AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption

Yang Li1,2,§Panpan Liu1,2,§Peicheng Li3Yuhao Feng1,2Yan Gao4Xuemei Diao1,2Xiao Chen1( )Ge Wang4( )
Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
School of Environment, Beijing Normal University, Beijing 100875, China
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

§ Yang Li and Panpan Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Neural network-like multifunctional composite PCMs integrating thermal management, solar-thermal conversion and microwave absorption were designed for electronic devices by bionic strategy.

Abstract

In response to the rapid development of highly integrated multifunctional electronic devices, developing advanced multifunctional composite phase change materials (PCMs) that integrate thermal management, solar-thermal conversion and microwave absorption has become increasingly essential. Herein, we propose a bionical strategy to design neural network-like (carbon nanofiber) CNF@Co/C aerogels by growing ZIF-67 in situ on bacterial cellulose (BC) and subsequent calcination strategies. After the encapsulation of thermal storage unit (paraffin wax, PW), the obtained multifunctional composite PCMs (PW-CNF@Co/C aerogel) are composed of “soma” (Co/C polyhedra), “axon” (porous CNF) and thermal storage unit (PW). Importantly, the composite PCMs show a high solar-thermal conversion efficiency of 95.27% benefiting from the synergism of “soma” with strong local surface plasmon resonance (LSPR) effect and “axon” with enhanced photon transmission path. More attractively, the composite PCMs also display good microwave absorption capacity with a minimum reflection loss (RL) of -26.8 dB at 10.91 GHz owing to the synergy of magnetic and dielectric components along with abundant polarization and multiple reflections. Our developed functionally integrated composite PCMs provide a prospective application of highly integrated and miniaturized electronic devices in complex and changeable outdoor environments.

Electronic Supplementary Material

Download File(s)
0120_ESM.pdf (943.1 KB)

References

[1]

Wang, G.; Tang, Z. D.; Gao, Y.; Liu, P. P.; Li, Y.; Li, A.; Chen, X. Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 2023, 123, 6953–7024.

[2]

Yuan, K. J.; Shi, J. M.; Aftab, W.; Qin, M. L.; Usman, A.; Zhou, F.; Lv, Y.; Gao, S.; Zou, R. Q. Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv. Funct. Mater. 2020, 30, 1904228.

[3]

Chen, Y. F.; Gao, Z. Q.; Zhang, F. J.; Wen, Z.; Sun, X. H. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.

[4]

Lin, Y.; Kang, Q.; Liu, Y. J.; Zhu, Y. K.; Jiang, P. K.; Mai, Y. W.; Huang, X. Y. Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 2023, 15, 31.

[5]
Cai, W. J.; Jiang, J. G.; Zhang, Z. D.; Liu, Z. X.; Zhang, L. J.; Long, Z. K.; Bi, K. Carbon nanofibers embedded with Fe-Co alloy nanoparticles via electrospinning as lightweight high-performance electromagnetic wave absorbers. Rare Met., in press, DOI: 10.1007/s12598-023-02592-7.
[6]

Liu, Y.; Zheng, R. W.; Li, J. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renew. Sustain. Energy Rev. 2022, 168, 112783.

[7]

Liu, P. P.; Chen, X.; Li, Y.; Cheng, P.; Tang, Z. D.; Lv, J. J.; Aftab, W.; Wang, G. Aerogels meet phase change materials: Fundamentals, advances, and beyond. ACS Nano 2022, 16, 15586–15626.

[8]

Chen, C.; Yu, H. T.; Lai, T.; Guo, J.; Qin, M. M.; Qu, Z. G.; Feng, Y. Y.; Feng, W. Flexible and elastic thermal regulator for multimode intelligent temperature control. SusMat 2023, 3, 843–858.

[9]

Jing, Y. G.; Zhao, Z. C.; Cao, X. L.; Sun, Q. R.; Yuan, Y. P.; Li, T. X. Ultraflexible, cost-effective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management. Nat. Commun. 2023, 14, 8060.

[10]

Hu, Z. C.; Zou, Y. J.; Xiang, C. L.; Sun, L. X.; Xu, F.; Jiang, M. H.; Yu, S. S. Stabilized multifunctional phase change materials based on carbonized Cu-coated melamine foam/reduced graphene oxide framework for multiple energy conversion and storage. Carbon Energy 2022, 4, 1214–1227.

[11]

Li, T.; Wu, M.; Wu, S.; Xiang, S.; Xu, J.; Chao, J.; Yan, T.; Deng, T.; Wang, R. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage. Nano Energy 2021, 89, 106338.

[12]

Bai, Z. Y.; Wang, P. F.; Xu, J. X.; Wang, R. Z.; Li, T. X. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems. Sci. Bull. 2024, 69, 671–687.

[13]

Liu, Y. S.; Yang, H. Y.; Wang, Y.; Ma, C. H.; Luo, S.; Wu, Z. W.; Zhang, Z. S.; Li, W.; Liu, S. X. Fluorescent thermochromic wood-based composite phase change materials based on aggregation-induced emission carbon dots for visual solar-thermal energy conversion and storage. Chem. Eng. J. 2021, 424, 130426.

[14]

Fang, B.; Xing, Z. P.; Sun, D. D.; Li, Z. Z.; Zhou, W. Hollow semiconductor photocatalysts for solar energy conversion. Adv. Powder Mater. 2022, 1, 100021.

[15]

Wu, X. Y.; Tu, T. X.; Dai, Y.; Tang, P. P.; Zhang, Y.; Deng, Z. M.; Li, L. L.; Zhang, H. B.; Yu, Z. Z. Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced Thermochromism. Nano-Micro Lett. 2021, 13, 148.

[16]

Wang, X. L.; Zhang, G. X.; Yin, W.; Zheng, S. S.; Kong, Q. Q.; Tian, J. Q.; Pang, H. Metal-organic framework-derived phosphide nanomaterials for electrochemical applications. Carbon Energy 2022, 4, 246–281.

[17]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, 9120009.

[18]

Xu, Y. Y.; Xue, H. R.; Li, X. J.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2023, 2, e9120052.

[19]

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

[20]

Zhang, X.; Xu, J.; Liu, X. Y.; Zhang, S.; Yuan, H. R.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon 2019, 155, 233–242.

[21]

Wang, X. Y.; Fei, Y.; Zhao, W. X.; Sun, Y. J.; Dong, F. Tailoring unique neural-network-type carbon nanofibers inserted in CoP/NC polyhedra for robust hydrogen evolution reaction. Nanoscale 2021, 13, 14705–14712.

[22]

Fei, Y.; Liang, M.; Zhou, T.; Chen, Y.; Zou, H. W. Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon 2020, 167, 575–584.

[23]

Luo, Y.; Xie, Y. H.; Jiang, H.; Chen, Y.; Zhang, L.; Sheng, X. X.; Xie, D. L.; Wu, H.; Mei, Y. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 2021, 420, 130466.

[24]

Peng, M. W.; Wen, Z.; Xie, L. J.; Cheng, J.; Jia, Z.; Shi, D. L.; Zeng, H. J.; Zhao, B.; Liang, Z. Q.; Li, T. et al. 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience. Adv. Mater. 2019, 31, 1902930.

[25]

Lu, Y.; Xiao, X. D.; Fu, J.; Huan, C. M.; Qi, S.; Zhan, Y. J.; Zhu, Y. Q.; Xu, G. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532–539.

[26]

Zhang, X. Z.; Shang, C. Q.; Akinoglu, E. M.; Wang, X.; Zhou, G. F. Constructing Co3S4 nanosheets coating N-doped carbon nanofibers as freestanding sulfur host for high-performance lithium-sulfur batteries. Adv. Sci. 2020, 7, 2002037.

[27]

Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

[28]

Yang, J.; Qi, G. Q.; Bao, R. Y.; Yi, K. Y.; Li, M. L.; Peng, L.; Cai, Z.; Yang, M. B.; Wei, D. C.; Yang, W. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater. 2018, 13, 88–95.

[29]

Li, X. R.; Le, Z. Y.; Chen, X. L.; Li, Z. Q.; Wang, W. C.; Liu, X. Y.; Wu, A.; Xu, P. C.; Zhang, D. Q. Graphene oxide enhanced amine-functionalized titanium metal organic framework for visible-light-driven photocatalytic oxidation of gaseous pollutants. Appl. Catal. B Environ. 2018, 236, 501–508.

[30]

Gao, Y.; Tang, Z. D.; Chen, X.; Yan, J. M.; Jiang, Y.; Xu, J. H.; Tao, Z.; Wang, L.; Liu, Z. M.; Wang, G. Magnetically accelerated thermal energy storage within Fe3O4-anchored MXene-based phase change materials. Aggregate 2023, 4, e248.

[31]

Li, Y.; Li, Y. Q.; Huang, X. B.; Zheng, H. Y.; Lu, G. L.; Xi, Z. S.; Wang, G. Graphene-CoO/PEG composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity. Compos. Sci. Technol. 2020, 195, 108197.

[32]

Wang, W. T.; Umair, M. M.; Qiu, J. J.; Fan, X. Q.; Cui, Z. H.; Yao, Y. Y.; Tang, B. T. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites. Energy Convers. Manage. 2019, 196, 1299–1305.

[33]

Tang, Z. D.; Gao, Y.; Cheng, P.; Jiang, Y.; Xu, J. H.; Chen, X.; Li, A.; Wang, G. Metal-organic framework derived magnetic phase change nanocage for fast-charging solar-thermal energy conversion. Nano Energy 2022, 99, 107383.

[34]

Chen, X.; Gao, H. Y. ; Hai, G. T.; Jia, D. D.; Xing, L. W.; Chen, S. Y.; Cheng, P.; Han, M. Y.; Dong, W. J.; Wang, G. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater. 2020, 26, 129–137.

[35]

Guo, H. Y.; Jiao, W. C.; Jin, H. Z.; Yuan, Z. J.; He, X. D. Microsphere structure composite phase change material with anti-leakage, self-sensing, and photothermal conversion properties for thermal energy harvesting and multi-functional sensor. Adv. Funct. Mater. 2023, 33, 2209345.

[36]

Wu, J. J.; Wang, M. X.; Dong, L.; Shi, J.; Ohyama, M.; Kohsaka, Y.; Zhu, C. H.; Morikawa, H. A Trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management. ACS Nano 2022, 16, 12801–12812.

[37]

Li, A.; Dong, C.; Dong, W.; Yuan, F.; Gao, H.; Chen, X.; Chen, B.; Wang, G. Network structural CNTs penetrate porous carbon support for phase-change materials with enhanced electro-thermal performance. Adv. Energy Mater. 2020, 6, 1901428.

[38]

Tao, J. Q.; Xu, L. L.; Jin, H. S.; Gu, Y. S.; Zhou, J. T.; Yao, Z. J.; Tao, X. W.; Chen, P.; Wang, D. H.; Li, Z. et al. Selective coding dielectric genes based on proton tailoring to improve microwave absorption of MOFs. Adv. Powder Mater. 2023, 2, 100091.

[39]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[40]

Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D Seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

[41]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

[42]

Li, B.; Xu, J.; Xu, H. Y.; Yan, F.; Zhang, X.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption. Chem. Eng. J. 2022, 435, 134846.

[43]

Zhao, H. H.; Wang, F. Y.; Cui, L. R.; Xu, X. Z.; Han, X. J.; Du, Y. C. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review. Nano-Micro Lett. 2021, 13, 208.

[44]

Zhu, H. Z.; Li, Q.; Zheng, C. Q.; Hong, Y.; Xu, Z. Q.; Wang, H.; Shen, W. D.; Kaur, S.; Ghosh, P.; Qiu, M. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 2020, 9, 60.

[45]

Wu, C. M.; Zeng, L. J.; Chang, G. J.; Zhou, Y.; Yan, K.; Xie, L.; Xue, B.; Zheng, Q. Composite phase change materials embedded into cellulose/polyacrylamide/graphene nanosheets/silver nanowire hybrid aerogels simultaneously with effective thermal management and anisotropic electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2023, 6, 31.

[46]

Wang, B. L.; Li, G. Y.; Xu, L.; Liao, J. H.; Zhang, X. T. Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano 2020, 14, 16590–16599.

[47]

Fei, L.; Zhang, Z. Y.; Tan, Y. S.; Ye, T.; Dong, D. F.; Yin, Y. J.; Li, T.; Wang, C. X. Efficient and robust molecular solar thermal fabric for personal thermal management. Adv. Mater. 2023, 35, 2209768.

[48]

Hu, X. P.; Quan, B. Q.; Zhu, C. B.; Wen, H. Y.; Sheng, M. J.; Liu, S.; Li, X. L.; Wu, H.; Lu, X.; Qu, J. P. Upgrading electricity generation and electromagnetic interference shielding efficiency via phase-change feedback and simple origami strategy. Adv. Sci. 2023, 10, 2206835.

[49]

Liu, H. Q.; Zhou, F.; Shi, X. Y.; Sun, K. Y.; Kou, Y.; Das, P.; Li, Y. G.; Zhang, X. Y.; Mateti, S.; Chen, Y. et al. A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 2023, 15, 29.

[50]

Li, L.; Liu, W. D.; Liu, Q. F.; Chen, Z. G. Multifunctional wearable thermoelectrics for personal thermal management. Adv. Funct. Mater. 2022, 32, 2200548.

Nano Research Energy
Article number: e9120120
Cite this article:
Li Y, Liu P, Li P, et al. Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption. Nano Research Energy, 2024, 3: e9120120. https://doi.org/10.26599/NRE.2024.9120120

1915

Views

439

Downloads

0

Crossref

1

Scopus

Altmetrics

Received: 16 February 2024
Revised: 17 March 2024
Accepted: 22 March 2024
Published: 03 April 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return