xiao, X.; Chen, J. Advances in triboelectric nanogenerators for self-powered regenerative medicine. Adv. Funct. Mater. 2021, 31, 2105169.

[167]

Li, R.; Xu, Z. Y.; Li, L.; Wei, J. J.; Wang, W. Q.; Yan, Z. J.; Chen, T. Breakage-resistant hydrogel electrode enables ultrahigh mechanical reliability for triboelectric nanogenerators. Chem. Eng. J. 2023, 454, 140261.

[168]

Wu, Y. H.; Luo, Y.; Cuthbert, T. J.; Shokurov, A. V.; Chu, P. K.; Feng, S. P.; Menon, C. Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators. Adv. Mater. 2022, 9, 2106008.

[169]

Yang, D.; Ni, Y. F.; Kong, X. X.; Li, S. Y.; Chen, X. Y.; Zhang, L. Q.; Wang, Z. L. Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 2021, 15, 14653–14661.

[170]

Qin, Y.; Mo, J. L.; Liu, Y. H.; Zhang, S.; Wang, J. L.; Fu, Q.; Wang, S. F.; Nie, S. X. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 2022, 32, 2201846.

[171]

Guan, Q. B.; Lin, G. H.; Gong, Y. Z.; Wang, J. F.; Tan, W. Y.; Bao, D. Q.; Liu, Y. N.; You, Z. W.; Sun, X. H.; Wen, Z. et al. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 2019, 7, 13948–13955.

[172]

Zheng, Y.; Ni, X. P.; Li, K. M.; Yu, X. H.; Song, H.; Chen, S.; Khan, N. A.; Wang, D.; Zhang, C. Multi-heteroatom-doped hollow carbon nanocages from ZIF-8@CTP nanocomposites as high-performance anodes for sodium-ion batteries. Compos. Commun. 2022, 32, 101116.

[173]

Zheng, Y.; Song, H.; Chen, S.; Yu, X. H.; Zhu, J. X.; Xu, J. S.; Zhang, K. A. I.; Zhang, C.; Liu, T. X. Metal-free multi-heteroatom-doped carbon bifunctional electrocatalysts derived from a covalent triazine polymer. Small 2020, 16, 2004342.

[174]

Chu, K. B.; Zong, W.; Xue, G. H.; Guo, H. L.; Qin, J. J.; Zhu, H. Y.; Zhang, N.; Tian, Z. H.; Dong, H. L.; Miao, Y. E. et al. Cation substitution strategy for developing perovskite oxide with rich oxygen vacancy-mediated charge redistribution enables highly efficient nitrate electroreduction to ammonia. J. Am. Chem. Soc. 2023, 145, 21387–21396.

[175]

Yu, P.; Zeng, Y. X.; Zhang, H. Z.; Yu, M. H.; Tong, Y. X.; Lu, X. H. Flexible Zn-ion batteries: Recent progresses and challenges. Small 2019, 15, 1804760.

[176]

Zheng, Y.; Chen, S.; Yu, X. H.; Li, K. M.; Ni, X. P.; Ye, L. Q. Nitrogen-doped carbon spheres with precisely-constructed pyridinic-N active sites for efficient oxygen reduction. Appl. Surf. Sci. 2022, 598, 153786.

[177]

Mackanic, D. G.; Kao, M.; Bao, Z. N. Enabling deformable and stretchable batteries. Adv. Energy Mater. 2020, 10, 2001424.

[178]

Han, N.; Wang, Y.; Su, B. L. Unveiling oscillatory nature for sustainable fuel production. Natl. Sci. Rev. 2024, 11, nwae068.

[179]

Shin, K. H.; Ji, D.; Park, J. M.; Joe, Y. S.; Park, H. S.; Kim, J. Structural composite hydrogel electrolytes for flexible and durable Zn metal batteries. Adv. Funct. Mater. 2024, 34, 2309048.

[180]

Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.

[181]

Han, N.; Guo, X. Y.; Cheng, J. L.; Liu, P. Y.; Zhang, S. G.; Huang, S. P.; Rowles, M. R.; Fransaer, J.; Liu, S. M. Inhibiting in situ phase transition in ruddlesden-popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter 2021, 4, 1720–1734.

[182]

Mandal, S.; Kumari, S.; Kumar, M.; Ojha, U. Supplementary networking of interpenetrating polymer system (SNIPSY) strategy to develop strong & high water content ionic hydrogels for solid electrolyte applications. Adv. Funct. Mater. 2021, 31, 2100251.

[183]

Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at –20 °C. Energy Environ. Sci. 2019, 12, 706–715.

[184]

Zhao, S. Y.; Zuo, Y. Y.; Liu, T.; Zhai, S.; Dai, Y. W.; Guo, Z. J.; Wang, Y.; He, Q. J.; Xia, L. C.; Zhi, C. Y. et al. Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 2021, 11, 2101749.

[185]

Narayan, R.; Laberty-Robert, C.; Pelta, J.; Tarascon, J. M.; Dominko, R. Self-healing: An emerging technology for next-generation smart batteries. Adv. Energy Mater. 2022, 12, 2102652.

[186]

Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem. 2018, 130, 9958–9961.

[187]

Yu, C.; Wang, C. F.; Chen, S. Supramolecular gels: Robust self-healing host-guest gels from magnetocaloric radical polymerization (Adv. Funct. Mater. 9/2014). Adv. Funct. Mater. 2014, 24, 1234.

[188]

Li, W.; Li, X. F.; Zhang, X. T.; Wu, J.; Tian, X. H.; Zeng, M. J.; Qu, J.; Yu, Z. Z. Flexible poly(vinyl alcohol)-polyaniline hydrogel film with vertically aligned channels for an integrated and self-healable supercapacitor. ACS Appl. Energy Mater. 2020, 3, 9408–9416.

[189]

Song, H.; Wang, Y. F.; Fei, Q. Y.; Nguyen, D. H.; Zhang, C.; Liu, T. X. Cryopolymerization-enabled self-wrinkled polyaniline-based hydrogels for highly stretchable all-in-one supercapacitors. Exploration 2022, 2, 20220006.

[190]

Han, N.; Zhang, X.; Zhang, C.; Feng, S. H.; Zhang, W.; Guo, W.; Zheng, R. T.; Zheng, R. J.; Liu, P. Y.; Li, Y. et al. Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Matter 2024, 7, 1330–1343.

[191]

Zhang, S. W.; Yin, B. S.; Liu, X. X.; Gu, D. M.; Gong, H.; Wang, Z. B. A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 2019, 59, 41–49.

[192]

Ren, K.; Liu, Z.; Wei, T.; Fan, Z. J. Recent developments of transition metal compounds-carbon hybrid electrodes for high energy/power supercapacitors. Nano-Micro Lett. 2021, 13, 129.

[193]

Zhang, W.; Feng, P.; Chen, J.; Sun, Z. M.; Zhao, B. X. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240.

[194]

Cheng, T.; Zhang, Y. Z.; Wang, S.; Chen, Y. L.; Gao, S. Y.; Wang, F.; Lai, W. Y.; Huang, W. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 2021, 31, 2101303.

[195]

Dai, J.; Qin, H. L.; Dong, W. X.; Cong, H. P.; Yu, S. H. Autonomous self-healing of highly stretchable supercapacitors at all climates. Nano Lett. 2022, 22, 6444–6453.

[196]

Chen, G. Q.; Hu, O. D.; Lu, J.; Gu, J. F.; Chen, K.; Huang, J. R.; Hou, L. X.; Jiang, X. C. Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor. Chem. Eng. J. 2021, 425, 131505.

[197]

Yin, J. J.; Wei, K.; Zhang, J. X.; Liu, S. D.; Wang, X. L.; Wang, X. M.; Zhang, Q. R.; Qin, Z. H.; Jiao, T. F. Mxene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 2022, 3, 100893.

[198]

Rong, Q. F.; Lei, W. W.; Chen, L.; Yin, Y. A.; Zhou, J. J.; Liu, M. J. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem., Int. Ed. 2017, 56, 14159–14163.

[199]

Chu, K. B. ; de Ras, M.; Rao, D. W.; Martens, J. A.; Hofkens, J.; Lai, F. L.; Liu, T. X. Tailoring the d-band center of double-perovskite LaCo x Ni1– x O3 nanorods for high activity in artificial N2 fixation. ACS Appl. Mater. Interfaces 2021, 13, 13347–13353.

[200]

Liang, G. J.; Yi, M.; Hu, H. B.; Ding, K.; Wang, L.; Zeng, H. B.; Tang, J.; Liao, L.; Nan, C. W.; He, Y. B. et al. Coaxial-structured weavable and wearable electroluminescent fibers. Adv. Electron. Mater. 2017, 3, 1700401.

[201]

Liu, X. Y.; Liu, J.; Lin, S. T.; Zhao, X. H. Hydrogel machines. Mater. Today 2020, 36, 102–124.

[202]

Wang, J. H.; Sun, S. T.; Wu, B. H.; Hou, L.; Ding, P.; Guo, X. H.; Cohen Stuart, M. A.; Wang, J. Y. Processable and luminescent supramolecular hydrogels from complex coacervation of polycations with lanthanide coordination polyanions. Macromolecules 2019, 52, 8643–8650.

[203]

Li, M.; Li, W. J.; Cai, W.; Zhang, X. J.; Wang, Z. H.; Street, J.; Ong, W. J.; Xia, Z. H.; Xu, Q. A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment. Mater. Horiz. 2019, 6, 703–710.

[204]

Li, B.; Li, Z. Q.; Li, H. R. Ultrastretchable luminescent nanocomposite hydrogel with self-healing behavior. ACS Appl. Polym. Mater. 2022, 4, 2329–2336.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 March 2024
Revised: 13 April 2024
Accepted: 23 April 2024
Published: 17 May 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the Linyi University 2023 High-level Talents (PhD) Research Start-up Fund (Natural Sciences) (Nos. Z6124014 and Z6124015), the College Students’ Innovation and Entrepreneurship Training Program (No. X202310452291), the Key Research and Development Project for the Highlevel Technological Talent of Lvlang City (Nos. 2023GXYF09 and 2022RC15), and Scientific Research Start-up Funds of Lyuliang University.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return