Journal Home > Online First

Photoelectrochemical (PEC) water splitting presents a promising approach for harnessing solar energy and converting it into hydrogen energy. However, the limited water oxidation activity of semiconductor photoanodes has severely hampered the overall conversion efficiency. In this study, a hollow dodecahedral structure of NiCo-LDH (HD-NiCo-LDH) was designed using the metal-organic framework ZIF-67 as a precursor. HD-NiCo-LDH was employed to modify the BiVO4 photoanode, serving as an oxygen evolution cocatalyst. HD-NiCo-LDH can enhance light absorption, accelerate photogenic hole extraction, promote photogenic charge separation and improve the kinetics of water oxidation reaction. Significantly, the unique hollow dodecahedral structure of HD-NiCo-LDH possesses a larger specific surface areas, which provides additional active sites for the water oxidation reaction and facilitates the adsorption of water molecules. The photocurrent density of the optimized HD-NiCo-LDH/BiVO4 photoanode reaches 4.54 mA/cm2 at 1.23 V vs. RHE, which is 3.3 times greater than the bare BiVO4 photoanode. This presented work introduces an innovative design concept for photoanodes supported by oxygen evolution cocatalysts with multi-active sites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Using hollow dodecahedral NiCo-LDH with multi-active sites to modify BiVO4 photoanode facilitates the photoelectrochemical water splitting performance

Show Author's information Siwen Feng1Shuyan Fan1Ling Li1Zeyu Sun1Hongwen Tang1Yan Xu1Ling Fang2Cuijuan Wang1( )
School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

Abstract

Photoelectrochemical (PEC) water splitting presents a promising approach for harnessing solar energy and converting it into hydrogen energy. However, the limited water oxidation activity of semiconductor photoanodes has severely hampered the overall conversion efficiency. In this study, a hollow dodecahedral structure of NiCo-LDH (HD-NiCo-LDH) was designed using the metal-organic framework ZIF-67 as a precursor. HD-NiCo-LDH was employed to modify the BiVO4 photoanode, serving as an oxygen evolution cocatalyst. HD-NiCo-LDH can enhance light absorption, accelerate photogenic hole extraction, promote photogenic charge separation and improve the kinetics of water oxidation reaction. Significantly, the unique hollow dodecahedral structure of HD-NiCo-LDH possesses a larger specific surface areas, which provides additional active sites for the water oxidation reaction and facilitates the adsorption of water molecules. The photocurrent density of the optimized HD-NiCo-LDH/BiVO4 photoanode reaches 4.54 mA/cm2 at 1.23 V vs. RHE, which is 3.3 times greater than the bare BiVO4 photoanode. This presented work introduces an innovative design concept for photoanodes supported by oxygen evolution cocatalysts with multi-active sites.

Keywords: layered double hydroxides, photoelectrochemical water splitting, BiVO4, oxygen evolution cocatalysts

References(55)

[1]

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

[2]

Yao, T. T.; An, X. R.; Han, H. X.; Chen, J. Q.; Li, C. Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 2018, 8, 1800210.

[3]

Ding, C. M.; Shi, J. Y.; Wang, Z. L.; Li, C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 2017, 7, 675–688.

[4]

Tan, R. F.; Hwang, S. W.; Sivanantham, A.; Cho, I. S. Solution synthesis and activation of spinel CuAl2O4 film for solar water-splitting. J. Catal. 2021, 400, 218–227.

[5]

Ge, M. Z.; Li, Q. S.; Cao, C. Y.; Huang, J. Y.; Li, S. H.; Zhang, S. N.; Chen, Z.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152.

[6]

Ge, M. Z.; Cai, J. S.; Iocozzia, J.; Cao, C. Y.; Huang, J. Y.; Zhang, X. N.; Shen, J. L.; Wang, S. C.; Zhang, S. N.; Zhang, K. Q. et al. A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrog. Energy 2017, 42, 8418–8449.

[7]

Butburee, T.; Bai, Y.; Wang, H. J.; Chen, H. J.; Wang, Z. L.; Liu, G.; Zou, J.; Khemthong, P.; Lu, G. Q. M.; Wang, L. Z. 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv. Mater. 2018, 30, 1705666.

[8]

Huang, S.; Ouyang, T.; Zheng, B. F.; Dan, M.; Liu, Z. Q. Enhanced photoelectrocatalytic activities for CH3OH-to-HCHO conversion on Fe2O3/MoO3: Fe-O-Mo covalency dominates the intrinsic activity. Angew. Chem., Int. Ed. 2021, 60, 9546–9552.

[9]

Xiao, J. R.; Li, C. X.; Jia, X.; Du, B. R.; Li, R. C.; Wang, B. Enabling high low-bias performance of Fe2O3 photoanode for photoelectrochemical water splitting. J. Colloid Interface Sci. 2023, 633, 555–565.

[10]

Yu, X. L.; Liu, J. Q.; Yin, W. C.; Wang, T.; Quan, L.; Ran, Y.; Cui, J. Y.; Wang, L.; Zhang, Y. H. Ultrathin NiMn-layered double hydroxide nanosheets coupled with α-Fe2O3 nanorod arrays for photoelectrochemical water splitting. Appl. Surf. Sci. 2019, 492, 264–271.

[11]

Jeon, T. H.; Monllor-Satoca, D.; Moon, G. H.; Kim, W.; Kim, H. I.; Bahnemann, D. W.; Park, H.; Choi, W. Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO3 film. Nat. Commun. 2020, 11, 967.

[12]

Kong, F. H.; Zhou, H. R.; Chen, Z. W.; Dou, Z. L.; Wang, M. Photoelectrocatalytic reforming of polyol-based biomass into CO and H2 over nitrogen-doped WO3 with built-in electric fields. Angew. Chem., Int. Ed. 2022, 61, e202210745.

[13]

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

[14]

Kim, J. H.; Lee, J. S. Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 2019, 31, 1806938.

[15]

Chang, X. X.; Wang, T.; Zhang, P.; Zhang, J. J.; Li, A.; Gong, J. L. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359.

[16]

Byun, S.; Kim, B.; Jeon, S.; Shin, B. Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation. J. Mater. Chem. A 2017, 5, 6905–6913.

[17]

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.

[18]

Chen, D. M.; Xie, Z. F.; Tong, Y. X.; Huang, Y. C. Review on BiVO4-based photoanodes for photoelectrochemical water oxidation: The main influencing factors. Energy Fuels 2022, 36, 9932–9949.

[19]

Tan, H. L.; Amal, R.; Ng, Y. H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review. J. Mater. Chem. A 2017, 5, 16498–16521.

[20]

Prévot, M. S.; Sivula, K. Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 2013, 117, 17879–17893.

[21]

Kuang, Y. B.; Jia, Q. X.; Nishiyama, H.; Yamada, T.; Kudo, A.; Domen, K. A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting. Adv. Energy Mater. 2016, 6, 1501645.

[22]

Tan, R. F.; Sivanantham, A.; Rani, B. J.; Jeong, Y. J.; Cho, I. S. Recent advances in surface regulation and engineering strategies of photoelectrodes toward enhanced photoelectrochemical water splitting. Coord. Chem. Rev. 2023, 494, 215362.

[23]

Jeong, Y. J.; Seo, D. H.; Baek, J. H.; Kang, M. J.; Kim, B. N.; Kim, S. K.; Zheng, X. L.; Cho, I. S. Crystal reconstruction of Mo:BiVO4: Improved charge transport for efficient solar water splitting. Adv. Funct. Mater. 2022, 32, 2208196.

[24]

Wang, S. C.; Wang, X.; Liu, B. Y.; Guo, Z. C.; Ostrikov, K.; Wang, L. Z.; Huang, W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting. Nanoscale 2021, 13, 17989–18009.

[25]

Gaikwad, M. A.; Suryawanshi, U. P.; Ghorpade, U. V.; Jang, J. S.; Suryawanshi, M. P.; Kim, J. H. Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting. Small 2022, 18, 2105084.

[26]

Qu, L.; Tan, R. F.; Sivanantham, A.; Kang, M. J.; Jeong, Y. J.; Seo, D. H.; Kim, S.; Cho, I. S. Point-defect engineering of nanoporous CuBi2O4 photocathode via rapid thermal processing for enhanced photoelectrochemical activity. J. Energy Chem. 2022, 71, 201–209.

[27]

Tan, R. F.; Jeong, Y. J.; Li, Q.; Kang, M.; Cho, I. S. Defect-rich spinel ferrites with improved charge collection properties for efficient solar water splitting. J. Adv. Ceram. 2023, 12, 612–624.

[28]

Chen, M. H.; Chang, X. B.; Li, C.; Wang, H. Q.; Jia, L. C. Ni-doped BiVO4 photoanode for efficient photoelectrochemical water splitting. J. Colloid Interface Sci. 2023, 640, 162–169.

[29]

Polo, A.; Dozzi, M. V.; Grigioni, I.; Lhermitte, C.; Plainpan, N.; Moretti, L.; Cerullo, G.; Sivula, K.; Selli, E. Multiple effects induced by Mo6+ doping in BiVO4 photoanodes. Sol. RRL 2022, 6, 2200349.

[30]

Chen, X. T.; Zhen, C.; Li, N.; Jia, N.; Xu, X. X.; Wang, L. Z.; Liu, G. Photochemically etching BiVO4 to construct asymmetric heterojunction of BiVO4/BiO x showing efficient photoelectrochemical water splitting. Small Methods 2023, 7, 2201611.

[31]

Zhou, C. G.; Wang, S. M.; Zhao, Z. Y.; Shi, Z.; Yan, S. C.; Zou, Z. G. A facet-dependent Schottky-junction electron shuttle in a BiVO4{010}-Au-Cu2O Z-scheme photocatalyst for efficient charge separation. Adv. Funct. Mater. 2018, 28, 1801214.

[32]

Miao, Y. C.; Liu, J. C.; Chen, L. X.; Sun, H.; Zhang, R. K.; Guo, J.; Shao, M. F. Single-atomic-Co cocatalyst on (040) facet of BiVO4 toward efficient photoelectrochemical water splitting. Chem. Eng. J. 2022, 427, 131011.

[33]

Qi, Y.; Zhang, J. W.; Kong, Y.; Zhao, Y.; Chen, S. S.; Li, D.; Liu, W.; Chen, Y. F.; Xie, T. F.; Cui, J. Y. et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 2022, 13, 484.

[34]

Baek, J. H.; Gill, T. M.; Abroshan, H.; Park, S.; Shi, X. J.; Nørskov, J.; Jung, H. S.; Siahrostami, S.; Zheng, X. L. Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Lett. 2019, 4, 720–728.

[35]

Tian, T.; Jiang, G. Y.; Li, Y. L.; Xiang, W. J.; Fu, W. S. Unveiling the activity and stability of BiVO4 photoanodes with cocatalyst for water oxidation. Renew. Energy 2022, 199, 132–139.

[36]

Zhang, B. B.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem., Int. Ed. 2018, 57, 2248–2252.

[37]

Zhang, B. B.; Huang, X. J.; Hu, H. Y.; Chou, L. J.; Bi, Y. P. Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 4415–4419.

[38]

Ma, Y. M.; Kafizas, A.; Pendlebury, S. R.; Le Formal, F.; Durrant, J. R. Photoinduced absorption spectroscopy of CoPi on BiVO4: The function of CoPi during water oxidation. Adv. Funct. Mater. 2016, 26, 4951–4960.

[39]

Nellist, M. R.; Qiu, J. J.; Laskowski, F. A. L.; Toma, F. M.; Boettcher, S. W. Potential-sensing electrochemical AFM shows CoPi as a hole collector and oxygen evolution catalyst on BiVO4 water-splitting photoanodes. ACS Energy Lett. 2018, 3, 2286–2291.

[40]

Zhou, S. Q.; Chen, K. Y.; Huang, J. W.; Wang, L.; Zhang, M. Y.; Bai, B.; Liu, H.; Wang, Q. Z. Preparation of heterometallic CoNi-MOFs-modified BiVO4: A steady photoanode for improved performance in photoelectrochemical water splitting. Appl. Catal. B Environ. 2020, 266, 118513.

[41]

Yang, X. Y.; Chen, Z. W.; Yue, X. Z.; Du, X.; Hou, X. H.; Zhang, L. Y.; Chen, D. L.; Yi, S. S. Structural engineering of BiVO4/CoFe MOF heterostructures boosting charge transfer for efficient photoelectrochemical water splitting. Small 2023, 19, 2205246.

[42]

Yang, X. G.; Zhang, J. R.; Tian, X. K.; Qin, J. H.; Zhang, X. Y.; Ma, L. F. Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ ions. Angew. Chem., Int. Ed. 2023, 8, e202216699.

[43]

She, H. D.; Yue, P. F.; Ma, X. Y.; Huang, J. W.; Wang, L.; Wang, Q. Z. Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Appl. Catal. B Environ. 2020, 263, 118280.

[44]

Yue, P. F.; She, H. D.; Zhang, L.; Niu, B.; Lian, R.; Huang, J. W.; Wang, L.; Wang, Q. Z. Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity. Appl. Catal. B Environ. 2021, 286, 119875.

[45]

He, D.; Gao, R. T.; Liu, S. J.; Sun, M.; Liu, X. H.; Hu, K.; Su, Y. G.; Wang, L. Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting. ACS Catal. 2020, 10, 10570–10576.

[46]

Hu, H. J.; Liu, J. Y.; Xu, Z. H.; Zhang, L. Y.; Cheng, B.; Ho, W. Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Appl. Surf. Sci. 2019, 478, 981–990.

[47]

Sun, C. C.; Yang, J.; Rui, X. H.; Zhang, W. N.; Yan, Q. Y.; Chen, P.; Huo, F. W.; Huang, W.; Dong, X. C. MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 8483–8488.

[48]

Wu, L. J.; Wang, L.; Zhu, J.; Sun, M.; Liu, X. H.; Schmuki, P.; Zhang, J. Novel highly active and self-healing Co(CO3) x OH y cocatalysts on BiVO4 photoanodes for effective solar water oxidation. J. Mater. Chem. A 2020, 8, 2563–2570.

[49]

Ning, X. M.; Lu, B. Z.; Zhang, Z.; Du, P. Y.; Ren, H. X.; Shan, D. L.; Chen, J.; Gao, Y. J.; Lu, X. Q. An efficient strategy for boosting photogenerated charge separation by using porphyrins as interfacial charge mediators. Angew. Chem., Int. Ed. 2019, 58, 16800–16805.

[50]

Tang, Y. Q.; Wang, R. R.; Yang, Y.; Yan, D. P.; Xiang, X. Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Appl. Mater. Interfaces 2016, 8, 19446–19455.

[51]

Liang, J. B.; Ma, R. Z.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides: A route to positively charged Co-Ni hydroxide nanosheets with tunable composition. Chem. Mater. 2010, 22, 371–378.

[52]

Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 2013, 5, 11770–11775.

[53]

Guo, J.; Yang, X. J.; Bai, S. L.; Xiang, X.; Luo, R. X.; He, J.; Chen, A. F. Effect of Mo doping and NiFe-LDH cocatalyst on PEC water oxidation efficiency. J. Colloid Interface Sci. 2019, 540, 9–19.

[54]

Feng, C. C.; Zhou, Q.; Zheng, B.; Cheng, X.; Zhang, Y. J.; Bi, Y. P. Ultrathin NiCo2O4 nanosheets with dual-metal active sites for enhanced solar water splitting of a BiVO4 photoanode. J. Mater. Chem. A 2019, 7, 22274–22278.

[55]

Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A 2014, 2, 13250–13258.

File
0117_ESM.pdf (12.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 December 2023
Revised: 18 January 2024
Accepted: 16 February 2024
Published: 12 March 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (No. 21401151), Science and Technology Program of Sichuan Province (No. 2021YFSY0048) and Fundamental Research Funds for the Central Universities (No. 2682023ZTPY064).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return