AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fe-Co-Ni ternary single-atom electrocatalyst and stable quasi-solid-electrolyte enabling high-efficiency zinc-air batteries

Shifeng Qin1,§Kaiqi Li2,§Mengxue Cao1Wuhua Liu3Zhongyuan Huang1( )Guanjie He2( )Ivan P. Parkin2( )Huanxin Li1,4,5( )
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
Department of Chemistry, University College London, London, WC1H 0AJ, UK
Guizhou Dalong Huicheng New Material Co., Ltd, Tongren 554001, China
Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK

§ Shifeng Qin and Kaiqi Li contributed equally to this work.

Show Author Information

Graphical Abstract

A Fe-Co-Ni ternary single-atom catalyst (FeCoNi-Nx), derived from a ZIF precursor, demonstrated remarkable efficacy as an oxygen electrocatalyst. Paired with an optimized flexible casting-drying polyvinyl alcohol (CD-PVA) film serving as a quasi-solid electrolyte host, it enabled high-efficiency solid-state Zn-air batteries. The rechargeable Zn-air battery, based on FeCoNi-Nx, exhibited outstanding specific capacity (846.8 mAh·gZn–1) and power density (135 mW·cm–2) in aqueous electrolyte, and achieved over 60 mW·cm–2 power density in quasi-solid electrolyte. Consequently, the quasi-solid-state Zn-air battery, with a compact area of just 2 cm2, successfully charged a mobile phone, surpassing all previously reported devices.

Abstract

The non-noble metal (Fe, Co, Ni, etc.) catalysts possess promising potential to replace noble metals (e.g., Pt, Ru, Ir, etc.) as catalysts for oxygen electrocatalysis. Up to now, various mono- and dual-single-atom catalysts have been fabricated, though it is still challenging to synthesise ternary single-atom catalysts due to the difference of interaction forces between different metal ions (Fe, Co, Ni, etc.) and ligands. Here, we report a Fe-Co-Ni ternary single-atom catalyst (FeCoNi-Nx) derived from a zeolitic imidazolate frameworks (ZIF) precursor as an efficient oxygen electrocatalyst, and an optimised flexible casting-drying polyvinyl alcohol (CD-PVA) film as a quasi-solid electrolyte host, for high-efficiency solid-state Zn-air batteries. The aberration-corrected HAADF-STEM and EELS spectrum confirm the co-existence of Fe, Co and Ni single atoms in the FeCoNi-Nx catalyst, and the electrochemical, mechanical, and durability tests prove the superiority of the CD-PVA film. As a result, the FeCoNi-Nx-based rechargeable Zn-air battery delivers superior specific capacity (846.8 mAh·gZn–1) and power density (135 mW·cm–2) in aqueous electrolyte, as well as an over 60 mW·cm–2 power density in quasi-solid electrolyte. As a result, the quasi-solid-state Zn-air battery with a small area of only 2 cm2 is able to charge a mobile phone, which outperforms all the reported devices to date.

Electronic Supplementary Material

Download File(s)
0122_ESM.pdf (1.9 MB)

References

[1]

Dong, F.; Wu, M. J.; Chen, Z. S.; Liu, X. H.; Zhang, G. X.; Qiao, J. L.; Sun, S. H. Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: Recent advances and future perspectives. Nano-Micro Lett. 2022, 14, 36.

[2]

Wang, H.; Chen, B. H.; Liu, D. J. Metal-organic frameworks and metal-organic gels for oxygen electrocatalysis: Structural and compositional considerations. Adv. Mater. 2021, 33, 2008023.

[3]

Lei, H.; Wang, Z. L.; Yang, F.; Huang, X. Q.; Liu, J. H.; Liang, Y. Y.; Xie, J. P.; Javed, M. S.; Lu, X. H.; Tan, S. Z. et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293.

[4]

Tang, T.; Jiang, W. J.; Liu, X. Z.; Deng, J.; Niu, S.; Wang, B.; Jin, S. F.; Zhang, Q.; Gu, L.; Hu, J. S. et al. Metastable rock salt oxide-mediated synthesis of high-density dual-protected M@NC for long-life rechargeable zinc-air batteries with record power density. J. Am. Chem. Soc. 2020, 142, 7116–7127.

[5]

Yu, J.; Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries. Adv. Mater. 2020, 32, 1908488.

[6]

Hu, X. J.; Huang, T.; Tang, Y. W.; Fu, G. T.; Lee, J. M. Three-dimensional graphene-supported Ni3Fe/Co9S8 composites: Rational design and active for oxygen reversible electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 4028–4036.

[7]

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

[8]

Li, K. Q.; Cheng, R. Q.; Xue, Q. Y.; Meng, P. Y.; Zhao, T. S.; Jiang, M.; Guo, M. L.; Li, H. X.; Fu, C. P. In-situ construction of Co/CoSe Schottky heterojunction with interfacial electron redistribution to facilitate oxygen electrocatalysis bifunctionality for zinc-air batteries. Chem. Eng. J. 2022, 450, 137991.

[9]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[10]

Xu, Y. Y.; Xue, H. R.; Li, X. J.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2023, 2, e9120052.

[11]

Chen, M. X.; Zhu, M. Z.; Zuo, M.; Chu, S. Q.; Zhang, J.; Wu, Y. E.; Liang, H. W.; Feng, X. L. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 1627–1633.

[12]

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

[13]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[14]

Cheng, Y. J.; Wang, H.; Song, H. Q.; Zhang, K.; Waterhouse, G. I. N.; Chang, J. W.; Tang, Z. Y.; Lu, S. Y. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction-A review. Nano Res. Energy 2023, 2, e9120082.

[15]

Wang, Y. B.; Li, K. Q.; Cheng, R. Q.; Xue, Q. Y.; Wang, F.; Yang, Z. H.; Meng, P. Y.; Jiang, M.; Zhang, J.; Fu, C. P. Enhanced electronic interaction between iron phthalocyanine and cobalt single atoms promoting oxygen reduction in alkaline and neutral aluminum-air batteries. Chem. Eng. J. 2022, 450, 138213.

[16]

Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

[17]

Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

[18]

Zhang, D. Y.; Chen, W. X.; Li, Z.; Chen, Y. J.; Zheng, L. R.; Gong, Y.; Li, Q. H.; Shen, R. A.; Han, Y. H.; Cheong, W. C. et al. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chem. Commun. 2018, 54, 4274–4277.

[19]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[20]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[21]

Zhang, L. J.; Gu, T. T.; Lu, K. L.; Zhou, L. J.; Li, D. S.; Wang, R. H. Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis. Adv. Funct. Mater. 2021, 31, 2103187.

[22]

Ge, L. P.; Wang, D.; Yang, P. X.; Xu, H.; Xiao, L. H.; Zhang, G. X.; Lu, X. Y.; Duan, Z. Z.; Meng, F.; Zhang, J. Q. et al. Graphite N-C-P dominated three-dimensional nitrogen and phosphorus co-doped holey graphene foams as high-efficiency electrocatalysts for Zn-air batteries. Nanoscale 2019, 11, 17010–17017.

[23]

Tan, Z.; Li, H. X.; Feng, Q. X.; Jiang, L. L.; Pan, H. Y.; Huang, Z. Y.; Zhou, Q.; Zhou, H. H.; Ma, S.; Kuang, Y. F. One-pot synthesis of Fe/N/S-doped porous carbon nanotubes for efficient oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1607–1615.

[24]

Cheng, R. Q.; Li, K. Q.; Li, Z.; Jiang, M.; Wang, F.; Yang, Z. H.; Zhao, T. S.; Meng, P. Y.; Fu, C. P. Rational design of boron-nitrogen coordinated active sites towards oxygen reduction reaction in aluminum-air batteries with robust integrated air cathode. J. Power Sources 2023, 556, 232476.

[25]

Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.

[26]

Wang, Y.; Zhang, Z. W.; Jia, G. R.; Zheng, L. R.; Zhao, J. X.; Cui, X. Q. Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics. Chem. Commun. 2019, 55, 5271–5274.

[27]

Wu, K. Z.; Zhang, L.; Yuan, Y. F.; Zhong, L. X.; Chen, Z. X.; Chi, X.; Lu, H.; Chen, Z. H.; Zou, R.; Li, T. Z. et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries. Adv. Mater. 2020, 32, 2002292.

[28]

Chen, Q.; Tan, X. F.; Liu, Y. G.; Liu, S. B.; Li, M. F.; Gu, Y. L.; Zhang, P.; Ye, S. J.; Yang, Z. Z.; Yang, Y. Y. Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 5773–5811.

[29]

Xu, C. X.; Chen, L.; Wen, Y. L.; Qin, S. F.; Li, H. X.; Hou, Z. H.; Huang, Z. Y.; Zhou, H. H.; Kuang, Y. F. A co-operative protection strategy to synthesize highly active and durable Fe/N co-doped carbon towards oxygen reduction reaction in Zn-air batteries. Mater. Today Energy 2021, 21, 100721.

[30]

Jin, T. X.; Nie, J. L.; Dong, M.; Chen, B. L.; Nie, J.; Ma, G. P. 3D interconnected honeycomb-like multifunctional catalyst for Zn-air batteries. Nano-Micro Lett. 2023, 15, 26.

[31]

Chen, C. L.; Alalouni, M. R.; Dong, X. L.; Cao, Z.; Cheng, Q. P.; Zheng, L. R.; Meng, L. K.; Guan, C.; Liu, L. M.; Abou-Hamad, E. et al. Highly active heterogeneous catalyst for ethylene dimerization prepared by selectively doping Ni on the surface of a zeolitic imidazolate framework. J. Am. Chem. Soc. 2021, 143, 7144–7153.

[32]

Musa, A. B.; Tabish, M.; Kumar, A.; Selvaraj, M.; Khan, M. A.; Al-Shehri, B. M.; Arif, M.; Mushtaq, M. A.; Ibraheem, S.; Slimani, Y. et al. Microenvironment engineering of Fe-single-atomic-site with nitrogen coordination anchored on carbon nanotubes for boosting oxygen electrocatalysis in alkaline and acidic media. Chem. Eng. J. 2023, 451, 138684.

[33]

Kuang, M.; Wang, Q. H.; Han, P.; Zheng, G. F. Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 2017, 7, 1700193.

[34]

Kong, F. T.; Cui, X. Z.; Huang, Y. F.; Yao, H. L.; Chen, Y. F.; Tian, H.; Meng, G.; Chen, C.; Chang, Z. W.; Shi, J. L. N-doped carbon electrocatalyst: Marked ORR activity in acidic media without the contribution from metal sites. Angew. Chem., Int. Ed. 2022, 61, e202116290.

[35]

Ud Din, M. A.; Idrees, M.; Jamil, S.; Irfan, S.; Nazir, G.; Mudassir, M. A.; Saleem, M. S.; Batool, S.; Cheng, N. P.; Saidur, R. Advances and challenges of methanol-tolerant oxygen reduction reaction electrocatalysts for the direct methanol fuel cell. J. Energy Chem. 2023, 77, 499–513.

[36]

Tyagi, A.; Penke, Y. K.; Sinha, P.; Malik, I.; Kar, K. K.; Ramkumar, J.; Yokoi, H. ORR performance evaluation of Al-substituted MnFe2O4/reduced graphene oxide nanocomposite. Int. J. Hydrog. Energy 2021, 46, 22434–22445.

[37]

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

[38]

Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

[39]

Li, Z. H.; He, H. Y.; Cao, H. B.; Sun, S. M.; Diao, W. L.; Gao, D. L.; Lu, P. L.; Zhang, S. S.; Guo, Z.; Li, M. J. et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 2019, 240, 112–121.

[40]

Niu, Y. L.; Teng, X.; Gong, S. Q.; Chen, Z. F. A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries. J. Mater. Chem. A 2020, 8, 13725–13734.

[41]

Wang, D.; Wang, Q. Y.; Jiang, S. D.; Dong, K. Z.; Wang, Z. Y.; Luo, S. H.; Liu, Y. G.; Zhang, Y. H.; Wang, Q.; Yi, T. F. NiCo alloy nanoparticles encapsulated in N-doped 3D porous carbon as efficient electrocatalysts for oxygen reduction reaction. Int. J. Hydrog. Energy 2020, 45, 22797–22807.

[42]

Xi, J. B.; Xia, Y. T.; Xu, Y. Y.; Xiao, J. W.; Wang, S. (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal-organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem. Commun. 2015, 51, 10479–10482.

[43]

Yuan, H.; Li, J. T.; Yang, W.; Zhuang, Z. C.; Zhao, Y.; He, L.; Xu, L.; Liao, X. B.; Zhu, R. Q.; Mai, L. Q. Oxygen vacancy-determined highly efficient oxygen reduction in NiCo2O4/hollow carbon spheres. ACS Appl. Mater. Interfaces 2018, 10, 16410–16417.

[44]

Zhu, X. F.; Zhang, D. T.; Chen, C. J.; Zhang, Q. R.; Liu, R. S.; Xia, Z. H.; Dai, L. M.; Amal, R.; Lu, X. Y. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597.

[45]

Fu, X. G.; Liu, Y. R.; Cao, X. P.; Jin, J. T.; Liu, Q.; Zhang, J. Y. FeCo-N x embedded graphene as high performance catalysts for oxygen reduction reaction. Appl. Catal. B Environ. 2013, 130–131, 143–151.

[46]

Lim, S. H.; Li, Z. T.; Poh, C. K.; Lai, L. F.; Lin, J. Y. Highly active non-precious metal catalyst based on poly(vinylpyrrolidone)-wrapped carbon nanotubes complexed with iron-cobalt metal ions for oxygen reduction reaction. J. Power Sources 2012, 214, 15–20.

[47]

Zhao, Y.; Watanabe, K.; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528–19531.

[48]

Li, H.; Shu, X. X.; Tong, P. R.; Zhang, J. H.; An, P. F.; Lv, Z. X.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe-Ni alloy nanoclusters anchored on carbon aerogels as high-efficiency oxygen electrocatalysts in rechargeable Zn-air batteries. Small 2021, 17, 2102002.

[49]

Ran, Y.; Xu, C. F.; Ji, D. Y.; Zhao, H. P.; Li, L. Q.; Lei, Y. Research progress of transition metal compounds as bifunctional catalysts for zinc-air batteries. Nano Res. Energy 2024, 3, e9120092.

[50]

Fu, G. T.; Chen, Y. F.; Cui, Z. M.; Li, Y. T.; Zhou, W. D.; Xin, S.; Tang, Y. W.; Goodenough, J. B. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes. Nano Lett. 2016, 16, 6516–6522.

[51]

Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.

[52]

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

[53]

Yang, L.; Zeng, X. F.; Wang, D.; Cao, D. P. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 2018, 12, 277–283.

[54]

Zhong, H. X.; Wang, J.; Zhang, Q.; Meng, F. L.; Bao, D.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Yan, J. M.; Zhang, X. B. In situ coupling FeM (M = Ni, Co) with nitrogen-doped porous carbon toward highly efficient trifunctional electrocatalyst for overall water splitting and rechargeable Zn-air battery. Adv. Sustain. Syst. 2017, 1, 1700020.

[55]

Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698.

[56]

Tang, C.; Wang, B.; Wang, H. F.; Zhang, Q. Defect engineering toward atomic Co-N x -C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 2017, 29, 1703185.

[57]

Yu, M. H.; Wang, Z. K.; Hou, C.; Wang, Z. L.; Liang, C. L.; Zhao, C. Y.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868.

[58]

Li, B. Q.; Zhang, S. Y.; Wang, B.; Xia, Z. J.; Tang, C.; Zhang, Q. A porphyrin covalent organic framework cathode for flexible Zn-air batteries. Energy Environ. Sci. 2018, 11, 1723–1729.

[59]

Yao, Y.; Wu, J. X.; Feng, Q. X.; Zeng, K.; Wan, J.; Zhang, J. C.; Mao, B. Y.; Hu, K.; Chen, L. M.; Zhang, H. et al. Spontaneous internal electric field in heterojunction boosts bifunctional oxygen electrocatalysts for zinc-air batteries: Theory, experiment, and application. Small 2023, 19, 2302015.

[60]

Zhang, Y. Y.; Sun, H. H.; Qiu, Y. F.; Ji, X. Y.; Ma, T. G.; Gao, F.; Ma, Z.; Zhang, B. X.; Hu, P. G. Multiwall carbon nanotube encapsulated Co grown on vertically oriented graphene modified carbon cloth as bifunctional electrocatalysts for solid-state Zn-air battery. Carbon 2019, 144, 370–381.

[61]

Tian, Y. H.; Xu, L.; Qian, J. C.; Bao, J.; Yan, C.; Li, H. N.; Li, H. M.; Zhang, S. Q. Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinc-air batteries. Carbon 2019, 146, 763–771.

[62]

Zhang, Y. W.; Zhang, X. F.; Li, Y. T.; Wang, J.; Kawi, S.; Zhong, Q. FeCo alloy/N, S co-doped carbon aerogel derived from directional-casting cellulose nanofibers for rechargeable liquid flow and flexible Zn-air batteries. Nano Res. 2023, 16, 6870–6880.

[63]

Ye, C. L.; Zheng, M.; Li, Z. M.; Fan, Q. K.; Ma, H. Q.; Fu, X. Z.; Wang, D. S.; Wang, J.; Li, Y. D. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202213366.

[64]

Zhong, Y. T.; Pan, Z. H.; Wang, X. S.; Yang, J.; Qiu, Y. C.; Xu, S. Y.; Lu, Y. T.; Huang, Q. M.; Li, W. S. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci.(Weinh.) 2019, 6, 1802243.

[65]

Du, C.; Gao, Y. J.; Wang, J. G.; Chen, W. A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn-air batteries. J. Mater. Chem. A 2020, 8, 9981–9990.

[66]

Zhang, J.; Fu, J.; Song, X. P.; Jiang, G. P.; Zarrin, H.; Xu, P.; Li, K. C.; Yu, A. P.; Chen, Z. W. Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air batteries. Adv. Energy Mater. 2016, 6, 1600476.

[67]

Sumboja, A.; Lübke, M.; Wang, Y.; An, T.; Zong, Y.; Liu, Z. L. All-solid-state, foldable, and rechargeable Zn-air batteries based on manganese oxide grown on graphene-coated carbon cloth air cathode. Adv. Energy Mater. 2017, 7, 1700927.

[68]

Chen, Z. Y.; Wang, Q. C.; Zhang, X. B.; Lei, Y. P.; Hu, W.; Luo, Y.; Wang, Y. B. N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries. Sci. Bull. 2018, 63, 548–555.

Nano Research Energy
Article number: e9120122
Cite this article:
Qin S, Li K, Cao M, et al. Fe-Co-Ni ternary single-atom electrocatalyst and stable quasi-solid-electrolyte enabling high-efficiency zinc-air batteries. Nano Research Energy, 2024, 3: e9120122. https://doi.org/10.26599/NRE.2024.9120122

1540

Views

430

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 19 February 2024
Revised: 22 April 2024
Accepted: 25 April 2024
Published: 17 May 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return