Journal Home > Online First

Since lithium sulfur (Li-S) energy storage devices are anticipated to power portable gadgets and electric vehicles owing to their high energy density (2600 Wh·kg–1); nevertheless, their usefulness is constrained by sluggish sulfur reaction kinetics and soluble lithium polysulfide (LPS) shuttling effects. High electrically conductive bifunctional electrocatalysts are urgently needed for Li-S batteries, and high-entropy oxide (HEO) is one of the most promising electrocatalysts. In this work, we synthesize titanium-containing high entropy oxide (Ti-HEO) (TiFeNiCoMg)O with enhanced electrical conductivity through calcining metal-organic frameworks (MOF) templates at modest temperatures. The resulting single-phase Ti-HEO with high conductivity could facilitate chemical immobilization and rapid bidirectional conversion of LPS. As a result, the Ti-HEO/S/KB cathode (with 70 wt.% of sulfur) achieves an initial discharge capacity as high as ~1375 mAh·g–1 at 0.1 C, and a low-capacity fade rate of 0.056% per cycle over 1000 cycles at 0.5 C. With increased sulfur loading (~5.0 mg·cm–2), the typical Li-S cell delivered a high initial discharge capacity of ~607 mAh·g–1 at 0.2 C and showcased good cycling stability. This work provides better insight into the synthesis of catalytic Ti-containing HEOs with enhanced electrical conductivity, which are effective in simultaneously enhancing the LPS-conversion kinetics and reducing the LPS shuttling effect.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Titanium-containing high entropy oxide (Ti-HEO): A redox expediting electrocatalyst towards lithium polysulfides for high performance Li-S batteries

Show Author's information Hassan Raza1,2,§Junye Cheng1,§( )Jingwei Wang1Subash Kandasamy3Guangping Zheng2( )Guohua Chen3( )
Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 517182, China
Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
School of Energy and Environment, City University of Hong Kong, Dat Chee Avenue, Kowloon, Hong Kong SAR, China

§ Hassan Raza and Junye Cheng contributed equally to this work.

Abstract

Since lithium sulfur (Li-S) energy storage devices are anticipated to power portable gadgets and electric vehicles owing to their high energy density (2600 Wh·kg–1); nevertheless, their usefulness is constrained by sluggish sulfur reaction kinetics and soluble lithium polysulfide (LPS) shuttling effects. High electrically conductive bifunctional electrocatalysts are urgently needed for Li-S batteries, and high-entropy oxide (HEO) is one of the most promising electrocatalysts. In this work, we synthesize titanium-containing high entropy oxide (Ti-HEO) (TiFeNiCoMg)O with enhanced electrical conductivity through calcining metal-organic frameworks (MOF) templates at modest temperatures. The resulting single-phase Ti-HEO with high conductivity could facilitate chemical immobilization and rapid bidirectional conversion of LPS. As a result, the Ti-HEO/S/KB cathode (with 70 wt.% of sulfur) achieves an initial discharge capacity as high as ~1375 mAh·g–1 at 0.1 C, and a low-capacity fade rate of 0.056% per cycle over 1000 cycles at 0.5 C. With increased sulfur loading (~5.0 mg·cm–2), the typical Li-S cell delivered a high initial discharge capacity of ~607 mAh·g–1 at 0.2 C and showcased good cycling stability. This work provides better insight into the synthesis of catalytic Ti-containing HEOs with enhanced electrical conductivity, which are effective in simultaneously enhancing the LPS-conversion kinetics and reducing the LPS shuttling effect.

Keywords: electrical conductivity, lithium-sulfur batteries, catalytic conversion, titanium containing high entropy oxide (Ti-HEOs), multi-metal-MOFs template method

References(64)

[1]

Zhou, G. M.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319.

[2]

Xiang, Y. Y.; Lu, L. Q.; Kottapalli, A. G. P.; Pei, Y. T. Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium-sulfur batteries. Carbon Energy 2022, 4, 346–398.

[3]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[4]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[5]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[6]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[7]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[8]

Boyjoo, Y.; Shi, H. D.; Tian, Q.; Liu, S. M.; Liang, J.; Wu, Z. S.; Jaroniec, M.; Liu, J. Engineering nanoreactors for metal-chalcogen batteries. Energy Environ. Sci. 2021, 14, 540–575.

[9]

Zhang, J.; Li, M. N.; Younus, H. A.; Wang, B. S.; Weng, Q. H.; Zhang, Y.; Zhang, S. G. An overview of the characteristics of advanced binders for high-performance Li-S batteries. Nano Mater. Sci. 2021, 3, 124–139.

[10]

Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821–9826.

[11]

Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 2015, 5, 1401986.

[12]

Majumder, S.; Shao, M. H.; Deng, Y. F.; Chen, G. H. Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries. J. Power Sources 2019, 431, 93–104.

[13]

Majumder, S.; Shao, M. H.; Deng, Y. F.; Chen, G. H. Two dimensional WS2/C nanosheets as a polysulfides immobilizer for high performance lithium-sulfur batteries. J. Electrochem. Soc. 2019, 166, A5386–A5395.

[14]

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

[15]

Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.

[16]

Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.

[17]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[18]

Xiao, Q. H. Q.; Yang, J. L.; Wang, X. D.; Deng, Y. R.; Han, P.; Yuan, N.; Zhang, L.; Feng, M.; Wang, C. A.; Liu, R. P. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective. Carbon Energy 2021, 3, 271–302.

[19]

Raza, H.; Bai, S. Y.; Cheng, J. Y.; Majumder, S.; Zhu, H.; Liu, Q.; Zheng, G. P.; Li, X. F.; Chen, G. H. Li-S batteries: Challenges, achievements and opportunities. Electrochem. Energy Rev. 2023, 6, 29.

[20]

Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium-sulfur batteries. Nano Energy 2019, 60, 743–751.

[21]

Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388.

[22]

Shi, H. D.; Qin, J. Q.; Huang, K.; Lu, P. F.; Zhang, C. F.; Dong, Y. F.; Ye, M.; Liu, Z. M.; Wu, Z. S. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem. 2020, 132, 12245–12251.

[23]

Ci, H. N.; Shi, Z. X.; Wang, M. L.; He, Y.; Sun, J. Y. A review in rational design of graphene toward advanced Li-S batteries. Nano Res. Energy 2023, 2, e9120054.

[24]

Sun, D. D.; Sun, Z. P.; Yang, D. H.; Jiang, X. F.; Tang, J.; Wang, X. B. Advances in boron nitride-based materials for electrochemical energy storage and conversion. EcoEnergy 2023, 1, 375–404.

[25]

Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

[26]

He, J. R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.

[27]

Wang, Y. C.; Pu, Y. R.; Yuan, L.; Zhang, Y.; Liu, C.; Wang, Q.; Wu, H. Synergistic effect of WN/Mo2C embedded in bioderived carbon nanofibers: A rational design of a shuttle inhibitor and an electrocatalyst for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 18578–18588.

[28]

Wang, S. N.; Hu, R. M.; Yuan, D.; Zhang, L.; Wu, C.; Ma, T. Y.; Yan, W.; Wang, R.; Liu, L.; Jiang, X. C. et al. Single-atomic tungsten-doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium-sulfur batteries. Carbon Energy 2023, 5, e329.

[29]

Wang, Z. F.; Yan, Y. J.; Zhang, Y. G.; Chen, Y. X.; Peng, X. Y.; Wang, X.; Zhao, W. M.; Qin, C. L.; Liu, Q.; Liu, X. J. et al. Single-atomic Co-B2N2 sites anchored on carbon nanotube arrays promote lithium polysulfide conversion in lithium-sulfur batteries. Carbon Energy 2023, 5, e306.

[30]

Shi, H. D.; Qin, J. Q.; Lu, P. F.; Dong, C.; He, J.; Chou, X. J.; Das, P.; Wang, J. M.; Zhang, L. Z.; Wu, Z. S. Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries. Adv. Funct. Mater. 2021, 31, 2102314.

[31]

Abraham, A. M.; Boteju, T.; Ponnurangam, S.; Thangadurai, V. A global design principle for polysulfide electrocatalysis in lithium-sulfur batteries-A computational perspective. Battery Energy 2022, 1, 20220003.

[32]

Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.

[33]
Murty, B. S.; Yeh, J. W.; Ranganathan, S. High-entropy alloys: Basic concepts. In High Entropy Alloys. Murty, B. S.; Yeh, J. W.; Ranganathan, S., Eds.; Elsevier: Amsterdam, 2014; pp 13–35.
DOI
[34]

Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823.

[35]

Wang, Q. S.; Sarkar, A.; Li, Z. Y.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B. High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 2019, 100, 121–125.

[36]

Ghigna, P.; Airoldi, L.; Fracchia, M.; Callegari, D.; Anselmi-Tamburini, U.; D’Angelo, P.; Pianta, N.; Ruffo, R.; Cibin, G. ; de Souza, D. O. et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study. ACS Appl. Mater. Interfaces 2020, 12, 50344–50354.

[37]

Tian, L. Y.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 645–654.

[38]

Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G. ; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

[39]

Chen, Y. W.; Fu, H. Y.; Huang, Y. Y.; Huang, L. Q.; Zheng, X. Y.; Dai, Y. M.; Huang, Y. H.; Luo, W. Opportunities for high-entropy materials in rechargeable batteries. ACS Mater. Lett. 2021, 3, 160–170.

[40]

Tsau, C. H.; Yang, Y. C.; Lee, C. C.; Wu, L. Y.; Huang, H. J. The low electrical resistivity of the high-entropy alloy oxide thin films. Procedia Eng. 2012, 36, 246–252.

[41]

Yang, Y. C.; Tsau, C. H.; Yeh, J. W. TiFeCoNi oxide thin film-A new composition with extremely low electrical resistivity at room temperature. Scr. Mater. 2011, 64, 173–176.

[42]

Raza, H.; Cheng, J. Y.; Lin, C.; Majumder, S.; Zheng, G. P.; Chen, G. H. High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 2023, 5, e12324.

[43]

Raza, H.; Cheng, J. Y.; Chen, G. H.; Zheng, G. P. Low-temperature calcination of metal-organic frameworks (MOFs) to derive the high entropy stabilized oxide for high performance lithium-sulfur batteries. ECS Meet. Abstr. 2022, 1MA2022-0, 2432.

[44]

Cheng, J. Y.; Ran, S. J.; Li, T.; Yan, M.; Wu, J.; Boles, S.; Liu, B.; Raza, H.; Ullah, S.; Zhang, W. J. et al. Achieving superior tensile performance in individual metal-organic framework crystals. Adv. Mater. 2023, 35, 2210829.

[45]
Zhao, Y. H.; Lai, X. Q.; Wang, P. F.; Liu, Z. L.; Yi, T. F. Construction of metal-organic framework-derived Al-doped Na3V2(PO4)3 cathode materials toward high-performance rechargeable Na-ion battery. Energy Mater. Devices, in press, DOI: 10.26599/EMD.2024.9370002.
DOI
[46]

Zheng, Y. N.; Yi, Y. K.; Fan, M. H.; Liu, H. Y.; Li, X.; Zhang, R.; Li, M. T.; Qiao, Z. A. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 2019, 23, 678–683.

[47]

Kheradmandfard, M.; Minouei, H.; Tsvetkov, N.; Vayghan, A. K.; Kashani-Bozorg, S. F.; Kim, G.; Hong, S. I.; Kim, D. E. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Mater. Chem. Phys. 2021, 262, 124265.

[48]

Qiu, N.; Chen, H.; Yang, Z. M.; Sun, S.; Wang, Y.; Cui, Y. H. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 2019, 777, 767–774.

[49]

Khan, N. A.; Akhavan, B.; Zheng, Z.; Liu, H. W.; Zhou, C. F.; Zhou, H. R.; Chang, L.; Wang, Y.; Liu, Y. P.; Sun, L. X. et al. Nanostructured AlCoCrCu0.5FeNi high entropy oxide (HEO) thin films fabricated using reactive magnetron sputtering. Appl. Surf. Sci. 2021, 553, 149491.

[50]

Zhao, X. J.; Gao, T. Q.; Yuan, Y.; Fang, Z. Hollow slightly oxidized CoP confined into flyover-type carbon skeleton with multiple channels as an effective adsorption-catalysis matrix for robust Li-S batteries. Electrochim. Acta 2022, 422, 140512.

[51]

Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486.

[52]

Li, W. L.; Qian, J.; Zhao, T.; Ye, Y. S.; Xing, Y.; Huang, Y. X.; Wei, L.; Zhang, N. X.; Chen, N.; Li, L. et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure. Adv. Sci. 2019, 6, 1802362.

[53]

Zhou, L.; Danilov, D. L.; Qiao, F.; Eichel, R. A.; Notten, P. H. L. ZnFe2O4 hollow rods enabling accelerated polysulfide conversion for advanced lithium-sulfur batteries. Electrochim. Acta 2022, 414, 140231.

[54]

Wang, S. X.; Liu, X. Y.; Duan, H. H.; Deng, Y. F.; Chen, G. H. Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: A thin functional interlayer for PP separator to boost performance of Li-S batteries. Chem. Eng. J. 2021, 415, 129001.

[55]

Mu, J. W.; Jiang, H. L.; Yu, M.; Gu, S. H.; He, G. H.; Dai, Y.; Li, X. C. Thiophilic-lithiophilic hierarchically porous membrane-enabled full lithium-sulfur battery with a low N/P ratio. ACS Appl. Mater. Interfaces 2022, 14, 23408–23419.

[56]

Abualela, S.; Lv, X. X.; Hu, Y.; Abd-Alla, M. D. NiO nanosheets grown on carbon cloth as mesoporous cathode for high-performance lithium-sulfur battery. Mater. Lett. 2020, 268, 127622.

[57]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[58]

Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes. Nano Res. Energy 2022, 1, e9120012.

[59]

Qi, C.; Li, H. L.; Wang, J.; Zhao, C. C.; Fu, C. M.; Wang, L. N.; Liu, T. X. Metal-organic-framework-derived porous carbon embedded with TiO2 nanoparticles as a cathode for advanced lithium-sulfur batteries. ChemElectroChem 2021, 8, 90–95.

[60]

Liu, M. T.; Jhulki, S.; Sun, Z. F.; Magasinski, A.; Hendrix, C.; Yushin, G. Atom-economic synthesis of Magnéli phase Ti4O7 microspheres for improved sulfur cathodes for Li-S batteries. Nano Energy 2021, 79, 105428.

[61]

Wu, H. W.; Hu, X. J.; Shao, M. H.; Zhang, S. W.; Chen, G. H. Encapsulating sulphur inside Magnéli phase Ti4O7 nanotube array for high performance lithium sulphur battery cathode. Can. J. Chem. Eng. 2022, 100, 2417–2431.

[62]

Liu, H. T.; Liu, F.; Qu, Z. H.; Chen, J. L.; Liu, H.; Tan, Y. Q.; Guo, J. B.; Yan, Y.; Zhao, S.; Zhao, X. S. et al. High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy 2023, 2, e9120049.

[63]

Xiao, S. J.; Huang, L.; Lv, W.; He, Y. B. A highly efficient ion and electron conductive interlayer to achieve low self-discharge of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 1783–1790.

[64]

Knap, V.; Stroe, D. I.; Swierczynski, M.; Teodorescu, R.; Schaltz, E. Investigation of the self-discharge behavior of lithium-sulfur batteries. J. Electrochem. Soc. 2016, 163, A911–A916.

File
0116_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 November 2023
Revised: 25 January 2024
Accepted: 01 February 2024
Published: 04 March 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors are grateful for the following financial supports: the National Natural Science Foundation of China (Nos. 52372289 and 52102368), Guangdong Science and Technology Bureau (Grant Nos. 2019B090908001 and 2020A0505090011), Guangdong Special Fund for Key Areas (20237DZX3042), Shenzhen STI (Grant No. SGDX20190816230615451), Shenzhen Stable Support Project, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices (Grant No. 2019B121205001), Otto Poon Charitable Foundation (Grant Nos. 847W, CDBC, CDBW), and HKPolyU Postdoctoral Fellowships (Grant No. W28H).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return