Journal Home > Online First

Since limited energy density and intrinsic safety issues of commercial lithium-ion batteries (LIBs), solid-state batteries (SSBs) are promising candidates for next-generation energy storage systems. However, their practical applications are restricted by interfacial issues and kinetic problems, which result in energy density decay and safety failure. This review discusses the formation mechanisms of these issues from the perspective of typical solid-state electrolytes (SSEs) and provides an overview of recent advanced anode engineering for SSBs based on representative anodes including Li metal, graphite-based, and Si-based anodes, summarizing the advantages and problems of each strategy. The development of the anode-free batteries concept is demonstrated as well. Finally, recommendations are proposed for the potential directions in future research in anode engineering for SSBs.


menu
Abstract
Full text
Outline
About this article

Recent advances in solid-state lithium batteries based on anode engineering

Show Author's information Yun Zheng1,§Yingying Shen1,§Junpo Guo2,3( )Jianding Li4Jun Wang5De Ning6Yinan Liu1Yike Huang1Yuxin Tang7Yonghong Deng5He Yan2( )Huaiyu Shao1( )
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
School of Science, Huzhou University, Huzhou 313000, China
School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
Centre for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China

§ Yun Zheng and Yingying Shen contributed equally to this work.

Abstract

Since limited energy density and intrinsic safety issues of commercial lithium-ion batteries (LIBs), solid-state batteries (SSBs) are promising candidates for next-generation energy storage systems. However, their practical applications are restricted by interfacial issues and kinetic problems, which result in energy density decay and safety failure. This review discusses the formation mechanisms of these issues from the perspective of typical solid-state electrolytes (SSEs) and provides an overview of recent advanced anode engineering for SSBs based on representative anodes including Li metal, graphite-based, and Si-based anodes, summarizing the advantages and problems of each strategy. The development of the anode-free batteries concept is demonstrated as well. Finally, recommendations are proposed for the potential directions in future research in anode engineering for SSBs.

Keywords: anode materials, solid-state batteries, Li dendrite growth, interfacial contact

References(234)

[1]

Zhao, Z. Y.; Chen, F. Q.; Han, J. W.; Kong, D. B.; Pan, S. Y.; Xiao, J.; Wu, S. C.; Yang, Q. H. Revival of microparticular silicon for superior lithium storage. Adv. Energy Mater. 2023, 13, 2300367.

[2]

Tao, W.; Wang, P.; You, Y.; Park, K.; Wang, C. Y.; Li, Y. K.; Cao, F. F.; Xin, S. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res. 2019, 12, 1739–1749.

[3]

Zhang, R.; Wang, C. Y.; Zou, P. C.; Lin, R. Q.; Ma, L.; Li, T. Y.; Hwang, I. H.; Xu, W. Q.; Sun, C. J.; Trask, S. et al. Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry. Nat. Energy 2023, 8, 695–702.

[4]

Lu, M.; Cheng, H.; Yang, Y. A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim. Acta 2008, 53, 3539–3546.

[5]

Cao, C. T.; Abate, I. I.; Sivonxay, E.; Shyam, B.; Jia, C. J.; Moritz, B.; Devereaux, T. P.; Persson, K. A.; Steinrück, H. G.; Toney, M. F. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 2019, 3, 762–781.

[6]

Liu, Q.; Hu, Y. H.; Yu, X. R.; Qin, Y. F.; Meng, T.; Hu, X. L. The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review. Nano Res. Energy 2022, 1, e9120037.

[7]

Liang, Y. L.; Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2018, 2, 1690–1706.

[8]

Wu, C. S.; Lou, J. T.; Zhang, J.; Chen, Z. Y.; Kakar, A.; Emley, B.; Ai, Q.; Guo, H.; Liang, Y. L.; Lou, J. et al. Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy 2021, 87, 106081.

[9]

Zhang, D. M.; Meng, X. L.; Hou, W. Y.; Hu, W. H.; Mo, J. S.; Yang, T. R.; Zhang, W. D.; Fan, Q. X.; Liu, L. H.; Jiang, B. et al. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. Nano Res. Energy 2023, 2, e9120050.

[10]

Zheng, F.; Kotobuki, M.; Song, S. F.; Lai, M. O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213.

[11]

Payandeh, S.; Strauss, F.; Mazilkin, A.; Kondrakov, A.; Brezesinski, T. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Res. Energy 2022, 1, e9120016.

[12]

Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.

[13]

Xiao, Y. H.; Wang, Y.; Bo, S. H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2020, 5, 105–126.

[14]

Oh, P.; Yun, J.; Choi, J. H.; Saqib, K. S.; Embleton, T. J.; Park, S.; Lee, C.; Ali, J.; Ko, K.; Cho, J. Development of high-energy anodes for all-solid-state lithium batteries based on sulfide electrolytes. Angew. Chem., Int. Ed. 2022, 61, e202201249.

[15]

Li, J. Y.; Luo, J. Y.; Li, X.; Fu, Y. Z.; Zhu, J. H.; Zhuang, X. D. Li metal anode interface in sulfide-based all-solid-state Li batteries. EcoMat 2023, 5, e12383.

[16]

Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74–96.

[17]

Li, Z.; Fu, J. L.; Zhou, X. Y.; Gui, S. W.; Wei, L.; Yang, H.; Li, H.; Guo, X. Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 2023, 10, 2201718.

[18]

Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Stor. Mater. 2016, 5, 139–164.

[19]

Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

[20]

Boschin, A.; Johansson, P. Characterization of NaX (X: TFSI, FSI)-PEO based solid polymer electrolytes for sodium batteries. Electrochim. Acta 2015, 175, 124–133.

[21]

Yang, L. Y.; Wei, D. X.; Xu, M.; Yao, Y. F.; Chen, Q. Transferring lithium ions in nanochannels: A PEO/Li+ solid polymer electrolyte design. Angew. Chem., Int. Ed. 2014, 53, 3631–3635.

[22]

Gorecki, W.; Jeannin, M.; Belorizky, E.; Roux, C.; Armand, M. Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J. Phys.: Condens. Matter 1995, 7, 6823–6832.

[23]

Wu, N.; Chien, P. H.; Li, Y. T.; Dolocan, A.; Xu, H. H.; Xu, B. Y.; Grundish, N. S.; Jin, H. B.; Hu, Y. Y.; Goodenough, J. B. Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 2020, 142, 2497–2505.

[24]

Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

[25]

Knauth, P. Inorganic solid Li ion conductors: An overview. Solid State Ionics 2009, 180, 911–916.

[26]

Jiang, Z. Y.; Wang, S. Q.; Chen, X. Z.; Yang, W. L.; Yao, X.; Hu, X. C.; Han, Q. Y.; Wang, H. H. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 2020, 32, 1906221.

[27]

Zhao, Y. S.; Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 2012, 134, 15042–15047.

[28]

Dawson, J. A.; Attari, T. S.; Chen, H.; Emge, S. P.; Johnston, K. E.; Islam, M. S. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes. Energy Environ. Sci. 2018, 11, 2993–3002.

[29]

Liu, Y. J.; Li, C.; Li, B. J.; Song, H. C.; Cheng, Z.; Chen, M. R.; He, P.; Zhou, H. S. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries. Adv. Energy Mater. 2018, 8, 1702374.

[30]

Xu, X. X.; Wen, Z. Y.; Wu, X. W.; Yang, X. L.; Gu, Z. H. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3– x Li2O ( x=0.0–0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc. 2007, 90, 2802–2806.

[31]

Monchak, M.; Hupfer, T.; Senyshyn, A.; Boysen, H.; Chernyshov, D.; Hansen, T.; Schell, K. G.; Bucharsky, E. C.; Hoffmann, M. J.; Ehrenberg, H. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor. Inorg. Chem. 2016, 55, 2941–2945.

[32]

Hong, H. Y. P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 1978, 13, 117–124.

[33]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[34]

Sharafi, A.; Kazyak, E.; Davis, A. L.; Yu, S.; Thompson, T.; Siegel, D. J.; Dasgupta, N. P.; Sakamoto, J. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 2017, 29, 7961–7968.

[35]

Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 2019, 4, 187–196.

[36]

Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 2007, 46, 7778–7781.

[37]

Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem. 2009, 182, 2046–2052.

[38]

Tao, B. R.; Ren, C. J.; Li, H. D.; Liu, B. S.; Jia, X. B.; Dong, X. W.; Zhang, S. H.; Chang, H. X. Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2203551.

[39]

Oh, G.; Hirayama, M.; Kwon, O.; Suzuki, K.; Kanno, R. Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem. Mater. 2016, 28, 2634–2640.

[40]

Kim, K.; Park, J.; Jeong, G.; Yu, J. S.; Kim, Y. C.; Park, M. S.; Cho, W.; Kanno, R. Rational design of a composite electrode to realize a high-performance all-solid-state battery. ChemSusChem 2019, 12, 2637–2643.

[41]

Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

[42]

Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. L. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, 1901131.

[43]

Mishra, A. K.; Chaliyawala, H. A.; Patel, R.; Paneliya, S.; Vanpariya, A.; Patel, P.; Ray, A.; Pati, R.; Mukhopadhyay, I. Review-inorganic solid state electrolytes: Insights on current and future scope. J. Electrochem. Soc. 2021, 168, 080536.

[44]

Lu, P. S.; Gong, S.; Guo, F. L.; Zhu, X.; Huang, Y. L.; Wang, Y.; He, W. T.; Yang, M.; Chen, L. Q.; Li, H. et al. Amorphous bimetallic polysulfide for all-solid-state batteries with superior capacity and low-temperature tolerance. Nano Energy 2023, 118, 109029.

[45]

Kim, J.; Yoon, Y.; Eom, M.; Shin, D. Characterization of amorphous and crystalline Li2S-P2S5-P2Se5 solid electrolytes for all-solid-state lithium ion batteries. Solid State Ionics 2012, 225, 626–630.

[46]

Wang, C. H.; Liang, J. W.; Kim, J. T.; Sun, X. L. Prospects of halide-based all-solid-state batteries: From material design to practical application. Sci. Adv. 2022, 8, eadc9516.

[47]

Li, W. H.; Liang, J. W.; Li, M. S.; Adair, K. R.; Li, X. N.; Hu, Y. F.; Xiao, Q. F.; Feng, R. F.; Li, R. Y.; Zhang, L. et al. Unraveling the origin of moisture stability of halide solid-state electrolytes by in situ and operando synchrotron X-ray analytical techniques. Chem. Mater. 2020, 32, 7019–7027.

[48]

Li, X. N.; Liang, J. W.; Luo, J.; Norouzi Banis, M.; Wang, C. H.; Li, W. H.; Deng, S. X.; Yu, C.; Zhao, F. P.; Hu, Y. F. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 2019, 12, 2665–2671.

[49]

Liang, J. W.; Li, X. N.; Wang, S.; Adair, K. R.; Li, W. H.; Zhao, Y.; Wang, C. H.; Hu, Y. F.; Zhang, L.; Zhao, S. Q. et al. Site-occupation-tuned superionic Li x ScCl3+ x Halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 2020, 142, 7012–7022.

[50]

Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y. S.; Gong, S.; Sun, Q.; Mo, Y. F. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem., Int. Ed. 2019, 58, 8039–8043.

[51]

Tao, B. R.; Zhong, D. L.; Li, H. D.; Wang, G. F.; Chang, H. X. Halide solid-state electrolytes for all-solid-state batteries: Structural design, synthesis, environmental stability, interface optimization and challenges. Chem. Sci. 2023, 14, 8693–8722.

[52]

Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702.

[53]

Xia, S. X.; Wu, X. S.; Zhang, Z. C.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785.

[54]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[55]

Dirican, M.; Yan, C. Y.; Zhu, P.; Zhang, X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng.: R: Rep. 2019, 136, 27–46.

[56]

Kalnaus, S.; Dudney, N. J.; Westover, A. S.; Herbert, E.; Hackney, S. Solid-state batteries: The critical role of mechanics. Science 2023, 381, eabg5998.

[57]

Jetybayeva, A.; Aaron, D. S.; Belharouak, I.; Mench, M. M. Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries. J. Power Sources 2023, 566, 232914.

[58]

Niu, C. J.; Liu, D. Y.; Lochala, J. A.; Anderson, C. S.; Cao, X.; Gross, M. E.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 2021, 6, 723–732.

[59]

Yu, S. C.; Wang, S.; Miao, Q. S.; Hui, Z. Y.; Hyun, G.; Holoubek, J.; Yu, X. L.; Gao, J. W.; Liu, P. Composite lithium metal structure to mitigate pulverization and enable long-life batteries. Adv. Energy Mater. 2023, 13, 2302400.

[60]

Yang, S.; Yamamoto, K.; Mei, X. H.; Sakuda, A.; Uchiyama, T.; Watanabe, T.; Takami, T.; Hayashi, A.; Tatsumisago, M.; Uchimoto, Y. High rate capability from a graphite anode through surface modification with lithium iodide for all-solid-state batteries. ACS Appl. Energy Mater. 2022, 5, 667–673.

[61]

Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016, 1, 287–297.

[62]

Höltschi, L.; Borca, C. N.; Huthwelker, T.; Marone, F.; Schlepütz, C. M.; Pelé, V.; Jordy, C.; Villevieille, C.; El Kazzi, M.; Novák, P. Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochim. Acta 2021, 389, 138735.

[63]

Otoyama, M.; Kowada, H.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Operando confocal microscopy for dynamic changes of Li+ Ion conduction path in graphite electrode layers of all-solid-state batteries. J. Phys. Chem. Lett. 2020, 11, 900–904.

[64]

Kuratani, K.; Sakuda, A.; Takeuchi, T.; Kobayashi, H. Elucidation of capacity degradation for graphite in sulfide-based all-solid-state lithium batteries: A void formation mechanism. ACS Appl. Energy Mater. 2020, 3, 5472–5478.

[65]

Höltschi, L.; Jud, F.; Borca, C.; Huthwelker, T.; Villevieille, C.; Pelé, V.; Jordy, C.; El Kazzi, M.; Novák, P. Study of graphite cycling in sulfide solid electrolytes. J. Electrochem. Soc. 2020, 167, 110558.

[66]

McDowell, M. T.; Cui, Y. Single nanostructure electrochemical devices for studying electronic properties and structural changes in lithiated Si nanowires. Adv. Energy Mater. 2011, 1, 894–900.

[67]

Miyazaki, R. High-capacity anode materials for all-solid-state lithium batteries. Front. Energy Res. 2020, 8, 171.

[68]

Ping, W. W.; Yang, C. P.; Bao, Y. H.; Wang, C. W.; Xie, H.; Hitz, E.; Cheng, J.; Li, T.; Hu, L. B. A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics. Energy Stor. Mater. 2019, 21, 246–252.

[69]

Cao, D. X.; Ji, T. T.; Singh, A.; Bak, S.; Du, Y. H.; Xiao, X. H.; Xu, H. Y.; Zhu, J. E.; Zhu, H. L. Unveiling the mechanical and electrochemical evolution of nanosilicon composite anodes in sulfide-based all-solid-state batteries. Adv. Energy Mater. 2023, 13, 2203969.

[70]

Baggetto, L.; Niessen, R. A. H.; Roozeboom, F.; Notten, P. H. L. High energy density all-solid-state batteries: A challenging concept towards 3D integration. Adv. Funct. Mater. 2008, 18, 1057–1066.

[71]

Hamedi Jouybari, Y.; Berkemeier, F.; Schmitz, G. High performance all-solid-state lithium battery: Assessment of the temperature dependence of Li diffusion. J. Power Sources 2022, 517, 230709.

[72]

Kim, M.; Ahn, H.; Choi, J.; Kim, W. B. A rational design of silicon-based anode for all-solid-state lithium-ion batteries: A review. Energy Technol. 2023, 11, 2201321.

[73]

Liu, C. B.; Sun, J. C.; Zheng, P. L.; Jiang, L.; Liu, H. Y.; Chai, J. C.; Liu, Q. Y.; Liu, Z. H.; Zheng, Y.; Rui, X. H. Recent advances of non-lithium metal anode materials for solid-state lithium-ion batteries. J. Mater. Chem. A 2022, 10, 16761–16778.

[74]

Tan, D. H. S.; Chen, Y. T.; Yang, H. D.; Bao, W.; Sreenarayanan, B.; Doux, J. M.; Li, W. K.; Lu, B. Y.; Ham, S. Y.; Sayahpour, B. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499.

[75]

Yan, W. L.; Mu, Z. L.; Wang, Z. X.; Huang, Y. L.; Wu, D. X.; Lu, P. S.; Lu, J. Z.; Xu, J. R.; Wu, Y. J.; Ma, T. H. et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy 2023, 8, 800–813.

[76]

Lee, H. J.; Kim, H. R.; Lee, K. J.; Lee, Y.; Kim, H. K.; Yoon, W. Y.; Ahn, J. P. Crack healing mechanism by application of stack pressure to the carbon-based composite anode of an all-solid-state battery. ACS Appl. Energy Mater. 2022, 5, 5227–5235.

[77]

Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X. F.; Wu, E. A.; Jo, C.; Yang, H. D.; Meng, Y. S. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 2020, 10, 1903253.

[78]

Lee, C.; Kim, J. Y.; Bae, K. Y.; Kim, T.; Jung, S. J.; Son, S.; Lee, H. W. Enhancing electrochemomechanics: How stack pressure regulation affects all-solid-state batteries. Energy Stor. Mater. 2024, 66, 103196.

[79]

Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

[80]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 Years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[81]

Liu, J.; Yuan, H.; Liu, H.; Zhao, C. Z.; Lu, Y.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Unlocking the failure mechanism of solid state lithium metal batteries. Adv. Energy Mater. 2022, 12, 2100748.

[82]

Liu, H.; Wang, E. R.; Zhang, Q.; Ren, Y. B.; Guo, X. W.; Wang, L.; Li, G. Y.; Yu, H. J. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Stor. Mater. 2019, 17, 253–259.

[83]

Liu, Q. R.; Chen, Q. Q.; Tang, Y. B.; Cheng, H. M. Interfacial modification, electrode/solid-electrolyte engineering, and monolithic construction of solid-state batteries. Electrochem. Energy Rev. 2023, 6, 15.

[84]

Chi, S. S.; Liu, Y. C.; Zhao, N.; Guo, X. X.; Nan, C. W.; Fan, L. Z. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Stor. Mater. 2019, 17, 309–316.

[85]

Zhang, Y.; Shi, Y.; Hu, X. C.; Wang, W. P.; Wen, R.; Xin, S.; Guo, Y. G. A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries. Adv. Energy Mater. 2020, 10, 1903325.

[86]

Huang, S. B.; Yang, H.; Hu, J. K.; Liu, Y. C.; Wang, K. X.; Peng, H. L.; Zhang, H.; Fan, L. Z. Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries. Small 2019, 15, 1904216.

[87]

Wang, K. M.; Chen, Y. F.; Zhang, L.; Zhang, Q. H.; Cheng, Z.; Su, Y. N.; Shen, F.; Han, X. G. One step hot-pressing method for hybrid Li metal anode of solid-state lithium metal batteries. J. Mater. Sci. Technol. 2023, 153, 32–40.

[88]

Paolella, A.; Liu, X.; Daali, A.; Xu, W. Q.; Hwang, I.; Savoie, S.; Girard, G.; Nita, A. G.; Perea, A.; Demers, H. et al. Enabling high-performance NASICON-based solid-state lithium metal batteries towards practical conditions. Adv. Funct. Mater. 2021, 31, 2102765.

[89]

Schälicke, G.; Landwehr, I.; Dinter, A.; Pettinger, K. H.; Haselrieder, W.; Kwade, A. Solvent-free manufacturing of electrodes for lithium-ion batteries via electrostatic coating. Energy Technol. 2020, 8, 1900309.

[90]

Jiao, K. J.; Liu, S. J.; Ma, Y. Y.; Chen, S.; Wei, L. Y.; Yan, J. H. Long-term cycling quasi-solid-state lithium batteries enabled by 3D nanofibrous TiO2– x @Li anodes and in-situ polymerized gel-electrolytes. Chem. Eng. J. 2023, 464, 142627.

[91]

Huo, H. Y.; Chen, Y.; Li, R. Y.; Zhao, N.; Luo, J.; Pereira da Silva, J. G.; Mücke, R.; Kaghazchi, P.; Guo, X. X.; Sun, X. L. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 2020, 13, 127–134.

[92]

Liu, M.; Zhang, S. N. ; van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.

[93]

Zhao, W. J.; Yi, J.; He, P.; Zhou, H. S. Solid-state electrolytes for lithium-ion batteries: Fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2019, 2, 574–605.

[94]

Wang, J. L.; Yan, X. F.; Zhang, Z.; Guo, R. N.; Ying, H. J.; Han, G. R.; Han, W. Q. Rational design of an electron/ion dual-conductive cathode framework for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 41323–41332.

[95]

Yang, C. P.; Xie, H.; Ping, W. W.; Fu, K.; Liu, B. Y.; Rao, J. C.; Dai, J. Q.; Wang, C. W.; Pastel, G.; Hu, L. B. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 2019, 31, 1804815.

[96]

Xu, S. M.; McOwen, D. W.; Wang, C. W.; Zhang, L.; Luo, W.; Chen, C. J.; Li, Y. J.; Gong, Y. H.; Dai, J. Q.; Kuang, Y. D. et al. Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode. Nano Lett. 2018, 18, 3926–3933.

[97]

Yang, C. P.; Zhang, L.; Liu, B. Y.; Xu, S. M.; Hamann, T.; McOwen, D.; Dai, J. Q.; Luo, W.; Gong, Y. H.; Wachsman, E. D. Et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. USA 2018, 115, 3770–3775.

[98]

Duan, H.; Wang, C. H.; Yu, R. Z.; Li, W. H.; Fu, J. M.; Yang, X. F.; Lin, X. T.; Zheng, M.; Li, X. N.; Deng, S. X. et al. In situ constructed 3D lithium anodes for long-cycling all-solid-state batteries. Adv. Energy Mater. 2023, 13, 2300815.

[99]

Yang, Y. F.; Chen, H.; Wan, J. Y.; Xu, R.; Zhang, P.; Zhang, W. B.; Oyakhire, S. T.; Kim, S. C.; Boyle, D. T.; Peng, Y. C. et al. An interdigitated Li-solid polymer electrolyte framework for interfacial stable all-solid-state batteries. Adv. Energy Mater. 2022, 12, 2201160.

[100]

Liu, Y. Y.; Lin, D. C.; Jin, Y.; Liu, K.; Tao, X. Y.; Zhang, Q. H.; Zhang, X. K.; Cui, Y. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Sci. Adv. 2017, 3, eaao0713.

[101]

Tong, Z. Z.; Wang, S. B.; Liao, Y. K.; Hu, S. F.; Liu, R. S. Interface between solid-state electrolytes and Li-metal anodes: Issues, materials, and processing routes. ACS Appl. Mater. Interfaces 2020, 12, 47181–47196.

[102]

Chae, O. B.; Lucht, B. L. Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes. Adv. Energy Mater. 2023, 13, 2203791.

[103]

Su, J.; Pasta, M.; Ning, Z. Y.; Gao, X. W.; Bruce, P. G.; Grovenor, C. R. M. Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy Environ. Sci. 2022, 15, 3805–3814.

[104]

Shen, Z. Y.; Zhang, W. D.; Zhu, G. N.; Huang, Y. Q.; Feng, Q.; Lu, Y. Y. Design principles of the anode-electrolyte interface for all solid-state lithium metal batteries. Small Methods 2020, 4, 1900592.

[105]

An, S. J.; Li, J. L.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52–76.

[106]

Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes - a critical review. Energy Environ. Sci. 2018, 11, 243–257.

[107]

Suo, L. M.; Oh, D.; Lin, Y. X.; Zhuo, Z. Q.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z. Q.; Kim, H. C. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 2017, 139, 18670–18680.

[108]

Wang, X. J.; Chen, K.; Wang, G.; Liu, X. J.; Wang, H. Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS Nano 2017, 11, 11602–11616.

[109]

Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.

[110]

Wu, D. X.; He, J.; Liu, J. D.; Wu, M. G.; Qi, S. H.; Wang, H. P.; Huang, J. D.; Li, F.; Tang, D. L.; Ma, J. M. Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 2022, 12, 2200337.

[111]

Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

[112]

Wan, H. L.; Liu, S. F.; Deng, T.; Xu, J. J.; Zhang, J. X.; He, X. Z.; Ji, X.; Yao, X. Y.; Wang, C. S. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett. 2021, 6, 862–868.

[113]

Chen, Y.; Li, W. W.; Sun, C. Z.; Jin, J.; Wang, Q.; Chen, X. D.; Zha, W. P.; Wen, Z. Y. Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries. Adv. Energy Mater. 2021, 11, 2002545.

[114]

Wang, J. C.; Chen, L. Q.; Li, H.; Wu, F. Anode interfacial issues in solid-state Li batteries: Mechanistic understanding and mitigating strategies. Energy Environ. Mater. 2023, 6, e12613.

[115]

Feng, X. Y.; Fang, H.; Wu, N.; Liu, P. C.; Jena, P.; Nanda, J.; Mitlin, D. Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule 2022, 6, 543–587.

[116]

Yang, C. P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater. 2017, 29, 1701169.

[117]

Su, Y. B.; Ye, L. H.; Fitzhugh, W.; Wang, Y. C.; Gil-González, E.; Kim, I.; Li, X. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci. 2020, 13, 908–916.

[118]

Wang, M. Q.; Peng, Z.; Luo, W. W.; Zhang, Q.; Li, Z. D.; Zhu, Y.; Lin, H.; Cai, L. T.; Yao, X. Y.; Ouyang, C. Y. et al. Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide. Adv. Sci. 2020, 7, 2000237.

[119]

Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, 2002741.

[120]

Shi, Y. H.; Cai, Y. F.; Zhao, J. Q.; Wu, T.; Xue, X. Q.; Lin, T. S.; Lin, P. P.; Wang, C.; Peng, H. 3D lithiophilic framework fixed on the surface of LLZTO solid electrolyte shaping the contact between Li metal and ceramic. Chem. Eng. J. 2023, 469, 144090.

[121]

Oyakhire, S. T.; Huang, W.; Wang, H. S.; Boyle, D. T.; Schneider, J. R. ; de Paula, C.; Wu, Y. C.; Cui, Y.; Bent, S. F. Revealing and elucidating ALD-derived control of lithium plating microstructure. Adv. Energy Mater. 2020, 10, 2002736.

[122]

Sun, Y. P.; Zhao, C. T.; Adair, K. R.; Zhao, Y.; Goncharova, L. V.; Liang, J. N.; Wang, C. H.; Li, J. J.; Li, R. Y.; Cai, M. et al. Regulated lithium plating and stripping by a nano-scale gradient inorganic-organic coating for stable lithium metal anodes. Energy Environ. Sci. 2021, 14, 4085–4094.

[123]

Duan, C.; Cheng, Z.; Li, W.; Li, F.; Liu, H.; Yang, J. G.; Hou, G. J.; He, P.; Zhou, H. S. Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-vapor deposition. Energy Environ. Sci. 2022, 15, 3236–3245.

[124]

Wang, C. H.; Zhao, Y.; Sun, Q.; Li, X.; Liu, Y. L.; Liang, J. W.; Li, X. N.; Lin, X. T.; Li, R. Y.; Adair, K. R. et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy 2018, 53, 168–174.

[125]

Zhu, J. Q.; Su, H.; Han, X.; Zhang, D. Z.; Li, J. R.; Zhong, Y.; Xia, X. H.; Wang, X. L.; Tu, J. P. The restrained Li/gel polymer electrolyte interface deterioration enabled by the synergetic effect of ultra-lithiophilic interphase and interfacial coupling skeleton. Adv. Funct. Mater. 2023, 33, 2302229.

[126]

Chen, Y.; Qian, J.; Hu, X.; Ma, Y. T.; Li, Y.; Xue, T. Y.; Yu, T. T.; Li, L.; Wu, F.; Chen, R. J. Constructing a uniform and stable mixed conductive layer to stabilize the solid-state electrolyte/Li interface by cold bonding at mild conditions. Adv. Mater. 2023, 35, 2212096.

[127]

Sun, S. Y.; Wang, J. N.; Zong, S. R.; Ma, Q. Y.; Li, H. X.; Chen, X.; Cui, X. M.; Yang, K.; Cai, Q.; Zhao, Y. L. et al. Integration plasma strategy controlled interfacial chemistry regulation enabling planar lithium growth in solid-state lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2304929.

[128]
Wang, Z. Y.; Xia, J. L.; Ji, X.; Liu, Y. J.; Zhang, J. X.; He, X. Z.; Zhang, W. R.; Wan, H. L.; Wang, C. S. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy, in press, DOI: 10.1038/s41560-023-01426-1.
DOI
[129]
Wan, H. L.; Zhang, B.; Liu, S. F.; Wang, Z. Y.; Xu, J. J.; Wang, C. S. Interface design for high-performance all-solid-state lithium batteries. Adv. Energy Mater., in press, DOI: 10.1002/aenm.202303046.
DOI
[130]

Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 2018, 30, 1804461.

[131]

Fang, Y. J.; Zhang, S. L.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 2021, 7, eabg3626.

[132]

Guo, F. H.; Wu, C.; Chen, H.; Zhong, F. P.; Ai, X. P.; Yang, H. X.; Qian, J. F. Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. Energy Stor. Mater. 2020, 24, 635–643.

[133]

Guo, J. C.; Tan, S. J.; Zhang, C. H.; Wang, W. P.; Zhao, Y.; Wang, F. Y.; Zhang, X. S.; Wen, R.; Zhang, Y.; Fan, M. et al. A Self-reconfigured, dual-layered artificial interphase toward high-current-density quasi-solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2300350.

[134]

Lewis, J. A.; Cavallaro, K. A.; Liu, Y.; McDowell, M. T. The promise of alloy anodes for solid-state batteries. Joule 2022, 6, 1418–1430.

[135]

He, L. C.; Sun, Q. M.; Lu, L.; Adams, S. Understanding and preventing dendrite growth in lithium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 34320–34331.

[136]

Wu, L. N.; Peng, J.; Han, F. M.; Sun, Y. K.; Sheng, T.; Li, Y. Y.; Zhou, Y.; Huang, L.; Li, J. T.; Sun, S. G. Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition. J. Mater. Chem. A 2020, 8, 4300–4307.

[137]

Wang, R.; Yu, J.; Tang, J. T.; Meng, R. J.; Nazar, L. F.; Huang, L. Z.; Liang, X. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Stor. Mater. 2020, 32, 178–184.

[138]

Santhosha, A. L.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P. The indium-lithium electrode in solid-state lithium-ion batteries: Phase formation, redox potentials, and interface stability. Batteries Supercaps 2019, 2, 524–529.

[139]

Lu, Y.; Huang, X.; Ruan, Y. D.; Wang, Q. S.; Kun, R.; Yang, J. H.; Wen, Z. Y. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities. J. Mater. Chem. A 2018, 6, 18853–18858.

[140]

Wan, Z. P.; Shi, K.; Huang, Y. F.; Yang, L.; Yun, Q. B.; Chen, L. K.; Ren, F. Z.; Kang, F. Y.; He, Y. B. Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. J. Power Sources 2021, 505, 230062.

[141]

Fan, Z. J.; Ding, B.; Li, Z. W.; Hu, B.; Xu, C. Y.; Xu, C.; Dou, H.; Zhang, X. G. Long-cycling all-solid-state batteries achieved by 2D interface between prelithiated aluminum foil anode and sulfide electrolyte. Small 2022, 18, 2204037.

[142]

Zhu, J. Q.; Cai, D.; Li, J. R.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Stor. Mater. 2022, 49, 546–554.

[143]

Mayo, M.; Morris, A. J. Structure prediction of Li-Sn and Li-Sb intermetallics for lithium-ion batteries anodes. Chem. Mater. 2017, 29, 5787–5795.

[144]

Terlicka, S.; Dębski, A.; Fima, P. Enthalpy of formation of Li2Sb and Li3Sb and mixing enthalpy of liquid Li-Sb alloys. J. Alloys Compd. 2016, 673, 272–277.

[145]

Huang, Y. L.; Shao, B. W.; Han, F. D. Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. J. Mater. Chem. A 2022, 10, 12350–12358.

[146]

Zhang, Y. Y.; Wang, H. Y.; Yang, Y. Q.; Xie, J.; Deng, Q. J.; Zou, W.; Zhou, A. J.; Li, J. Z. Polyacrylonitrile fibers network reinforced polymer electrolyte with Li-Sn alloy layer protected Li anode toward ultra-long cycle lifespan for room-temperature solid-state batteries. Chem. Eng. J. 2023, 461, 141993.

[147]

Hänsel, C.; Singh, B.; Kiwic, D.; Canepa, P.; Kundu, D. Favorable interfacial chemomechanics enables stable cycling of high-Li-Content Li-In/Sn anodes in sulfide electrolyte-based solid-state batteries. Chem. Mater. 2021, 33, 6029–6040.

[148]

Wang, C. W.; Xie, H.; Zhang, L.; Gong, Y. H.; Pastel, G.; Dai, J. Q.; Liu, B. Y.; Wachsman, E. D.; Hu, L. B. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv. Energy Mater. 2018, 8, 1701963.

[149]

Lu, Y.; Zhao, C. Z.; Yuan, H.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies. Adv. Funct. Mater. 2021, 31, 2009925.

[150]

Kinzer, B.; Davis, A. L.; Krauskopf, T.; Hartmann, H.; LePage, W. S.; Kazyak, E.; Janek, J.; Dasgupta, N. P.; Sakamoto, J. Operando analysis of the molten LiLLZO interface: Understanding how the physical properties of Li affect the critical current density. Matter 2021, 4, 1947–1961.

[151]

Sarkar, S.; Thangadurai, V. Critical current densities for high-performance all-solid-state Li-metal batteries: Fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Lett. 2022, 7, 1492–1527.

[152]

Wang, C. Y.; Yang, C. P.; Du, Y. H.; Guo, Z. P.; Ye, H. Spherical lithium deposition enables high Li-utilization rate, low negative/positive ratio, and high energy density in lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2303427.

[153]

Kim, J. Y.; Park, J.; Lee, M. J.; Kang, S. H.; Shin, D. O.; Oh, J.; Kim, J.; Kim, K. M.; Lee, Y. G.; Lee, Y. M. Diffusion-dependent graphite electrode for all-solid-state batteries with extremely high energy density. ACS Energy Lett. 2020, 5, 2995–3004.

[154]

Xing, X.; Li, Y. J.; Wang, S.; Liu, H. D.; Wu, Z. H.; Yu, S. C.; Holoubek, J.; Zhou, H. Y.; Liu, P. Graphite-based lithium-free 3D hybrid anodes for high energy density all-solid-state batteries. ACS Energy Lett. 2021, 6, 1831–1838.

[155]

Kazyak, E.; Chen, K. H.; Chen, Y. X.; Cho, T. H.; Dasgupta, N. P. Enabling 4C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte. Adv. Energy Mater. 2022, 12, 2102618.

[156]

Lyu, T.; Luo, F. Q.; Wang, D. C.; Bu, L. Z.; Tao, L.; Zheng, Z. F. Carbon/lithium composite anode for advanced lithium metal batteries: Design, progress, in situ characterization, and perspectives. Adv. Energy Mater. 2022, 12, 2201493.

[157]

Zhao, L.; Ding, B. C.; Qin, X. Y.; Wang, Z. J.; Lv, W.; He, Y. B.; Yang, Q. H.; Kang, F. Y. Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 2022, 34, 2106704.

[158]

Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J. G.; Choi, N. S.; Jung, Y. S. Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. J. Mater. Chem. A 2017, 5, 20771–20779.

[159]

Kim, D. H.; Oh, D. Y.; Park, K. H.; Choi, Y. E.; Nam, Y. J.; Lee, H. A.; Lee, S. M.; Jung, Y. S. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 2017, 17, 3013–3020.

[160]

Zhang, Z. H.; Wang, J.; Jin, Y. M.; Liu, G. Z.; Yang, S. J.; Yao, X. Y. Insights on lithium plating behavior in graphite-based all-solid-state lithium-ion batteries. Energy Stor. Mater. 2023, 54, 845–853.

[161]

Xiao, Y. R.; Turcheniuk, K.; Narla, A.; Song, A. Y.; Ren, X. L.; Magasinski, A.; Jain, A.; Huang, S.; Lee, H.; Yushin, G. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 2021, 20, 984–990.

[162]

Oh, J.; Shin, D. O.; Lee, M. J.; Lee, Y. M.; Lee, Y. G.; Hong, S.; Kim, K. M. Enhancing performance of all-solid-state battery by establishment of interconnected Li7La3Zr2O12 network in graphite composite anode. J. Energy Storage 2023, 68, 107761.

[163]

Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.

[164]

Duan, J.; Zheng, Y. H.; Luo, W.; Wu, W. Y.; Wang, T. R.; Xie, Y.; Li, S.; Li, J.; Huang, Y. H. Is graphite lithiophobic or lithiophilic. Natl. Sci. Rev. 2020, 7, 1208–1217.

[165]

Pei, K.; Kim, S. Y.; Li, J. Electrochemically stable lithium-ion and electron insulators (LEIs) for solid-state batteries. Nano Res. 2022, 15, 1213–1220.

[166]

Duan, J.; Wu, W. Y.; Nolan, A. M.; Wang, T. R.; Wen, J. Y.; Hu, C. C.; Mo, Y. F.; Luo, W.; Huang, Y. H. Lithium-graphite paste: An interface compatible anode for solid-state batteries. Adv. Mater. 2019, 31, 1807243.

[167]

Palaniselvam, T.; Goktas, M.; Anothumakkool, B.; Sun, Y. N.; Schmuch, R.; Zhao, L.; Han, B. H.; Winter, M.; Adelhelm, P. Sodium storage and electrode dynamics of tin-carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv. Funct. Mater. 2019, 29, 1900790.

[168]

Palaniselvam, T.; Babu, B.; Moon, H.; Hasa, I.; Santhosha, A. L.; Goktas, M.; Sun, Y. N.; Zhao, L.; Han, B. H.; Passerini, S. et al. Tin-containing graphite for sodium-ion batteries and hybrid capacitors. Batteries Supercaps 2021, 4, 173–182.

[169]

Palaniselvam, T.; Freytag, A. I.; Moon, H.; Janßen, K. A.; Passerini, S.; Adelhelm, P. Tin-graphite composite as a high-capacity anode for all-solid-state Li-ion batteries. J. Phys. Chem. C 2022, 126, 13043–13052.

[170]

Maresca, G.; Tsurumaki, A.; Suzuki, N.; Yoshida, K.; Panero, S.; Aihara, Y.; Navarra, M. A. Sn/C composite anodes for bulk-type all-solid-state batteries. Electrochim. Acta 2021, 395, 139104.

[171]

Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y. Z.; Mo, Y. F.; Jung, Y. S. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 2018, 8, 1800035.

[172]

Kim, J. Y.; Park, J.; Kang, S. H.; Jung, S.; Shin, D. O.; Lee, M. J.; Oh, J.; Kim, K. M.; Zausch, J.; Lee, Y. G. et al. Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries. Energy Stor. Mater. 2021, 41, 289–296.

[173]

Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.

[174]

Kim, J. Y.; Jung, S.; Kang, S. H.; Park, J.; Lee, M. J.; Jin, D.; Shin, D. O.; Lee, Y. G.; Lee, Y. M. Graphite-silicon diffusion-dependent electrode with short effective diffusion length for high-performance all-solid-state batteries. Adv. Energy Mater. 2022, 12, 2103108.

[175]

Lee, J.; Jin, D.; Kim, J. Y.; Roh, Y.; Lee, H.; Kang, S. H.; Choi, J.; Jo, T.; Lee, Y. G.; Lee, Y. M. Dry pre-lithiation for graphite-silicon diffusion-dependent electrode for all-solid-state battery. Adv. Energy Mater. 2023, 13, 2300172.

[176]

Yang, Y.; Yuan, W.; Kang, W. Q.; Ye, Y. T.; Pan, Q. Q.; Zhang, X. Q.; Ke, Y. Z.; Wang, C.; Qiu, Z. Q.; Tang, Y. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective. Sustain. Energy Fuels 2020, 4, 1577–1594.

[177]

Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 2007, 19, 4067–4070.

[178]

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

[179]

Parikh, P.; Sina, M.; Banerjee, A.; Wang, X. F.; D’Souza, M. S.; Doux, J. M.; Wu, E. A.; Trieu, O. Y.; Gong, Y. B.; Zhou, Q. et al. Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes. Chem. Mater. 2019, 31, 2535–2544.

[180]

Shobukawa, H.; Shin, J.; Alvarado, J.; Rustomji, C. S.; Meng, Y. S. Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis(fluorosulfonyl)imide-based ionic liquid. J. Mater. Chem. A 2016, 4, 15117–15125.

[181]

Choi, N. S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S. S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 2006, 161, 1254–1259.

[182]

Bok, T.; Cho, S. J.; Choi, S.; Choi, K. H.; Park, H.; Lee, S. Y.; Park, S. An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes. RSC Adv. 2016, 6, 6960–6966.

[183]

Dixit, M. B.; Singh, N.; Horwath, J. P.; Shevchenko, P. D.; Jones, M.; Stach, E. A.; Arthur, T. S.; Hatzell, K. B. In situ investigation of chemomechanical effects in thiophosphate solid electrolytes. Matter 2020, 3, 2138–2159.

[184]

Lewis, J. A.; Cortes, F. J. Q.; Liu, Y.; Miers, J. C.; Verma, A.; Vishnugopi, B. S.; Tippens, J.; Prakash, D.; Marchese, T. S.; Han, S. Y. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 2021, 20, 503–510.

[185]

Wang, C. H.; Hwang, S.; Jiang, M.; Liang, J. W.; Sun, Y. P.; Adair, K.; Zheng, M.; Mukherjee, S.; Li, X. N.; Li, R. Y. et al. Deciphering interfacial chemical and electrochemical reactions of sulfide-based all-solid-state batteries. Adv. Energy Mater. 2021, 11, 2100210.

[186]

Yamamoto, M.; Terauchi, Y.; Sakuda, A.; Kato, A.; Takahashi, M. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries. J. Power Sources 2020, 473, 228595.

[187]

Han, S. Y.; Lee, C.; Lewis, J. A.; Yeh, D.; Liu, Y.; Lee, H. W.; McDowell, M. T. Stress evolution during cycling of alloy-anode solid-state batteries. Joule 2021, 5, 2450–2465.

[188]

Bucci, G.; Swamy, T.; Bishop, S.; Sheldon, B. W.; Chiang, Y. M.; Carter, W. C. The effect of stress on battery-electrode capacity. J. Electrochem. Soc. 2017, 164, A645–A654.

[189]

Banerjee, A.; Wang, X. F.; Fang, C. C.; Wu, E. A.; Meng, Y. S. Interfaces and Interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 2020, 120, 6878–6933.

[190]

Zhu, Y. Z.; He, X. F.; Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693.

[191]

Chen, C.; Li, Q.; Li, Y. Q.; Cui, Z. H.; Guo, X. X.; Li, H. Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries. ACS Appl. Mater. Interfaces 2018, 10, 2185–2190.

[192]

Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

[193]

Wang, X. Y.; He, K.; Li, S. Y.; Zhang, J. H.; Lu, Y. Y. Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: A review. Nano Res. 2023, 16, 3741–3765.

[194]

McGrogan, F. P.; Swamy, T.; Bishop, S. R.; Eggleton, E.; Porz, L.; Chen, X. W.; Chiang, Y. M.; Van Vliet, K. J. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 2017, 7, 1602011.

[195]

Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 2013, 3, 2261.

[196]

Xu, X.; Sun, Q.; Li, Y. Y.; Ji, F. J.; Cheng, J.; Zhang, H. Q.; Zeng, Z.; Rao, Y. W.; Liu, H. B.; Li, D. P. et al. Nano silicon anode without electrolyte adding for sulfide-based all-solid-state lithium-ion batteries. Small 2023, 19, 2302934.

[197]

Zhang, L.; Huang, Q. W.; Liao, X. Z.; Dou, Y. H.; Liu, P. R.; Al-Mamun, M.; Wang, Y.; Zhang, S. Q.; Zhao, S. L.; Wang, D. et al. Scalable and controllable fabrication of CNTs improved yolk-shelled Si anodes with advanced in operando mechanical quantification. Energy Environ. Sci. 2021, 14, 3502–3509.

[198]

An, Y. L.; Tian, Y.; Zhang, Y. C.; Wei, C. L.; Tan, L. W.; Zhang, C. H.; Cui, N. X.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Two-dimensional silicon/carbon from commercial alloy and CO2 for lithium storage and flexible Ti3C2T x MXene-based lithium-metal batteries. ACS Nano 2020, 14, 17574–17588.

[199]

Ko, M.; Chae, S.; Jeong, S.; Oh, P.; Cho, J. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano 2014, 8, 8591–8599.

[200]

Branchi, M.; Maresca, G.; Tsurumaki, A.; Suzuki, N.; Croce, F.; Panero, S.; Voje, J.; Aihara, Y.; Navarra, M. A. Silicon-based composite anodes for all-solid-state lithium-ion batteries conceived by a mixture design approach. ChemSusChem 2023, 16, e202202235.

[201]

Cao, D. X.; Sun, X.; Li, Y. J.; Anderson, A.; Lu, W. Q.; Zhu, H. L. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes. Adv. Mater. 2022, 34, 2200401.

[202]

Ohta, N.; Kimura, S.; Sakabe, J.; Mitsuishi, K.; Ohnishi, T.; Takada, K. Anode properties of Si nanoparticles in all-solid-state Li batteries. ACS Appl. Energy Mater. 2019, 2, 7005–7008.

[203]

Zhan, X.; Li, M.; Li, S.; Pang, X. K.; Mao, F. Q.; Wang, H. Q.; Sun, Z. F.; Han, X.; Jiang, B.; He, Y. B. et al. Challenges and opportunities towards silicon-based all-solid-state batteries. Energy Stor. Mater. 2023, 61, 102875.

[204]

Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.

[205]

Notten, P. H. L.; Roozeboom, F.; Niessen, R. A. H.; Baggetto, L. 3-D integrated all-solid-state rechargeable batteries. Adv. Mater. 2007, 19, 4564–4567.

[206]

Huo, H. Y.; Janek, J. Silicon as emerging anode in solid-state batteries. ACS Energy Lett. 2022, 7, 4005–4016.

[207]

Huo, H. Y.; Sun, J. Y.; Chen, C.; Meng, X. L.; He, M. H.; Zhao, N.; Guo, X. X. Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries. J. Power Sources 2018, 383, 150–156.

[208]

Miyazaki, R.; Ohta, N.; Ohnishi, T.; Sakaguchi, I.; Takada, K. An amorphous Si film anode for all-solid-state lithium batteries. J. Power Sources 2014, 272, 541–545.

[209]

Na, I.; Kim, H.; Kunze, S.; Nam, C.; Jo, S.; Choi, H.; Oh, S.; Choi, E.; Song, Y. B.; Jung, Y. S. et al. Monolithic 100% silicon wafer anode for all-solid-state batteries achieving high areal capacity at room temperature. ACS Energy Lett. 2023, 8, 1936–1943.

[210]

Cangaz, S.; Hippauf, F.; Reuter, F. S.; Doerfler, S.; Abendroth, T.; Althues, H.; Kaskel, S. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes. Adv. Energy Mater. 2020, 10, 2001320.

[211]

Zhang, L. C.; Lin, Y. K.; Peng, X. D.; Wu, M. C.; Zhao, T. S. A high-capacity polyethylene oxide-based all-solid-state battery using a metal-organic framework hosted silicon anode. ACS Appl. Mater. Interfaces 2022, 14, 24798–24805.

[212]

Huang, W. Z.; Zhao, C. Z.; Wu, P.; Yuan, H.; Feng, W. E.; Liu, Z. Y.; Lu, Y.; Sun, S.; Fu, Z. H.; Hu, J. K. et al. Anode-free solid-state lithium batteries: A review. Adv. Energy Mater. 2022, 12, 2201044.

[213]

Wang, M. J.; Carmona, E.; Gupta, A.; Albertus, P.; Sakamoto, J. Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 2020, 11, 5201.

[214]

Varzi, A.; Thanner, K.; Scipioni, R.; Di Lecce, D.; Hassoun, J.; Dörfler, S.; Altheus, H.; Kaskel, S.; Prehal, C.; Freunberger, S. A. Current status and future perspectives of lithium metal batteries. J. Power Sources 2020, 480, 228803.

[215]

Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O.; Nikolowski, K.; Partsch, M.; Michaelis, A. From lithium-metal toward anode-free solid-state batteries: Current developments, issues, and challenges. Adv. Funct. Mater. 2021, 31, 2106608.

[216]

Liu, H.; Cheng, X. B.; Huang, J. Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G. L.; Xu, R.; Zhao, C. Z.; Hou, L. P. et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 2020, 5, 833–843.

[217]

Krauskopf, T.; Richter, F. H.; Zeier, W. G.; Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 2020, 120, 7745–7794.

[218]

Shi, F. F.; Pei, A.; Boyle, D. T.; Xie, J.; Yu, X. Y.; Zhang, X. K.; Cui, Y. Lithium metal stripping beneath the solid electrolyte interphase. Proc. Natl. Acad. Sci. USA 2018, 115, 8529–8534.

[219]

Lu, Y.; Zhao, C. Z.; Zhang, R.; Yuan, H.; Hou, L. P.; Fu, Z. H.; Chen, X.; Huang, J. Q.; Zhang, Q. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv. 2021, 7, eabi5520.

[220]

Yang, M. H.; Liu, Y. S.; Nolan, A. M.; Mo, Y. F. Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries. Adv. Mater. 2021, 33, 2008081.

[221]

Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M. Interface in solid-state lithium battery: Challenges, progress, and outlook. ACS Appl. Mater. Interfaces 2019, 11, 22029–22050.

[222]

Shadike, Z.; Tan, S.; Lin, R. Q.; Cao, X.; Hu, E. Y.; Yang, X. Q. Engineering and characterization of interphases for lithium metal anodes. Chem. Sci. 2022, 13, 1547–1568.

[223]

Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.

[224]

Wu, B. L.; Chen, C. G.; Raijmakers, L. H. J.; Liu, J.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Stor. Mater. 2023, 57, 508–539.

[225]

Pande, V.; Viswanathan, V. Computational screening of current collectors for enabling anode-free lithium metal batteries. ACS Energy Lett. 2019, 4, 2952–2959.

[226]

Lewis, J. A.; Sandoval, S. E.; Liu, Y.; Nelson, D. L.; Yoon, S. G.; Wang, R. Z.; Zhao, Y.; Tian, M. K.; Shevchenko, P.; Martínez-Pañeda, E. et al. Accelerated short circuiting in anode-free solid-state batteries driven by local lithium depletion. Adv. Energy Mater. 2023, 13, 2204186.

[227]

Tamwattana, O.; Park, H.; Kim, J.; Hwang, I.; Yoon, G.; Hwang, T. H.; Kang, Y. S.; Park, J.; Meethong, N.; Kang, K. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 2021, 6, 4416–4425.

[228]

Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 2020, 5, 299–308.

[229]

Wang, Y.; Qu, Z. T.; Geng, S. T.; Liao, M.; Ye, L.; Shadike, Z.; Zhao, X. J.; Wang, S.; Xu, Q. C.; Yuan, B. et al. Anode-free lithium metal batteries based on an ultrathin and respirable interphase layer. Angew. Chem., Int. Ed. 2023, 62, e202304978.

[230]

Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

[231]

Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

[232]

Huang, W. Z.; Liu, Z. Y.; Xu, P.; Kong, W. J.; Huang, X. Y.; Shi, P.; Wu, P.; Zhao, C. Z.; Yuan, H.; Huang, J. Q. et al. High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites. J. Mater. Chem. A 2023, 11, 12713–12718.

[233]

Fan, E. S.; Li, L.; Wang, Z. P.; Lin, J.; Huang, Y. X.; Yao, Y.; Chen, R. J.; Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063.

[234]

Schmaltz, T.; Hartmann, F.; Wicke, T.; Weymann, L.; Neef, C.; Janek, J. A roadmap for solid-state batteries. Adv. Energy Mater. 2023, 13, 2301886.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 January 2024
Revised: 22 February 2024
Accepted: 26 February 2024
Published: 22 March 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

H.S. acknowledges the Macau Science and Technology Development Fund (FDCT) for funding (FDCT-MOST joint project No. 0026/2022/AMJ, project No. 0098/2020/A2, and No. 006/2022/ALC of the Macao Centre for Research and Development in Advanced Materials (2022‒2024)), Natural Science Foundation of Guangdong Province (Grant No. 2023A1515010765), Science and Technology Planning Project of Shenzhen of China (Shenzhen-Hong Kong-Macao Category C) (Grant No. SGDX20220530111004028), Science and Technology Planning Project of Guangdong Province of China (Grant No. 2023A0505030001). Y.T. acknowledges the National Key Research and Development Program (Grant No. 2022YFE0206400).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return