AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Heterogeneous network of 2D MOFs decorated 1D CNTs imparting multiple functionalities to composite phase change materials

Xuemei Diao1Xiaowei Zhang1( )Yang Li1Xiao Chen1Zhiyong Zhao1Peng Wang1Panpan Liu1Hongyi Gao2,3Ge Wang2( )
Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, China
Show Author Information

Graphical Abstract

The paraffin wax (PW)-based multifunctional composite PCMs with a hierarchical network structure are designed by assembling two‐dimensional (2D) nickel-based metal-organic frameworks (Ni-MOFs) with carbon nanotubes (CNTs). The resultant PW/CNTs@Ni-MOF composite PCMs yield an excellent photothermal energy conversion efficiency of 93.2%, a good phase change enthalpy of 126.5 J/g, and great microwave absorption with –20.65 dB minimum reflection loss at 7.27 GHz.

Abstract

Advanced multifunctional composite phase change materials (PCMs) for integrating energy storage, photothermal conversion and microwave absorption can promote the development of next-generation miniaturized electronic devices. Here, we report paraffin wax (PW)-based multifunctional composite PCMs with a hierarchical network structure assembled by two‐dimensional (2D) nickel-based metal-organic frameworks (Ni-MOFs) decorated carbon nanotubes (CNTs). The PW/CNTs@Ni-MOF composite PCMs yield an excellent photothermal energy conversion efficiency of 93.2%, as well as a good phase change enthalpy of 126.5 J/g and prominent thermal stability. Preferably, the composite PCMs also present great microwave absorption with –25.32 dB minimum reflection loss (RLmin) at 9.85 GHz. The remarkable features of the composite PCMs lie in their hierarchical network architecture and the synergistic enhancement of CNTs and MOFs, giving rise to the increased surface area, accelerated photon capture and transmission, and enhanced dielectric loss caused by polarization effects and multiple reflections, thus further boosting the latent energy storage capacity, photothermal kinetics, and microwave reflection loss. This work provides a facile and scalable approach to regulating the multifunction of composite PCMs.

Electronic Supplementary Material

Download File(s)
0113_ESM.pdf (725.2 KB)

References

[1]

Wang, G.; Tang, Z. D.; Gao, Y.; Liu, P. P.; Li, Y.; Li, A.; Chen, X. Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 2023, 123, 6953–7024.

[2]

Yan, Q. W.; Dai, W.; Gao, J. Y.; Tan, X.; Lv, L.; Ying, J. F.; Lu, X. X.; Lu, J. B.; Yao, Y. G.; Wei, Q. P. et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable Heat spreader. ACS Nano 2021, 15, 6489–6498.

[3]

Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 2022, 15, 9926–9935.

[4]

Liu, Y.; Zheng, R. W.; Li, J. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renew. Sustain. Energy Rev. 2022, 168, 112783.

[5]

Wu, M. Q.; Li, T. X.; Wang, P. F.; Wu, S.; Wang, R. Z.; Lin, J. Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management. Small 2022, 18, 2105647.

[6]

Aftab, W.; Usman, A.; Shi, J. M.; Yuan, K. J.; Qin, M. L.; Zou, R. Q. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 2021, 14, 4268–4291.

[7]

Liu, L.; Zhang, Y. A.; Zhang, S. F.; Tang, B. T. Advanced phase change materials from natural perspectives: Structural design and functional applications. Adv. Sci. 2023, 10, 2207652.

[8]

Liu, P. P.; Chen, X.; Li, Y.; Cheng, P.; Tang, Z. D.; Lv, J. J.; Aftab, W.; Wang, G. Aerogels meet phase change materials: Fundamentals, advances, and beyond. ACS Nano 2022, 16, 15586–15626.

[9]

Atinafu, D. G.; Yun, B. Y.; Yang, S.; Yuk, H.; Wi, S.; Kim, S. Structurally advanced hybrid support composite phase change materials: Architectural synergy. Energy Storage Mater. 2021, 42, 164–184.

[10]

Shi, J. M.; Qin, M. L.; Aftab, W.; Zou, R. Q. Flexible phase change materials for thermal energy storage. Energy Storage Mater. 2021, 41, 321–342.

[11]

Chen, W. C.; Liu, Y. X.; Liang, X. H.; Wang, S. F.; Gao, X. N.; Zhang, Z. G.; Fang, Y. T. High-performance macro-encapsulated composite for photothermal conversion and latent heat storage. J. Energy Storage 2022, 55, 105405.

[12]

Wen, R. L.; Zhu, S. B.; Wu, M. M.; Chen, W. X. Design and preparation of Ag modified expanded graphite based composite phase change materials with enhanced thermal conductivity and light-to-thermal properties. J. Energy Storage 2021, 41, 102936.

[13]

Akhiani, A. R.; Cornelis Metselaar, H. S.; Ang, B. C.; Mehrali, M.; Mehrali, M. MXene/rGO grafted sponge with an integrated hydrophobic structure towards light-driven phase change composites. Compos. Part B Eng. 2023, 264, 110885.

[14]

Li, Y.; Li, Y. Q.; Huang, X. B.; Zheng, H. Y.; Lu, G. L.; Xi, Z. S.; Wang, G. Graphene-CoO/PEG composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity. Compos. Sci. Technol. 2020, 195, 108197.

[15]
Chen, X.; Wang, L.; Gao, Y.; Li, Y.; Zhang, X. W.; Jiang, Y.; Wang, G. Co/N co-doped flower-like carbon-based phase change materials toward solar energy harvesting. Aggregate, in press, DOI: 10.1002/agt2.413.
[16]

Chen, Y. Z.; Chen, J. L.; Hao, Z. F.; Selim, M. S.; Yu, J.; Chen, X. Polyvinylpyrrolidone-bridged MXene skeleton constructed by photothermal assisted sacrificial template method for phase change materials with form stability and photothermal conversion. Chem. Eng. J. 2023, 463, 142375.

[17]

Xia, Y. X.; Gao, W. W.; Gao, C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Adv. Funct. Mater. 2022, 32, 2204591.

[18]

Wang, X. Y.; Xing, X. F.; Zhu, H. S.; Li, J.; Liu, T. State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective. Adv. Colloid Interface Sci. 2023, 318, 102960.

[19]

Wang, P.; Ba, X. H.; Zhang, X. W.; Gao, H. Y.; Han, M. Y.; Zhao, Z. Y.; Chen, X.; Wang, L. M.; Diao, X. M.; Wang, G. Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH. Chem. Eng. J. 2023, 457, 141248.

[20]

Yan, P. Q.; Guo, W. H.; Liang, Z. B.; Meng, W.; Yin, Z.; Li, S. W.; Li, M. Z.; Zhang, M. T.; Yan, J.; Xiao, D. Q. et al. Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis. Nano Res. 2019, 12, 2341–2347.

[21]

Han, M. Y.; Zhang, X. W.; Gao, H. Y.; Chen, S. Y.; Cheng, P.; Wang, P.; Zhao, Z. Y.; Dang, R.; Wang, G. In situ semi-sacrificial template-assisted growth of ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Chem. Eng. J. 2021, 426, 131348.

[22]

Zhu, B. J.; Zou, R. Q.; Xu, Q. Metal-organic framework based catalysts for hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801193.

[23]

Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

[24]

Ma, Y.; Yang, H.; Zuo, H. Y.; Ma, Y.; Zuo, Q. S.; Chen, Y.; He, X. X.; Wei, R. R. Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling. Energy 2023, 278, 127798.

[25]

Chen, X.; Xu, J. H.; Li, Y.; Gao, Y.; Wang, G. Integrating multiple energy storage in 1D-2D bridged array carbon-based phase change materials. SusMat 2023, 3, 510–521.

[26]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009.

[27]

Zhang, X.; Qiao, J.; Jiang, Y. Y.; Wang, F. L.; Tian, X. L.; Wang, Z.; Wu, L. L.; Liu, W.; Liu, J. R. Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 2021, 13, 135.

[28]

Liu, D. W.; Du, Y. C.; Xu, P.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 2021, 9, 5086–5096.

[29]

Song, S. K.; Ai, H.; Zhu, W. T.; Lv, L. D.; Feng, R.; Dong, L. J. Carbon aerogel based composite phase change material derived from kapok fiber: Exceptional microwave absorbility and efficient solar/magnetic to thermal energy storage performance. Compos. Part B Eng. 2021, 226, 109330.

[30]

Gao, Y.; Lin, J. J.; Chen, X.; Tang, Z. D.; Qin, G.; Wang, G. Engineering 2D MXene and LDH into 3D hollow framework for boosting photothermal energy storage and microwave absorption. Small 2023, 19, 2303113.

[31]

Li, D. Y.; Zhao, L. L.; Xia, Q.; Wang, J.; Liu, X. M.; Xu, H. R.; Chou, S. L. Activating MoS2 nanoflakes via sulfur defect engineering wrapped on CNTs for stable and efficient Li-O2 batteries. Adv. Funct. Mater. 2022, 32, 2108153.

[32]

Li, Y. Q.; Zhang, L. Y.; Wang, X. L.; Xia, X. H.; Xie, D.; Gu, C. D.; Tu, J. P. Sodium-storage behavior of electron-rich element-doped amorphous carbon. Appl. Phys. Rev. 2021, 8, 011402.

[33]

Niu, B. T.; Liu, M. M.; Li, X. L.; Guo, H. X.; Chen, Z. X. Vein-like Ni-BTC@Ni3S4 with sulfur vacancy and Ni3+ fabricated in situ etching vulcanization strategy for an electrochemical sensor of dopamine. ACS Appl. Mater. Interfaces 2023, 15, 13319–13331.

[34]

Chen, Q. L.; Lei, S. J.; Deng, P. Q.; Ou, X. L.; Chen, L. F.; Wang, W.; Xiao, Y. H.; Cheng, B. C. Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. J. Mater. Chem. A 2017, 5, 19323–19332.

[35]

Zhou, Y.; Wang, X. J.; Liu, X. D.; Sheng, D. K.; Ji, F. C.; Dong, L.; Xu, S. B.; Wu, H. H.; Yang, Y. M. Polyurethane-based solid-solid phase change materials with halloysite nanotubes-hybrid graphene aerogels for efficient light- and electro-thermal conversion and storage. Carbon 2019, 142, 558–566.

[36]

Cui, X. M.; Ruan, Q. F.; Zhuo, X. L.; Xia, X. Y.; Hu, J. T.; Fu, R. F.; Li, Y.; Wang, J. F.; Xu, H. X. Photothermal nanomaterials: A powerful light-to-heat converter. Chem. Rev. 2023, 123, 6891–6952.

[37]

Xiong, Z. C.; Zhu, Y. J.; Qin, D. D.; Chen, F. F.; Yang, R. L. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification. Small 2018, 14, 1803387.

[38]

Liu, P. P.; Li, Y.; Tang, Z. D.; Lv, J. J.; Cheng, P.; Diao, X. M.; Jiang, Y.; Chen, X.; Wang, G. Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS2@CNTs. J. Energy Chem. 2023, 84, 41–49.

[39]

Hu, T.; Chang, S. Y.; Wu, H. Z.; Li, L.; Yuan, W. H. Construction of high thermal conductivity MOFs composite phase change materials with reinforced light-to-thermal conversion. Sol. Energy Mater. Sol. Cells 2021, 232, 111339.

[40]

Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

[41]

Pan, F.; Pei, K.; Chen, G.; Guo, H. T.; Jiang, H. J.; Che, R. C.; Lu, W. Integrated electromagnetic device with On-Off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 2023, 33, 2306599.

[42]

Ding, J. W.; Shi, R. R.; Gong, C. C.; Wang, C. X.; Guo, Y.; Chen, T.; Zhang, Y. J.; Cong, H. W.; Shi, C. S.; He, F. Defect engineering activates Schottky heterointerfaces of graphene/CoSe2 composites with ultrathin and lightweight design strategies to boost electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2305463.

[43]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[44]

Zhao, H. M.; Li, D.; Yang, Y.; Liu, Y. T.; Li, J.; Mao, J. Auricular plaster therapy for comorbid insomnia: A systematic review and meta-analysis of randomized controlled trials. Evid. Based Complement. Alternat. Med. 2019, 2019, 7120169.

Nano Research Energy
Article number: e9120114
Cite this article:
Diao X, Zhang X, Li Y, et al. Heterogeneous network of 2D MOFs decorated 1D CNTs imparting multiple functionalities to composite phase change materials. Nano Research Energy, 2024, 3: e9120114. https://doi.org/10.26599/NRE.2024.9120114

1396

Views

273

Downloads

2

Crossref

2

Scopus

Altmetrics

Received: 17 October 2023
Revised: 27 November 2023
Accepted: 05 December 2023
Published: 26 February 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return