Journal Home > Online First

Electrocatalytic carbon dioxide reduction reaction (CO2RR) holds the promise of both overcoming the greenhouse effect and synthesizing a wealth of chemicals. Electrocatalytic CO2 reduction toward carbon-containing products, including C1 products (carbon monoxide, formic acid, etc), C2 products (ethylene, ethanol, etc.) and multi-carbon products (e.g., n-propanol), provides beneficial fuel and chemicals for industrial production. The complexity of the multi-proton transfer processes and difficulties of C-C coupling in electrochemical CO2 reduction toward multi-carbon(C2+) products have attracted increasing concerns on the design of catalysts in comparison with those of C1 products. In this paper, we review the main advances in the syntheses of multi-carbon products through electrocatalytic carbon dioxide reduction in recent years, introduce the basic principles of electrocatalytic CO2RR, and detailly elucidate two widely accepted mechanisms of C-C coupling reactions. Among abundant nanomaterials, copper-based catalysts are outstanding catalysts for the preparation of multi-carbon chemicals in electrochemical CO2RR attributing to effective C-C coupling reactions. Regarding the different selectivity of multi-carbon chemicals but extensively applied copper-based catalysts, we classify and summarize various Cu-based catalysts through separating diverse multi-carbon products, where the modification of spatial and electronic structures is beneficial to increase the coverage of CO or lower the activation energy barrier for forming C-C bond to form the key intermediates and increase the production of multi-carbon products. Challenges and prospects involving the fundamental and development of copper-based catalysts in electrochemical CO2 reduction reaction are also proposed.


menu
Abstract
Full text
Outline
About this article

Recent advances in copper-based catalysts for electrocatalytic CO2 reduction toward multi-carbon products

Show Author's information Qiang Wang1Hehe Wei1( )Ping Liu2( )Zixiang Su1Xue-Qing Gong1,3
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

Abstract

Electrocatalytic carbon dioxide reduction reaction (CO2RR) holds the promise of both overcoming the greenhouse effect and synthesizing a wealth of chemicals. Electrocatalytic CO2 reduction toward carbon-containing products, including C1 products (carbon monoxide, formic acid, etc), C2 products (ethylene, ethanol, etc.) and multi-carbon products (e.g., n-propanol), provides beneficial fuel and chemicals for industrial production. The complexity of the multi-proton transfer processes and difficulties of C-C coupling in electrochemical CO2 reduction toward multi-carbon(C2+) products have attracted increasing concerns on the design of catalysts in comparison with those of C1 products. In this paper, we review the main advances in the syntheses of multi-carbon products through electrocatalytic carbon dioxide reduction in recent years, introduce the basic principles of electrocatalytic CO2RR, and detailly elucidate two widely accepted mechanisms of C-C coupling reactions. Among abundant nanomaterials, copper-based catalysts are outstanding catalysts for the preparation of multi-carbon chemicals in electrochemical CO2RR attributing to effective C-C coupling reactions. Regarding the different selectivity of multi-carbon chemicals but extensively applied copper-based catalysts, we classify and summarize various Cu-based catalysts through separating diverse multi-carbon products, where the modification of spatial and electronic structures is beneficial to increase the coverage of CO or lower the activation energy barrier for forming C-C bond to form the key intermediates and increase the production of multi-carbon products. Challenges and prospects involving the fundamental and development of copper-based catalysts in electrochemical CO2 reduction reaction are also proposed.

Keywords: electrocatalysis, carbon dioxide reduction, multi-carbon products, copper-based catalyst, C-C coupling

References(258)

[1]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[2]

Yang, H. Q.; Xu, Z. H.; Fan, M. H.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27.

[3]

Solomon, S.; Plattner, G. K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709.

[4]

Schiermeier, Q. Increased flood risk linked to global warming. Nature 2011, 470, 316–316.

[5]

Mallapaty, S. How China could be carbon neutral by mid-century. Nature 2020, 586, 482–483.

[6]

Liu, A. M.; Gao, M. F.; Ren, X. F.; Meng, F. N.; Yang, Y. N.; Gao, L. G.; Yang, Q. Y.; Ma, T. L. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J. Mater. Chem. A 2020, 8, 3541–3562.

[7]

Cuéllar-Franca, R. M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102.

[8]

Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev. 2014, 114, 1709–1742.

[9]

Li, X.; Shi, H.; Gu, Y. H.; Cheng, Q. Y.; Wang, Y. J. Cobalt element effect of ternary mesoporous cerium lanthanum solid solution for the catalytic conversion of methanol and CO2 into dimethyl carbonate. Molecules 2022, 27, 270.

[10]

Hedrick, J. L.; Piunova, V.; Park, N. H.; Erdmann, T.; Arrechea, P. L. Simple and efficient synthesis of functionalized cyclic carbonate monomers using carbon dioxide. ACS Macro Lett. 2022, 11, 368–375.

[11]

Xiang, K. S.; Shen, F. H.; Fu, Y. X.; Wu, L.; Wang, Z. J.; Yi, H. M.; Liu, X. D.; Wang, P. S.; Liu, M.; Lin, Z. et al. Boosting CO2 electroreduction towards C2+ products via CO* intermediate manipulation on copper-based catalysts. Environ. Sci. Nano 2022, 9, 911–953.

[12]
Global Monitoring Laboratory. Carbon Dioxide Peaks Near 420 Parts per Million at Manua Loa Observatory [Online]. National Oceanic and Atmospheric Administration: Washington. https://gml.noaa.gov/ccgg/trends/global.html.
[13]

She, X. J.; Wang, Y. F.; Xu, H.; Chi Edman Tsang, S.; Ping Lau, S. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angew. Chem., Int. Ed. 2022, 61, e202211396.

[14]

Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

[15]

Li, C. M.; Yuan, X. D.; Fujimoto, K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite. Appl. Catal. A Gen. 2014, 475, 155–160.

[16]

Hu, X. S.; Liu, X. Y.; Hu, X.; Zhao, C. Y.; Guan, Q. X.; Li, W. Hybrid catalyst coupling Zn single atoms and CuN x clusters for synergetic catalytic reduction of CO2. Adv. Funct. Mater. 2023, 33, 2214215.

[17]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[18]

Huang, Q.; Yu, J. G.; Cao, S. W.; Cui, C.; Cheng, B. Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Appl. Surf. Sci. 2015, 358, 350–355.

[19]

Huang, Y.; Wang, Y. J.; Bi, Y. Q.; Jin, J. R.; Ehsan, M. F.; Fu, M.; He, T. Preparation of 2D hydroxyl-rich carbon nitride nanosheets for photocatalytic reduction of CO2. RSC Adv. 2015, 5, 33254–33261.

[20]

An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

[21]

Arán-Ais, R. M.; Scholten, F.; Kunze, S.; Rizo, R.; Roldan Cuenya, B. The role of in-situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 2020, 5, 317–325.

[22]

Bienen, F.; Kopljar, D.; Geiger, S.; Wagner, N.; Friedrich, K. A. Investigation of CO2 electrolysis on tin foil by electrochemical impedance spectroscopy. ACS Sustain. Chem. Eng. 2020, 8, 5192–5199.

[23]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[24]

Shen, M.; Zhang, L. X.; Shi, J. L. Converting CO2 into fuels by graphitic carbon nitride-based photocatalysts. Nanotechnology 2018, 29, 412001.

[25]

Shen, M.; Zhang, L. X.; Wang, M.; Tian, J. J.; Jin, X. X.; Guo, L. M.; Wang, L. Z.; Shi, J. L. Carbon-vacancy modified graphitic carbon nitride: Enhanced CO2 photocatalytic reduction performance and mechanism probing. J. Mater. Chem. A 2019, 7, 1556–1563.

[26]

Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In-situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441.

[27]

Hou, M.; Shi, Y. X.; Li, J. J.; Gao, Z. Q.; Zhang, Z. C. Cu-based organic-inorganic composite materials for electrochemical CO2 reduction. Chem. Asian J. 2022, 17, e202200624.

[28]

Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560–587.

[29]

Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594, 1–19.

[30]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[31]

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

[32]

Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

[33]

Ren, W. H.; Tan, X.; Qu, J. T.; Li, S. S.; Li, J. T.; Liu, X.; Ringer, S. P.; Cairney, J. M.; Wang, K. X.; Smith, S. C. et al. Isolated copper-tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.

[34]

Cao, X. Y.; Zhao, L. L.; Wulan, B.; Tan, D. X.; Chen, Q. W.; Ma, J. Z.; Zhang, J. T. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202113918.

[35]

Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeO x . Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

[36]

Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

[37]

Ye, K.; Zhou, Z. W.; Shao, J. Q.; Lin, L.; Gao, D. F.; Ta, N.; Si, R.; Wang, G. X.; Bao, X. H. In-situ reconstruction of a hierarchical Sn-Cu/SnO x core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 4814–4821.

[38]

Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinrück, H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K. et al. RETRACTED ARTICLE: Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2019, 2, 55–61.

[39]

Wang, X.; Li, F. L.; Yin, W. J.; Si, Y. B.; Miao, M.; Wang, X. M.; Fu, Y. Z. Atomically dispersed Sn modified with trace sulfur species derived from organosulfide complex for electroreduction of CO2. Appl. Catal. B Environ. 2022, 304, 120936.

[40]

Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.

[41]

Bonin, J.; Maurin, A.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord. Chem. Rev. 2017, 334, 184–198.

[42]

Woldu, A. R.; Huang, Z. L.; Zhao, P. X.; Hu, L. S.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340.

[43]

Zeng, M.; Liu, Y.; Hu, Y. M.; Zhang, X. Y. High-efficient CO2 electrocatalysis over nanoporous Au film enabled by a combined pore engineering and ionic liquid-mediated approach. Chem. Eng. J. 2021, 425, 131663.

[44]

Abeyweera, S. C.; Yu, J.; Perdew, J. P.; Yan, Q. M.; Sun, Y. G. Hierarchically 3D porous Ag nanostructures derived from silver benzenethiolate nanoboxes: Enabling CO2 reduction with a near-unity selectivity and mass-specific current density over 500 A/g. Nano Lett. 2020, 20, 2806–2811.

[45]

Vasileff, A.; Zhi, X.; Xu, C. C.; Ge, L.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 2019, 9, 9411–9417.

[46]

Li, Y. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F. W. ; de Arquer, F. P. G. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584–8591.

[47]

Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.

[48]

Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: Classifying Cu facets. ACS Catal. 2019, 9, 7894–7899.

[49]

Rendón-Calle, A.; Builes, S.; Calle-Vallejo, F. A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Curr. Opin. Electrochem. 2018, 9, 158–165.

[50]

Li, J.; Ozden, A.; Wan, M. Y.; Hu, Y. F.; Li, F. W.; Wang, Y. H.; Zamani, R. R.; Ren, D.; Wang, Z. Y.; Xu, Y. et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 2021, 12, 2808.

[51]

Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 2003, 199, 39–47.

[52]

Choi, C.; Kwon, S.; Cheng, T.; Xu, M. J.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X. Q.; Duan, X. F. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812.

[53]

Ishimaru, S.; Shiratsuchi, R.; Nogami, G. Pulsed electroreduction of CO2 on Cu-Ag alloy electrodes. J. Electrochem. Soc. 2000, 147, 1864.

[54]

Rüscher, M.; Herzog, A.; Timoshenko, J.; Jeon, H. S.; Frandsen, W.; Kühl, S.; Roldan Cuenya, B. Tracking heterogeneous structural motifs and the redox behaviour of copper-zinc nanocatalysts for the electrocatalytic CO2 reduction using operando time resolved spectroscopy and machine learning. Catal. Sci. Technol. 2022, 12, 3028–3043.

[55]

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

[56]

Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W. et al. Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl. Mater. Interfaces 2018, 10, 8574–8584.

[57]

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

[58]

Xiao, H.; Goddard III, W. A.; Cheng, T.; Liu, Y. Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6685–6688.

[59]

Liu, Y. Y.; Zhu, H. L.; Zhao, Z. H.; Huang, N. Y.; Liao, P. Q.; Chen, X. M. Insight into the effect of the d-orbital energy of copper ions in metal-organic frameworks on the selectivity of electroreduction of CO2 to CH4. ACS Catal. 2022, 12, 2749–2755.

[60]

Senthil Kumar, R.; Senthil Kumar, S.; Anbu Kulandainathan, M. Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 2012, 25, 70–73.

[61]

Lim, D. H.; Jo, J. H.; Shin, D. Y.; Wilcox, J.; Ham, H. C.; Nam, S. W. Carbon dioxide conversion into hydrocarbon fuels on defective graphene-supported Cu nanoparticles from first principles. Nanoscale 2014, 6, 5087–5092.

[62]

Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 1989, 85, 2309–2326.

[63]

Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu x Zn catalysts. ACS Catal. 2016, 6, 8239–8247.

[64]

Lee, J. C.; Kim, J. Y.; Joo, W. H.; Hong, D.; Oh, S. H.; Kim, B.; Lee, G. D.; Kim, M.; Oh, J.; Joo, Y. C. Thermodynamically driven self-formation of copper-embedded nitrogen-doped carbon nanofiber catalysts for a cascade electroreduction of carbon dioxide to ethylene. J. Mater. Chem. A 2020, 8, 11632–11641.

[65]
Frese, K. W. Jr. Electrochemical reduction of CO2 at solid electrodes. In Electrochemical and Electrocatalytic Reactions of Carbon Dioxide. Sullivan, B. P., Ed.; Elsevier: Amsterdam, 1993; pp 145–216.
DOI
[66]

Wang, J.; Zhang, Y. M.; Ma, Y. B.; Yin, J. W.; Wang, Y. H.; Fan, Z. X. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials. ACS Mater. Lett. 2022, 4, 2058–2079.

[67]

Yang, Y. S.; Tan, Z. H.; Zhang, J. L. Electrocatalytic carbon dioxide reduction to ethylene over copper-based catalytic systems. Chem. Asian J. 2022, 17, e202200893.

[68]

Yang, T. H.; Kuang, M.; Yang, J. P. Tandem engineering for CO2 electrolysis toward multicarbon products. Nano Res. 2023, 16, 8670–8683.

[69]

Jaster, T.; Gawel, A.; Siegmund, D.; Holzmann, J.; Lohmann, H.; Klemm, E.; Apfel, U. P. Electrochemical CO2 reduction toward multicarbon alcohols-the microscopic world of catalysts & process conditions. iScience 2022, 25, 104010.

[70]

Pan, F. P.; Yang, X. X.; O'Carroll, T.; Li, H. Y.; Chen, K. J.; Wu, G. Carbon catalysts for electrochemical CO2 reduction toward multicarbon products. Adv. Energy Mater. 2022, 12, 2200586.

[71]

Liang, H. Q.; Beweries, T.; Francke, R.; Beller, M. Molecular catalysts for the reductive homocoupling of CO2 towards C2+ compounds. Angew. Chem., Int. Ed. 2022, 61, e202200723.

[72]

Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

[73]

Wang, H. B.; Zhang, H.; Huang, Y.; Wang, H. Y.; Ozden, A.; Yao, K. L.; Li, H. M.; Guo, Q. Y.; Liu, Y. C.; Vomiero, A. et al. Strain in copper/ceria heterostructure promotes electrosynthesis of multicarbon products. ACS Nano 2023, 17, 346–354.

[74]

Mangione, G.; Huang, J. F.; Buonsanti, R.; Corminboeuf, C. Dual-facet mechanism in copper nanocubes for electrochemical CO2 reduction into ethylene. J. Phys. Chem. Lett. 2019, 10, 4259–4265.

[75]

Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.

[76]

Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

[77]

Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

[78]

Yang, H. P.; Lin, Q.; Zhang, C.; Yu, X. Y.; Cheng, Z.; Li, G. D.; Hu, Q.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 2020, 11, 593.

[79]

Cui, H. J.; Guo, Y. B.; Guo, L. M.; Wang, L.; Zhou, Z.; Peng, Z. Q. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J. Mater. Chem. A 2018, 6, 18782–18793.

[80]

Quan, W. W.; Lin, Y. B.; Luo, Y. J.; Huang, Y. Y. Electrochemical CO2 reduction on Cu: Synthesis-controlled structure preference and selectivity. Adv. Sci. 2021, 8, 2101597.

[81]

Fan, Q.; Zhang, M. L.; Jia, M. W.; Liu, S. Z.; Qiu, J. S.; Sun, Z. Y. Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 2018, 10, 280–301.

[82]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[83]

Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal. 2018, 8, 1490–1499.

[84]

Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119.

[85]

Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

[86]

Calle-Vallejo, F.; Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem., Int. Ed. 2013, 52, 7282–7285.

[87]

Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem., Int. Ed. 2017, 56, 3621–3624.

[88]

Xiong, L. K.; Zhang, X.; Yuan, H.; Wang, J.; Yuan, X. Z.; Lian, Y. B.; Jin, H. D.; Sun, H.; Deng, Z.; Wang, D. et al. Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem., Int. Ed. 2021, 60, 2508–2518.

[89]

Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire Arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

[90]

Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 2015, 6, 2032–2037.

[91]

Ou, L. H.; Chen, Y. D.; Jin, J. L. The origin of CO2 electroreduction into C1 and C2 species: Mechanistic understanding on the product selectivity of Cu single-crystal faces. Chem. Phys. Lett. 2018, 710, 175–179.

[92]

Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

[93]

Katayama, Y.; Nattino, F.; Giordano, L.; Hwang, J.; Rao, R. R.; Andreussi, O.; Marzari, N.; Shao-Horn, Y. An in-situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: Selectivity dependence on surface C-bound and O-bound reaction intermediates. J. Phys. Chem. C 2019, 123, 5951–5963.

[94]

Xiao, H.; Cheng, T.; Goddard III, W. A.; Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 2016, 138, 483–486.

[95]

Cheng, T.; Xiao, H.; Goddard III, W. A. Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0. J. Phys. Chem. Lett. 2015, 6, 4767–4773.

[96]

Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M. Identification of possible pathways for C-C bond formation during electrochemical reduction of CO2: New theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 2016, 7, 1471–1477.

[97]

Cheng, T.; Xiao, H.; Goddard III, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. USA 2017, 114, 1795–1800.

[98]

Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

[99]

Cao, Y. F.; Chen, Z.; Li, P. H.; Ozden, A.; Ou, P. F.; Ni, W. Y.; Abed, J.; Shirzadi, E.; Zhang, J. Q.; Sinton, D. et al. Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat. Commun. 2023, 14, 2387.

[100]

Ma, Z. S.; Yang, Z. L.; Lai, W. C.; Wang, Q. Y.; Qiao, Y.; Tao, H. L.; Lian, C.; Liu, M.; Ma, C.; Pan, A. et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 2022, 13, 7596.

[101]

Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 2021, 4, 654–662.

[102]

Fan, M. Y.; Huang, J. E.; Miao, R. K.; Mao, Y.; Ou, P. F.; Li, F.; Li, X. Y.; Cao, Y. F.; Zhang, Z. S.; Zhang, J. Q. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 2023, 6, 763–772.

[103]

Zou, X. Y.; Gu, J. Strategies for efficient CO2 electroreduction in acidic conditions. Chin. J. Catal. 2023, 52, 14–31.

[104]

Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822–4827.

[105]

Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. USA 2018, 115, E9261–E9270.

[106]

Lum, Y.; Cheng, T.; Goddard III, W. A.; Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 2018, 140, 9337–9340.

[107]

Tang, M. T.; Peng, H. J.; Stenlid, J. H.; Abild-Pedersen, F. Exploring trends on coupling mechanisms toward C3 product formation in CO(2)R. J. Phys. Chem. C 2021, 125, 26437–26447.

[108]

Long, C.; Liu, X. L.; Wan, K. W.; Jiang, Y. H.; An, P. F.; Yang, C. Y.; Wu, G. L.; Wang, W. Y.; Guo, J.; Li, L. et al. Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Sci. Adv. 2023, 9, eadi6119.

[109]

Peng, C.; Luo, G.; Zhang, J. B.; Chen, M. H.; Wang, Z. Q.; Sham, T. K.; Zhang, L. J.; Li, Y. F.; Zheng, G. F. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 2021, 12, 1580.

[110]

Gao, J.; Bahmanpour, A.; Kröcher, O.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. Nat. Chem. 2023, 15, 705–713.

[111]

Phong Duong, H.; Rivera de la Cruz, J. G.; Tran, N. H.; Louis, J.; Zanna, S.; Portehault, D.; Zitolo, A.; Walls, M.; Peron, D. V.; Schreiber, M. W. et al. Silver and copper nitride cooperate for CO electroreduction to propanol. Angew. Chem., Int. Ed. 2023, 62, e202310788.

[112]

Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

[113]

Tan, D. X.; Wulan, B.; Cao, X. Y.; Zhang, J. T. Strong interactions of metal-support for efficient reduction of carbon dioxide into ethylene. Nano Energy 2021, 89, 106460.

[114]

Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 6986–6994.

[115]

Ning, H.; Mao, Q. H.; Wang, W. H.; Yang, Z. X.; Wang, X. S.; Zhao, Q. S.; Song, Y.; Wu, M. B. N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4. J. Alloys Comps. 2019, 785, 7–12.

[116]

Ning, H.; Wang, X. S.; Wang, W. H.; Mao, Q. H.; Yang, Z. X.; Zhao, Q. S.; Song, Y.; Wu, M. B. Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. Carbon 2019, 146, 218–223.

[117]

Yang, H. J.; Yang, H.; Hong, Y. H.; Zhang, P. Y.; Wang, T.; Chen, L. N.; Zhang, F. Y.; Wu, Q. H.; Tian, N.; Zhou, Z. Y. et al. Promoting ethylene selectivity from CO2 electroreduction on CuO supported onto CO2 capture materials. ChemSusChem 2018, 11, 881–887.

[118]

Zhang, J. G.; Guo, Y. T.; Shang, B.; Fan, T. T.; Lian, X. Y.; Huang, P. P.; Dong, Y. Y.; Chen, Z.; Yi, X. D. Unveiling the synergistic effect between graphitic carbon nitride and Cu2O toward CO2 electroreduction to C2H4. ChemSusChem 2021, 14, 929–937.

[119]

Yan, Z. Y.; Wang, X. X.; Tan, Y.; Liu, A. H.; Luo, F. Q.; Zhang, M. R.; Zeng, L. X.; Zhang, Y. The in-situ growth of Cu2O with a honeycomb structure on a roughed graphite paper for the efficient electroreduction of CO2 to C2H4. Catal. Sci. Technol. 2021, 11, 6742–6749.

[120]

Lin, W. W.; Chen, H.; Li, Z. H.; Sasaki, K.; Yao, S. Y.; Zhang, Z. H.; Li, J.; Fu, J. A Cu2O-derived polymeric carbon nitride heterostructured catalyst for the electrochemical reduction of carbon dioxide to ethylene. ChemSusChem 2021, 14, 3190–3197.

[121]

Yuan, X. T.; Chen, S.; Cheng, D. F.; Li, L. L.; Zhu, W. J.; Zhong, D. Z.; Zhao, Z. J.; Li, J. K.; Wang, T.; Gong, J. L. Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. Angew. Chem., Int. Ed. 2021, 60, 15344–15347.

[122]

Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624–4633.

[123]

Kim, J. Y.; Hong, D.; Lee, J. C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J. et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 2021, 12, 3765.

[124]

Wen, C. F.; Zhou, M.; Liu, P. F.; Liu, Y. W.; Wu, X. F.; Mao, F. X.; Dai, S.; Xu, B. B.; Wang, X. L.; Jiang, Z. et al. Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu-S motifs in metal-organic framework based precatalysts. Angew. Chem., Int. Ed. 2022, 61, e202111700.

[125]

Ajmal, S.; Yang, Y.; Tahir, M. A.; Li, K. J.; Bacha, A. U. R.; Nabi, I.; Liu, Y. Y.; Wang, T.; Zhang, L. W. Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates. Catal. Sci. Technol. 2020, 10, 4562–4570.

[126]

Zhang, J.; Liu, Z. P.; Guo, H. S.; Lin, H. R.; Wang, H.; Liang, X.; Hu, H. L.; Xia, Q. B.; Zou, X. X.; Huang, X. X. Selective, stable production of ethylene using a pulsed Cu-based electrode. ACS Appl. Mater. Interfaces 2022, 14, 19388–19396.

[127]

Zhang, Y.; Li, Y. M.; Tan, Q.; Hong, S.; Sun, Z. Y. Facile synthesis of two-dimensional copper terephthalate for efficient electrocatalytic CO2 reduction to ethylene. J. Exp. Nanosci. 2021, 16, 246–254.

[128]

Sha, Y. F.; Zhang, J. L.; Cheng, X. Y.; Xu, M. Z.; Su, Z. Z.; Wang, Y. Y.; Hu, J. Y.; Han, B. X.; Zheng, L. R. Anchoring ionic liquid in copper electrocatalyst for improving CO2 conversion to ethylene. Angew. Chem., Int. Ed. 2022, 61, e202200039.

[129]

Martić, N.; Reller, C.; Macauley, C.; Löffler, M.; Schmid, B.; Reinisch, D.; Volkova, E.; Maltenberger, A.; Rucki, A.; Mayrhofer, K. J. J. et al. Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction. Adv. Energy Mater. 2019, 9, 1901228.

[130]

Tan, D. X.; Zhang, J. L.; Yao, L.; Tan, X. N.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zheng, L. R.; Zhang, J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 2020, 13, 768–774.

[131]

Wu, Y. H.; Chen, C. J.; Yan, X. P.; Liu, S. J.; Chu, M. G.; Wu, H. H.; Ma, J.; Han, B. X. Effect of the coordination environment of Cu in Cu2O on the electroreduction of CO2 to ethylene. Green Chem. 2020, 22, 6340–6344.

[132]

Gao, Y. G.; Wu, Q.; Liang, X. Z.; Wang, Z. Y.; Zheng, Z. K.; Wang, P.; Liu, Y. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Cu2O Nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene. Adv. Sci. 2020, 7, 1902820.

[133]

Gu, Z. X.; Yang, N.; Han, P.; Kuang, M.; Mei, B. B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. F. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 2019, 3, 1800449.

[134]

Zhang, S. S.; Zhao, S. L.; Qu, D. X.; Liu, X. J.; Wu, Y. P.; Chen, Y. H.; Huang, W. Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness. Small 2021, 17, 2102293.

[135]

Hou, L.; Han, J. Y.; Wang, C.; Zhang, Y. W.; Wang, Y. B.; Bai, Z. M.; Gu, Y. S.; Gao, Y.; Yan, X. Q. Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO2 towards ethylene. Inorg. Chem. Front. 2020, 7, 2097–2106.

[136]

Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.

[137]

Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2019, 3, 98–106.

[138]

Feng, R. T.; Zhu, Q. G.; Chu, M. E.; Jia, S. Q.; Zhai, J. X.; Wu, H. H.; Wu, P.; Han, B. X. Electrodeposited Cu-Pd bimetallic catalysts for the selective electroreduction of CO2 to ethylene. Green Chem. 2020, 22, 7560–7565.

[139]

Chen, Y.; Fan, Z. X.; Wang, J.; Ling, C. Y.; Niu, W. X.; Huang, Z. Q.; Liu, G. G.; Chen, B.; Lai, Z. C.; Liu, X. Z. et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760–12766.

[140]

Jia, S. Q.; Zhu, Q. G.; Wu, H. H.; Chu, M. E.; Han, S. T.; Feng, R. T.; Tu, J. H.; Zhai, J. X.; Han, B. X. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper-antimony bimetallic alloy catalyst. Chin. J. Catal. 2020, 41, 1091–1098.

[141]

Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.

[142]

Yan, T. T.; Guo, J. H.; Liu, Z. Q.; Sun, W. Y. Metalloporphyrin encapsulation for enhanced conversion of CO2 to C2H4. ACS Appl. Mater. Interfaces 2021, 13, 25937–25945.

[143]

Qiu, X. F.; Zhu, H. L.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 2021, 143, 7242–7246.

[144]

Wang, J.; Cheng, C.; Huang, B. L.; Cao, J. L.; Li, L. G.; Shao, Q.; Zhang, L.; Huang, X. Q. Grain-boundary-engineered La2CuO4 perovskite nanobamboos for efficient CO2 reduction reaction. Nano Lett. 2021, 21, 980–987.

[145]

Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 2002, 106, 15–17.

[146]

Zhu, C. Y.; Zhang, Z. B.; Zhong, L. X.; Hsu, C. S.; Xu, X. Z.; Li, Y. Z.; Zhao, S. W.; Chen, S. H.; Yu, J. Y.; Chen, S. L. et al. Product-specific active site motifs of Cu for electrochemical CO2 reduction. Chem 2021, 7, 406–420.

[147]

Luo, H. Q.; Li, B.; Ma, J. G.; Cheng, P. Surface modification of nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angew. Chem., Int. Ed. 2022, 61, e202116736.

[148]

Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

[149]

Zhang, H. C.; Chang, X. X.; Chen, J. G.; Goddard III, W. A.; Xu, B.; Cheng, M. J.; Lu, Q. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 2019, 10, 3340.

[150]

Zhu, Y. T.; Gao, Z. Q.; Zhang, Z. C.; Lin, T.; Zhang, Q. H.; Liu, H. L.; Gu, L.; Hu, W. P. Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. Nano Res. 2022, 15, 7861–7867.

[151]

Fu, X.; Zhang, J.; Kang, Y. Electrochemical reduction of CO2 towards multi-carbon products via a two-step process. React. Chem. Eng. 2021, 6, 612–628.

[152]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[153]

Jia, H. L.; Yang, Y. Y.; Chow, T. H.; Zhang, H.; Liu, X. Y.; Wang, J. F.; Zhang, C. Y. Symmetry-broken Au-Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2101255.

[154]

Li, X. F.; Zhu, Q. L. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033.

[155]

Zheng, W. R.; Lee, L. Y. S. Metal-organic frameworks for electrocatalysis: Catalyst or precatalyst. ACS Energy Lett. 2021, 6, 2838–2843.

[156]

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; García de Arquer, F. P.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

[157]

Guo, C.; Guo, Y.; Shi, Y.; Lan, X.; Wang, Y.; Yu, Y.; Zhang, B. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cu( δ +) species. Angew. Chem., Int. Ed. 2022, 61, e202205909.

[158]

Shang, L. M.; Lv, X. M.; Zhong, L. X.; Li, S. Z.; Zheng, G. F. Efficient CO2 electroreduction to ethanol by Cu3Sn catalyst. Small Methods 2022, 6, 2101334.

[159]

Suen, N. T.; Kong, Z. R.; Hsu, C. S.; Chen, H. C.; Tung, C. W.; Lu, Y. R.; Dong, C. L.; Shen, C. C.; Chung, J. C.; Chen, H. M. Morphology manipulation of copper nanocrystals and product selectivity in the electrocatalytic reduction of carbon dioxide. ACS Catal. 2019, 9, 5217–5222.

[160]

Yang, C.; Shen, H. C.; Guan, A. X.; Liu, J. L.; Li, T. F.; Ji, Y. L.; Al-Enizi, A. M.; Zhang, L. J.; Qian, L. P.; Zheng, G. F. Fast cooling induced grain-boundary-rich copper oxide for electrocatalytic carbon dioxide reduction to ethanol. J. Colloid Interface Sci. 2020, 570, 375–381.

[161]

Kim, J. Y.; Kim, G.; Won, H.; Gereige, I.; Jung, W. B.; Jung, H. T. Synergistic effect of Cu2O mesh pattern on high-facet Cu surface for selective CO2 electroreduction to ethanol. Adv. Mater. 2022, 34, 2106028.

[162]

Zhang, L. J.; Li, M.; Zhang, S. B.; Cao, X. R.; Bo, J. X.; Zhu, X. L.; Han, J. Y.; Ge, Q. F.; Wang, H. Promoting carbon dioxide electroreduction toward ethanol through loading Au nanoparticles on hollow Cu2O nanospheres. Catal. Today 2021, 365, 348–356.

[163]

Yang, Q. C.; Liu, X. L.; Peng, W.; Zhao, Y.; Liu, Z. X.; Peng, M.; Lu, Y. R.; Chan, T. S.; Xu, X. D.; Tan, Y. W. Vanadium oxide integrated on hierarchically nanoporous copper for efficient electroreduction of CO2 to ethanol. J. Mater. Chem. A 2021, 9, 3044–3051.

[164]

Kim, C.; Cho, K. M.; Park, K.; Kim, J. Y.; Yun, G. T.; Toma, F. M.; Gereige, I.; Jung, H. T. Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Adv. Funct. Mater. 2021, 31, 2102142.

[165]

Wang, J. H.; Yang, H.; Liu, Q. Q.; Liu, Q.; Li, X. T.; Lv, X. Z.; Cheng, T.; Wu, H. B. Fastening Br- ions at copper-molecule interface enables highly efficient electroreduction of CO2 to ethanol. ACS Energy Lett. 2021, 6, 437–444.

[166]

Luo, M. C.; Wang, Z. Y.; Li, Y. G. C.; Li, J.; Li, F. W.; Lum, Y.; Nam, D. H.; Chen, B.; Wicks, J.; Xu, A. N. et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 2019, 10, 5714.

[167]

Ting, L. R. L.; Piqué, O.; Lim, S. Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B. S. Enhancing CO2 electroreduction to ethanol on copper-silver composites by opening an alternative catalytic pathway. ACS Catal. 2020, 10, 4059–4069.

[168]

Gao, J.; Ren, D.; Guo, X. Y.; Zakeeruddin, S. M.; Grätzel, M. Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: A study on bifunctional Cu/Au electrocatalysts. Faraday Discuss. 2019, 215, 282–296.

[169]

Hu, F.; Yang, L.; Jiang, Y. W.; Duan, C. X.; Wang, X. N.; Zeng, L. J.; Lv, X. F.; Duan, D. L.; Liu, Q.; Kong, T. T. et al. Ultrastable Cu catalyst for CO2 electroreduction to multicarbon liquid fuels by tuning C-C coupling with CuTi subsurface. Angew. Chem., Int. Ed. 2021, 60, 26122–26127.

[170]

Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

[171]

Ren, D.; Gao, J.; Pan, L. F.; Wang, Z. W.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew. Chem., Int. Ed. 2019, 58, 15036–15040.

[172]

Zhang, J.; Pham, T. H. M.; Ko, Y.; Li, M.; Yang, S. L.; Koolen, C. D.; Zhong, L. P.; Luo, W.; Züttel, A. Tandem effect of Ag@C@Cu catalysts enhances ethanol selectivity for electrochemical CO2 reduction in flow reactors. Cell Rep. Phys. Sci. 2022, 3, 100949.

[173]

Mosali, V. S. S.; Zhang, X. L.; Liang, Y.; Li, L. B.; Puxty, G.; Horne, M. D.; Brajter-Toth, A.; Bond, A. M.; Zhang, J. CdS-enhanced ethanol selectivity in electrocatalytic CO2 reduction at sulfide-derived Cu-Cd. ChemSusChem 2021, 14, 2924–2934.

[174]

Su, X. S.; Sun, Y. M.; Jin, L.; Zhang, L.; Yang, Y.; Kerns, P.; Liu, B.; Li, S. Z.; He, J. Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B Environ. 2020, 269, 118800.

[175]

Lv, X. M.; Shang, L. M.; Zhou, S.; Li, S.; Wang, Y. H.; Wang, Z. Q.; Sham, T. K.; Peng, C.; Zheng, G. F. Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols. Adv. Energy Mater. 2020, 10, 2001987.

[176]

Wang, X.; Wang, Z. Y. ; de Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

[177]

Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Zitolo, A. et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103.

[178]

Yuan, J.; Yang, M. P.; Zhi, W. Y.; Wang, H.; Wang, H.; Lu, J. X. Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts. J. CO2 Util. 2019, 33, 452–460.

[179]

Zhang, Y. Y.; Li, K.; Chen, M. M.; Wang, J.; Liu, J. D.; Zhang, Y. T. Cu/Cu2O nanoparticles supported on vertically ZIF-L-coated nitrogen-doped graphene nanosheets for electroreduction of CO2 to ethanol. ACS Appl. Nano Mater. 2020, 3, 257–263.

[180]

Liang, Z. Q.; Zhuang, T. T.; Seifitokaldani, A.; Li, J.; Huang, C. W.; Tan, C. S.; Li, Y.; De Luna, P.; Dinh, C. T.; Hu, Y. F. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 2018, 9, 3828.

[181]

Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.

[182]

Fan, Q. K.; Zhang, X.; Ge, X. H.; Bai, L. C.; He, D. S.; Qu, Y. T.; Kong, C. C.; Bi, J. L.; Ding, D. W.; Cao, Y. Q. et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424.

[183]

Timoshenko, J.; Bergmann, A.; Rettenmaier, C.; Herzog, A.; Arán-Ais, R. M.; Jeon, H. S.; Haase, F. T.; Hejral, U.; Grosse, P.; Kühl, S. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 2022, 5, 259–267.

[184]

Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem., Int. Ed. 2017, 56, 10840–10844.

[185]

Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.

[186]

Ni, Y. X.; Miao, L. C.; Wang, J. Q.; Liu, J. X.; Yuan, M. J.; Chen, J. Pore size effect of graphyne supports on CO2 electrocatalytic activity of Cu single atoms. Phys. Chem. Chem. Phys. 2020, 22, 1181–1186.

[187]

Yu, S.; Louisia, S.; Yang, P. D. The interactive dynamics of nanocatalyst structure and microenvironment during electrochemical CO2 conversion. JACS Au 2022, 2, 562–572.

[188]

Wang, W. B.; Duan, J. Y.; Liu, Y. W.; Zhai, T. Y. Structural reconstruction of catalysts in electroreduction reaction: Identifying, understanding, and manipulating. Adv. Mater. 2022, 34, 2110699.

[189]

Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

[190]

Nguyen, T. N.; Guo, J. X.; Sachindran, A.; Li, F. W.; Seifitokaldani, A.; Dinh, C. T. Electrochemical CO2 reduction to ethanol: From mechanistic understanding to catalyst design. J. Mater. Chem. A 2021, 9, 12474–12494.

[191]

Li, J.; Xu, A. N.; Li, F. W.; Wang, Z. Y.; Zou, C. Q.; Gabardo, C. M.; Wang, Y. H.; Ozden, A.; Xu, Y.; Nam, D. H. et al. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat. Commun. 2020, 11, 3685.

[192]

Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 2017, 139, 15848–15857.

[193]

Shen, S. B.; Peng, X. Y.; Song, L. D.; Qiu, Y.; Li, C.; Zhuo, L. C.; He, J.; Ren, J. Q.; Liu, X. J.; Luo, J. AuCu alloy nanoparticle embedded cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 15, 1902229.

[194]

Wang, Y. X.; Shen, H.; Livi, K. J. T.; Raciti, D.; Zong, H.; Gregg, J.; Onadeko, M.; Wan, Y. D.; Watson, A.; Wang, C. Copper nanocubes for CO2 reduction in gas diffusion electrodes. Nano Lett. 2019, 19, 8461–8468.

[195]

Gao, D. F.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Roldan Cuenya, B. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 2017, 11, 4825–4831.

[196]

Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681–8689.

[197]

Lausche, A. C.; Medford, A. J.; Khan, T. S.; Xu, Y.; Bligaard, T.; Abild-Pedersen, F.; Nørskov, J. K.; Studt, F. On the effect of coverage-dependent adsorbate-adsorbate interactions for CO methanation on transition metal surfaces. J. Catal. 2013, 307, 275–282.

[198]

Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.

[199]

Zhu, Q. G.; Sun, X. F.; Yang, D. X.; Ma, J.; Kang, X. C.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Han, B. X. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 2019, 10, 3851.

[200]

Luc, W.; Fu, X. B.; Shi, J. J.; Lv, J. J.; Jouny, M.; Ko, B. H.; Xu, Y. B.; Tu, Q.; Hu, X. B.; Wu, J. S. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2019, 2, 423–430.

[201]

Grace, A. N.; Choi, S. Y.; Vinoba, M.; Bhagiyalakshmi, M.; Chu, D. H.; Yoon, Y.; Nam, S. C.; Jeong, S. K. Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode. Appl. Energy 2014, 120, 85–94.

[202]

Guo, F.; Liu, B.; Liu, M. P.; Xia, Y.; Wang, T. L.; Hu, W.; Fyffe, P.; Tian, L. H.; Chen, X. B. Selective electrocatalytic CO2 reduction to acetate on polymeric Cu-L (L = pyridinic N and carbonyl group) complex core-shell microspheres. Green Chem. 2021, 23, 5129–5137.

[203]

Wang, Y.; Wang, D. G.; Dares, C. J.; Marquard, S. L.; Sheridan, M. V.; Meyer, T. J. CO2 reduction to acetate in mixtures of ultrasmall (Cu) n , (Ag) m bimetallic nanoparticles. Proc. Natl. Acad. Sci. USA 2017, 115, 278–283.

[204]

Zang, D. J.; Li, Q.; Dai, G. Y.; Zeng, M. Y.; Huang, Y. C.; Wei, Y. G. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 2021, 281, 119426.

[205]

Higgins, D.; Landers, A. T.; Ji, Y.; Nitopi, S.; Morales-Guio, C. G.; Wang, L.; Chan, K.; Hahn, C.; Jaramillo, T. F. Guiding electrochemical carbon dioxide reduction toward carbonyls using copper silver thin films with interphase miscibility. ACS Energy Lett. 2018, 3, 2947–2955.

[206]

Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.

[207]

Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Mechanism of C-C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 2017, 19, 2406–2415.

[208]

Bayaguud, A.; Zhang, J.; Khan, R. N. N.; Hao, J.; Wei, Y. G. A redox active triad nanorod constructed from covalently interlinked organo-hexametalates. Chem. Commun. 2014, 50, 13150–13152.

[209]

Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622.

[210]

Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

[211]

Gonçalves, M. R.; Gomes, A.; Condeço, J.; Fernandes, T. R. C.; Pardal, T.; Sequeira, C. A. C.; Branco, J. B. Electrochemical conversion of CO2 to C2 hydrocarbons using different ex-situ copper electrodeposits. Electrochim. Acta 2013, 102, 388–392.

[212]

Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16, 12194–12201.

[213]

Xie, M. S.; Xia, B. Y.; Li, Y. W.; Yan, Y.; Yang, Y. H.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang, X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 2016, 9, 1687–1695.

[214]

Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P. Morphology matters: Tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 2016, 6, 3804–3814.

[215]

Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem., Int. Ed. 2017, 56, 796–800.

[216]

Chen, C. S.; Wan, J. H.; Yeo, B. S. Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium(II) chloride. J. Phys. Chem. C 2015, 119, 26875–26882.

[217]

Pang, Y. J.; Li, J.; Wang, Z. Y.; Tan, C. S.; Hsieh, P. L.; Zhuang, T. T.; Liang, Z. Q.; Zou, C. Q.; Wang, X.; De Luna, P. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2019, 2, 251–258.

[218]

Yang, B. Y.; Chen, L.; Xue, S. L.; Sun, H.; Feng, K.; Chen, Y. F.; Zhang, X.; Xiao, L.; Qin, Y. Z.; Zhong, J. et al. Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes. Nat. Commun. 2022, 13, 5122.

[219]

Wang, X.; Wang, Z. Y.; Zhuang, T. T.; Dinh, C. T.; Li, J.; Nam, D. H.; Li, F. W.; Huang, C. W.; Tan, C. S.; Chen, Z. T. et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nat. Commun. 2019, 10, 5186.

[220]

Wang, H.; Matios, E.; Wang, C. L.; Luo, J. M.; Lu, X.; Hu, X. F.; Li, W. Y. Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide. Nano Lett. 2019, 19, 3925–3932.

[221]

Vasileff, A.; Zhu, Y. P.; Zhi, X.; Zhao, Y. Q.; Ge, L.; Chen, H. M.; Zheng, Y.; Qiao, S. Z. Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate. Angew. Chem., Int. Ed. 2020, 59, 19649–19653.

[222]

Handoko, A. D.; Chan, K. W.; Yeo, B. S. -CH3 mediated pathway for the electroreduction of CO2 to Ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials. ACS Energy Lett. 2017, 2, 2103–2109.

[223]

Billy, J. T.; Co, A. C. Reducing the onset potential of CO2 electroreduction on CuRu bimetallic particles. Appl. Catal. B Environ. 2018, 237, 911–918.

[224]

Dutta, A.; Rahaman, M.; Mohos, M.; Zanetti, A.; Broekmann, P. Electrochemical CO2 conversion using skeleton (sponge) type of Cu catalysts. ACS Catal. 2017, 7, 5431–5437.

[225]

Wang, L.; Higgins, D. C.; Ji, Y. F.; Morales-Guio, C. G.; Chan, K.; Hahn, C.; Jaramillo, T. F. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proc. Natl. Acad. Sci. USA 2020, 117, 12572–12575.

[226]

Jiwanti, P. K.; Natsui, K.; Nakata, K.; Einaga, Y. The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochim. Acta 2018, 266, 414–419.

[227]

Fu, J. J.; Zhu, W. L.; Chen, Y.; Yin, Z. Y.; Li, Y. Y.; Liu, J.; Zhang, H. Y.; Zhu, J. J.; Sun, S. H. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 14100–14103.

[228]

Bai, X. W.; Shi, L.; Li, Q.; Ling, C. Y.; Ouyang, Y. X.; Wang, S. Y.; Wang, J. L. Synergistic effect of metal doping and tethered ligand promoted high-selectivity conversion of CO2 to C2 oxygenates at ultra-low potential. Energy Environ. Mater. 2022, 5, 892–898.

[229]

Song, H.; Im, M.; Song, J. T.; Lim, J. A.; Kim, B. S.; Kwon, Y.; Ryu, S.; Oh, J. Effect of mass transfer and kinetics in ordered Cu-mesostructures for electrochemical CO2 reduction. Appl. Catal. B Environ. 2018, 232, 391–396.

[230]

Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

[231]

Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017, 7, 1749–1756.

[232]

Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z. H.; Guest, J. R.; Ren, Y. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 2019, 4, 957–968.

[233]

Li, Y. F.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y. C.; Yang, P. D. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 2017, 17, 1312–1317.

[234]

Zaza, L.; Rossi, K.; Buonsanti, R. Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 2022, 7, 1284–1291.

[235]

Wang, P. T.; Yang, H.; Xu, Y.; Huang, X. Q.; Wang, J.; Zhong, M.; Cheng, T.; Shao, Q. Synergized Cu/Pb core/shell electrocatalyst for high-efficiency CO2 reduction to C2+ Liquids. ACS Nano 2021, 15, 1039–1047.

[236]

Prabhu, P.; Jose, V.; Lee, J. M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Adv. Funct. Mater. 2020, 30, 1910768.

[237]

Wang, J. J.; Li, Z.; Zhu, Z. Z.; Jiang, J. X.; Li, Y. L.; Chen, J. J.; Niu, X. B.; Chen, J. S.; Wu, R. Tailoring the interactions of heterostructured Ni4N/Ni3ZnC0.7 for efficient CO2 electroreduction. J. Energy Chem. 2022, 75, 1–7.

[238]

Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

[239]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[240]

Fan, L.; Liu, C. Y.; Zhu, P.; Xia, C.; Zhang, X.; Wu, Z. Y.; Lu, Y. Y.; Senftle, T. P.; Wang, H. T. Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products. Joule 2022, 6, 205–220.

[241]

Ummireddi, A. K.; Sharma, S. K.; Pala, R. G. S. Influence of tetraethylammonium cation on electrochemical CO2 reduction over Cu, Ag, Ni, and Fe surfaces. J. Catal. 2022, 406, 213–221.

[242]

Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

[243]

Zhang, A.; Liang, Y. X.; Li, H. P.; Wang, S. L.; Chang, Q. X.; Peng, K. Y.; Geng, Z. G.; Zeng, J. Electronic tuning of SnS2 nanosheets by hydrogen incorporation for efficient CO2 electroreduction. Nano Lett. 2021, 21, 7789–7795.

[244]

Peng, C.; Yang, S. T.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J. B.; Chen, Y. S.; Li, W. H.; Wang, Z. Q.; Sham, T. K. et al. Surface co-modification of halide anions and potassium cations promotes high-rate CO2-to-ethanol electrosynthesis. Adv. Mater. 2022, 34, 2204476.

[245]

Murata, A.; Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Japan 1991, 64, 123–127.

[246]

Monteiro, M. C. O.; Dattila, F.; López, N.; Koper, M. T. M. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 2022, 144, 1589–1602.

[247]

Gao, D. F.; McCrum, I. T.; Deo, S.; Choi, Y. W.; Scholten, F.; Wan, W. M.; Chen, J. G.; Janik, M. J.; Roldan Cuenya, B. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuO x catalysts via electrolyte design. ACS Catal. 2018, 8, 10012–10020.

[248]

Cui, Y. D.; He, B.; Liu, X. M.; Sun, J. Ionic liquids-promoted electrocatalytic reduction of carbon dioxide. Ind. Eng. Chem. Res. 2020, 59, 20235–20252.

[249]

Li, P. S.; Bi, J. H.; Liu, J. Y.; Zhu, Q. G.; Chen, C. J.; Sun, X. F.; Zhang, J. L.; Han, B. X. In-situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat. Commun. 2022, 13, 1965.

[250]

Huang, L.; Gao, G.; Yang, C. B.; Li, X. Y.; Miao, R. K.; Xue, Y. R.; Xie, K.; Ou, P. F.; Yavuz, C. T.; Han, Y. et al. Pressure dependence in aqueous-based electrochemical CO2 reduction. Nat. Commun. 2023, 14, 2958.

[251]

Vos, R. E.; Kolmeijer, K. E.; Jacobs, T. S. ; van der Stam, W.; Weckhuysen, B. M.; Koper, M. T. M. How temperature affects the selectivity of the electrochemical CO2 reduction on copper. ACS Catal. 2023, 13, 8080–8091.

[252]

Zhang, J.; Luo, W.; Züttel, A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J. Catal. 2020, 385, 140–145.

[253]

Zi, X.; Zhou, Y. J.; Zhu, L.; Chen, Q.; Tan, Y.; Wang, X. Q.; Sayed, M.; Pensa, E.; Geioushy, R. A.; Liu, K. et al. Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products. Angew. Chem., Int. Ed. 2023, 62, e202309351.

[254]

Lei, T.; Zhang, X.; Jung, J.; Cai, Y. X.; Hou, X. F.; Zhang, Q.; Qiao, J. L. Continuous electroreduction of carbon dioxide to formate on tin nanoelectrode using alkaline membrane cell configuration in aqueous medium. Catal. Today 2018, 318, 32–38.

[255]

Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.

[256]

Grosse, P.; Gao, D. F.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects. Angew. Chem., Int. Ed. 2018, 57, 6192–6197.

[257]

Cesarini, A.; Mitchell, S.; Zichittella, G.; Agrachev, M.; Schmid, S. P.; Jeschke, G.; Pan, Z. Y.; Bodi, A.; Hemberger, P.; Pérez-Ramírez, J. Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nat. Catal. 2022, 5, 605–614.

[258]

Chen, A.; Zhang, X.; Chen, L. T.; Yao, S.; Zhou, Z. A machine learning model on simple features for CO2 reduction electrocatalysts. J. Phys. Chem. C 2020, 124, 22471–22478.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 November 2023
Revised: 27 December 2023
Accepted: 29 December 2023
Published: 04 February 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1500700) and the National Nature Science Foundation of China (22102057) and Shanghai Sailing Program (21YF1409400).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return