Journal Home > Online First

Aqueous zinc-ion batteries (AZIBs) are promising contenders for energy storage systems owing to their low cost and high safety. However, their practical application is hindered by uncontrolled Zn dendrites and other side reactions. Here, the three-dimensional (3D) TiO2/Cu2Se/C heterostructure layer derived from MXene/Cu-MOF is constructed on the Zn anode to control the deposition/dissolution behavior, which has numerous active sites, better electrical conductivity and excellent structural stability. Based on DFT calculation, the built-in electric field (BIEF) formed of TiO2/Cu2Se/C can enhance charge transfer and ionic diffusion to inhibit the dendrites. Furthermore, hydrophobic coating has the ability to impede the corrosion and hydrogen evolution reaction (HER) of zinc anode. Thus, TiO2/Cu2Se/C@Zn enable the stable and reversible Zn plating/stripping process with the outstanding lifetime of 1100 h at 2 mA·cm–2 and even 650 h at 10 mA·cm–2. The batteries constructed with commercial MnO2 cathodes demonstrate the remarkable capacity (248.7 mAh·g−1 at 0.1 A·g−1) and impressive cycle stability (with 71.3% capacity retention after 300 cycles). As well as extending the life of AZIBs, this study is also motivating for other metal anode based secondary batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly stable Zn anodes realized by 3D zincophilic and hydrophobic interphase buffer layer

Show Author's information Yunfei Shen1,§Pengjie Fu2,§Jianjie Liu1Kaisheng Sun1Huanzhang Wen1Ping Liu1Heng Lv1Tiantian Gu1Xiaodong Yang2( )Long Chen1( )
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi 832003, China

§ Yunfei Shen and Pengjie Fu contributed equally to this work.

Abstract

Aqueous zinc-ion batteries (AZIBs) are promising contenders for energy storage systems owing to their low cost and high safety. However, their practical application is hindered by uncontrolled Zn dendrites and other side reactions. Here, the three-dimensional (3D) TiO2/Cu2Se/C heterostructure layer derived from MXene/Cu-MOF is constructed on the Zn anode to control the deposition/dissolution behavior, which has numerous active sites, better electrical conductivity and excellent structural stability. Based on DFT calculation, the built-in electric field (BIEF) formed of TiO2/Cu2Se/C can enhance charge transfer and ionic diffusion to inhibit the dendrites. Furthermore, hydrophobic coating has the ability to impede the corrosion and hydrogen evolution reaction (HER) of zinc anode. Thus, TiO2/Cu2Se/C@Zn enable the stable and reversible Zn plating/stripping process with the outstanding lifetime of 1100 h at 2 mA·cm–2 and even 650 h at 10 mA·cm–2. The batteries constructed with commercial MnO2 cathodes demonstrate the remarkable capacity (248.7 mAh·g−1 at 0.1 A·g−1) and impressive cycle stability (with 71.3% capacity retention after 300 cycles). As well as extending the life of AZIBs, this study is also motivating for other metal anode based secondary batteries.

Keywords: heterostructure, hydrophobic, built-in electric field, zinc anode, zincophilic

References(57)

[1]

Yi, Z. H.; Liu, J. X.; Tan, S. D.; Sang, Z. Y.; Mao, J.; Yin, L. C.; Liu, X. G.; Wang, L. Q.; Hou, F.; Dou, S. X. et al. An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation (Adv. Mater. 37/2022). Adv. Mater. 2022, 34, 2270259.

[2]

Kim, H. J.; Kim, S.; Heo, K.; Lim, J. H.; Yashiro, H.; Myung, S. T. Nature of zinc-derived dendrite and its suppression in mildly acidic aqueous zinc-ion battery. Adv. Energy Mater. 2023, 13, 2203189.

[3]

Huang, Y. F.; Gu, Q. Q.; Guo, Z. L.; Liu, W. B.; Chang, Z. W.; Liu, Y. F.; Kang, F. Y.; Dong, L. B.; Xu, C. J. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Mater. 2022, 46, 243–251.

[4]

Liu, S. Y.; Zhou, Y. H.; Zhang, Y. B.; Xia, S. J.; Li, Y.; Zhou, X.; Qiu, B.; Shao, G. J.; Liu, Z. P. Surface yttrium-doping induced by element segregation to suppress oxygen release in Li-rich layered oxide cathodes. Tungsten 2022, 4, 336–345.

[5]

Sun, K. S.; Shen, Y. F.; Min, J.; Pang, J. X.; Zheng, Y.; Gu, T. T.; Wang, G.; Chen, L. MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 2023, 454, 140394.

[6]

Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1, e9120025.

[7]

Xiong, P. X.; Kang, Y. B.; Yao, N.; Chen, X.; Mao, H. Y.; Jang, W. S.; Halat, D. M.; Fu, Z. H.; Jung, M. H.; Jeong, H. Y. et al. Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 2023, 8, 1613–1625.

[8]

Guo, Y.; Cai, W. L.; Lin, Y.; Zhang, Y. Y.; Luo, S.; Huang, K. X.; Wu, H.; Zhang, Y. An ion redistributor enabled by cost-effective weighing paper interlayer for dendrite free aqueous zinc-ion battery. Energy Storage Mater. 2022, 50, 580–588.

[9]

Li, Y.; Peng, X. Y.; Li, X.; Duan, H.; Xie, S. Y.; Dong, L. B.; Kang, F. Y. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 2023, 35, 2300019.

[10]

Liu, X.; Wang, K.; Liu, Y.; Zhao, F. H.; He, J. J.; Wu, H.; Wu, J. F.; Liang, H. P.; Huang, C. S. Constructing an ion-oriented channel on a zinc electrode through surface engineering. Carbon Energy 2023, n/a5, e343.

[11]

Zheng, X. H.; Luo, R. H.; Chen, W. Zinc battery goes to anode-free. Nano Res. Energy 2023, 2, e9120053.

[12]

Jian, Q. P.; Wang, T. S.; Sun, J.; Wu, M. C.; Zhao, T. S. In-situ construction of fluorinated solid-electrolyte interphase for highly reversible zinc anodes. Energy Storage Mater. 2022, 53, 559–568.

[13]

Chen, G. Y.; Sang, Z. Y.; Cheng, J. H.; Tan, S. D.; Yi, Z. H.; Zhang, X. Q.; Si, W. P.; Yin, Y. X.; Liang, J.; Hou, F. Reversible and homogenous zinc deposition enabled by in-situ grown Cu particles on expanded graphite for dendrite-free and flexible zinc metal anodes. Energy Storage Mater. 2022, 50, 589–597.

[14]

Xiong, P. X.; Lin, C. Y.; Wei, Y.; Kim, J. H.; Jang, G.; Dai, K. R.; Zeng, L. X.; Huang, S. P.; Kwon, S. J.; Lee, S. Y. et al. Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 2023, 8, 2718–2727.

[15]

Xiong, P. X.; Kang, Y. B.; Yuan, H. C.; Liu, Q.; Baek, S. H.; Park, J. M.; Dou, Q. Y.; Han, X. T.; Jang, W. S.; Kwon, S. J. et al. Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Appl. Phys. Rev. 2022, 9, 011401.

[16]

Fu, J. Z.; Wang, H. W.; Xiao, P.; Zeng, C.; Sun, Q. F.; Li, H. Q. A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Mater. 2022, 48, 191–191.f6.

[17]

Song, Y.; Ruan, P. C.; Mao, C. W.; Chang, Y. X.; Wang, L.; Dai, L.; Zhou, P.; Lu, B. A.; Zhou, J.; He, Z. X. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 2022, 14, 218.

[18]

Zou, Y. H.; Yang, X. Z.; Shen, L.; Su, Y. W.; Chen, Z. Y.; Gao, X.; Zhou, J.; Sun, J. Y. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ. Sci. 2022, 15, 5017–5038.

[19]

Li, L.; Jia, S. F.; Cheng, Z. Y.; Zhang, C. M. Improved strategies for separators in zinc-ion batteries. ChemSusChem 2023, 16, e202202330.

[20]

Ma, G. Q.; Miao, L. C.; Dong, Y.; Yuan, W. T.; Nie, X. Y.; Di, S. L.; Wang, Y. Y.; Wang, L. B.; Zhang, N. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 2022, 47, 203–210.

[21]

Lu, H. F.; Zhang, D.; Jin, Q. Z.; Zhang, Z. L.; Lyu, N.; Zhu, Z. J.; Duan, C. X.; Qin, Y.; Jin, Y. Gradient electrolyte strategy achieving long-life zinc anodes. Adv. Mater. 2023, 35, 2300620.

[22]

Bashir, T.; Zhou, S. W.; Yang, S. Q.; Ismail, S. A.; Ali, T.; Wang, H.; Zhao, J. Q.; Gao, L. J. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem. Energy Rev. 2023, 6, 5.

[23]

Chen, X. J.; Li, W.; Reed, D.; Li, X. L.; Liu, X. B. On energy storage chemistry of aqueous Zn-ion batteries: From cathode to anode. Electrochem. Energy Rev. 2023, 6, 33.

[24]
Qian, H. M.; Li, X. Y.; Chen, Q. C.; Liu, W.; Zhao, Z.; Ma, Z. D.; Cao, Y. Y.; Wang, J. J.; Li, W. B.; Xu, K. H. et al. LiZn/Li2O induced chemical confinement enabling dendrite-free Li-metal anode. Adv. Funct. Mater. 2023 , in press, DOI: 10.1002/adfm.202310143.
DOI
[25]

Gu, J. N.; Tao, Y.; Chen, H.; Cao, Z. J.; Zhang, Y. Z.; Du, Z. G.; Cui, Y. L. S.; Yang, S. B. Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 2022, 12, 2200115.

[26]

Hui, X. B.; Zhang, P.; Li, J. F.; Zhao, D. Y.; Li, Z. Q.; Zhang, Z. W.; Wang, C. X.; Wang, R. T.; Yin, L. W. In situ integrating highly ionic conductive LDH-array@PVA Gel electrolyte and MXene/Zn anode for dendrite-free high-performance flexible Zn-air batteries. Adv. Energy Mater. 2022, 12, 2201393.

[27]

Meng, P. Y.; Wang, W.; Shang, J. Y.; Liu, P.; Xu, H.; Wang, Q. G.; Wang, S. M.; Wang, F. F.; Wang, X. H. 2D VS2@MXene based zinc ion batteries with SPANI-contained electrolyte enables dendrite-free anode for stable cycling. Small Methods 2023, 7, 2201471.

[28]

Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2861–2865.

[29]

Shen, X. H.; Shi, S.; Li, B. L.; Li, S. Y.; Zhang, H. M.; Chen, S.; Deng, H. L.; Zhang, Q. S.; Zhu, J.; Duan, X. D. Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes. Adv. Funct. Mater. 2022, 32, 2206388.

[30]

Cao, B.; Liu, H.; Zhang, X.; Zhang, P.; Zhu, Q. Z.; Du, H. L.; Wang, L. L.; Zhang, R. P.; Xu, B. MOF-derived ZnS nanodots/Ti3C2T x MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 2021, 13, 202.

[31]

Yuan, N.; Deng, Y. R.; Wang, S. H.; Gao, L.; Yang, J. L.; Zou, N. C.; Liu, B. X.; Zhang, J. Q.; Liu, R. P.; Zhang, L. Towards superior lithium-sulfur batteries with metal-organic frameworks and their derivatives. Tungsten 2022, 4, 269–283.

[32]

Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.

[33]

Yao, L.; Gu, Q. F.; Yu, X. B. Three-dimensional MOFs@MXene aerogel composite derived mxene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano 2021, 15, 3228–3240.

[34]

He, Y. T.; Zhang, Y. H.; Li, X. F.; Lv, Z.; Wang, X. J.; Liu, Z. G.; Huang, X. Q. A novel ZnO-based inorganic/organic bilayer with low resistance for Li metal protection. Energy Storage Mater. 2018, 14, 392–401.

[35]

Wang, C. H.; Sakai, N.; Ebina, Y.; Tang, D. M.; Ma, R. Z.; Sasaki, T. One-nanometer-thick interfaces of titania nanosheets for reversible Zn-metal electrodes. ACS Mater. Lett. 2023, 5, 2156–2163.

[36]

Zhao, X.; Xu, H.; Hui, Z. Y.; Sun, Y.; Yu, C. Y.; Xue, J. L.; Zhou, R. C.; Wang, L. M.; Dai, H. H.; Zhao, Y. et al. Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small 2019, 15, 1904255.

[37]

Zhao, X.; Chen, Y.; Niu, R.; Tang, Y.; Chen, Y.; Su, H.; Yang, Z.; Jing, X.; Guan, H.; Gao, R.; et al. NIR plasmonic nanozymes: Synergistic enhancement mechanism and multi-modal anti-infection applications of MXene/MOFs. Adv. Mater. 2024, 36, 2307839.

[38]

Deng, Y. N.; Shen, Y. Y.; Du, Y.; Goto, T.; Zhang, J. F. A novel electrode hybrid of N-Ti3C2T x /CuS fabricated using ZIF-67 as an intermediate derivation for superhigh electrochemical properties of supercapacitors. J. Mater. Res. Technol. 2022, 19, 3507–3520.

[39]

Qi, F. Y.; Shao, L. Y.; Lu, X. Y.; Liu, G. P.; Shi, X. Y.; Sun, Z. P. MXene-derived TiSe2/TiO2/C heterostructured hexagonal prisms as high rate anodes for Na-ion and K-ion batteries. Appl. Surf. Sci. 2022, 605, 154653.

[40]

Na, J. H.; Oh, H. G.; Lee, S.; Park, S.-K. Designing a 3D MXene microsphere encapsulating MOF-derived ZnSe nanoparticles as an anode for highly stable potassium-ion batteries. J. Mater. Chem. A 2024, 12, 2848–2855.

[41]

Ali, A.; Nguyen, D. C. T.; Cho, K. Y.; Oh, W. C. A simple ultrasonic-synthetic route of Cu2Se-graphene-TiO2 ternary composites for carbon dioxide conversion processes. Fuller. Nanotub. Car. N. 2018, 26, 827–836.

[42]

Guan, K. L.; Tao, L.; Yang, R.; Zhang, H. N.; Wang, N. Z.; Wan, H. Z.; Cui, J.; Zhang, J.; Wang, H. B.; Wang, H. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 2022, 12, 2103557.

[43]

Cai, Z.; Ou, Y. T.; Wang, J. D.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R. M.; Sun, Y. M. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 2020, 27, 205–211.

[44]

Li, Y. Z.; Zhu, Q. Z.; Xu, M. Y.; Zang, B. Y.; Wang, Y.; Xu, B. Cu-modified Ti3C2Cl2 MXene with zincophilic and hydrophobic characteristics as a protective coating for highly stable Zn anode. Adv. Funct. Mater. 2023, 33, 2213416.

[45]

Yang, Z. F.; Lv, C. N.; Li, W. B.; Wu, T. Q.; Zhang, Q.; Tang, Y. G.; Shao, M. H.; Wang, H. Y. Revealing the two-dimensional surface diffusion mechanism for zinc dendrite formation on zinc anode. Small 2022, 18, 2104148.

[46]

Wang, S. N.; Wang, Z. Y.; Yin, Y. B.; Li, T. Y.; Chang, N. N.; Fan, F. T.; Zhang, H. M.; Li, X. F. A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy Environ. Sci. 2021, 14, 4077–4084.

[47]

Liu, M. Y.; Yuan, W. T.; Ma, G. Q.; Qiu, K. Y.; Nie, X. Y.; Liu, Y. C.; Shen, S. G.; Zhang, N. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes. Angew. Chem., Int. Ed. 2023, 62, e202304444.

[48]

Zhao, R. Z.; Dong, X. S.; Liang, P.; Li, H. P.; Zhang, T. S.; Zhou, W. H.; Wang, B. Y.; Yang, Z. D.; Wang, X.; Wang, L. P. et al. Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 2023, 35, 2209288.

[49]

Xie, S. Y.; Li, Y.; Li, X.; Zhou, Y. J.; Dang, Z. Q.; Rong, J. H.; Dong, L. B. Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 2021, 14, 39.

[50]

Li, X. L.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z. D.; Liang, G. J.; Zhao, Y. W.; Ma, L. T.; Li, M. et al. Toward a practical Zn powder anode: Ti3C2T x MXene as a lattice-match electrons/ions redistributor. ACS Nano 2021, 15, 14631–14642.

[51]

Yuksel, R.; Buyukcakir, O.; Seong, W. K.; Ruoff, R. S. Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 2020, 10, 1904215.

[52]

Zhu, X. D.; Li, X. Y.; Essandoh, M. L. K.; Tan, J.; Cao, Z. Y.; Zhang, X.; Dong, P.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 2022, 50, 243–251.

[53]

Chen, T.; Wang, Y. N.; Yang, Y.; Huang, F.; Zhu, M. K.; Ang, B. T. W.; Xue, J. M. Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv. Funct. Mater. 2021, 31, 2101607.

[54]

Fayette, M.; Chang, H. J.; Li, X. L.; Reed, D. High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 2022, 7, 1888–1895.

[55]

Xiong, P. X.; Zhang, Y.; Zhang, J. R.; Baek, S. H.; Zeng, L. X.; Yao, Y.; Park, H. S. Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 2022, 4, 100076.

[56]

Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

[57]

Fu, Y. Q.; Wei, Q. L.; Zhang, G. X.; Wang, X. M.; Zhang, J. H.; Hu, Y. F.; Wang, D. N.; Zuin, L.; Zhou, T.; Wu, Y. C. et al. High-performance reversible aqueous Zn-ion battery based on porous MnO x nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 2018, 8, 1801445.

File
0115_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 December 2023
Revised: 18 January 2024
Accepted: 27 January 2024
Published: 01 March 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52302105 and 51962032), the program for Strong Youth Technology Leading Talents (2023CB008-11), the Youth Innovative Top Talents Fund, Shihezi University (CXBJ202203), Youth Science and Technology Innovation Leading Talent Fund, Shihezi (2023RC02), Youth Innovation Promotion Association CAS (2021433). The authors also thank Shiyanjia Lab (www.shiyanjia.com) for the support of XRD, SEM and XPS tests.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return