Journal Home > Volume 3 , Issue 2

Water evaporation is a ubiquitous natural process exploiting thermal energy from ambient environment. Hydrovoltaic technologies emerged in recent years offer one prospective route to generate electricity from water evaporation, which has long been overlooked. Herein, we developed a hybrid hydrovoltaic generator driven by natural water evaporation, integrating an “evaporation motor” with an evaporation-electricity device and a droplet-electricity device. A rotary motion of the “evaporation motor” relies on phase change of ethanol driven by water-evaporation induced temperature gradient. This motion enables the evaporation-electricity device to work under a beneficial water-film operation mode to produce output of ~4 V and ~0.2 µA, as well as propels the droplet-electricity device to convert mechanical energy into pulsed output of ~100 V and ~0.2 mA. As different types of hydrovoltaic devices require distinctive stimuli, it was challenging to make them work simultaneously, especially under one single driving force. We here for the first time empower two types of hydrovoltaic devices solely by omnipresent water evaporation. Therefore, this work presents a new pathway to exploiting water evaporation-associated ambient thermal energy and provides insights on developing hybrid hydrovoltaic generators.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hybrid hydrovoltaic electricity generation driven by water evaporation

Show Author's information Xuemei Li1,2( )Gu Feng2Yiding Chen1,3Jidong Li1Jun Yin1,3Wei Deng1( )Wanlin Guo1,3( )
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Water evaporation is a ubiquitous natural process exploiting thermal energy from ambient environment. Hydrovoltaic technologies emerged in recent years offer one prospective route to generate electricity from water evaporation, which has long been overlooked. Herein, we developed a hybrid hydrovoltaic generator driven by natural water evaporation, integrating an “evaporation motor” with an evaporation-electricity device and a droplet-electricity device. A rotary motion of the “evaporation motor” relies on phase change of ethanol driven by water-evaporation induced temperature gradient. This motion enables the evaporation-electricity device to work under a beneficial water-film operation mode to produce output of ~4 V and ~0.2 µA, as well as propels the droplet-electricity device to convert mechanical energy into pulsed output of ~100 V and ~0.2 mA. As different types of hydrovoltaic devices require distinctive stimuli, it was challenging to make them work simultaneously, especially under one single driving force. We here for the first time empower two types of hydrovoltaic devices solely by omnipresent water evaporation. Therefore, this work presents a new pathway to exploiting water evaporation-associated ambient thermal energy and provides insights on developing hybrid hydrovoltaic generators.

Keywords: water evaporation, ambient thermal energy, evaporation motor, hybrid hydrovoltaic generator

References(42)

[1]

Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

[2]

Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

[3]

Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

[4]

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

[5]

Tan, J.; Fang, S. M.; Zhang, Z. H.; Yin, J.; Li, L. X.; Wang, X.; Guo, W. L. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 2022, 13, 3643.

[6]

Fang, S. M.; Li, J. D.; Xu, Y.; Shen, C.; Guo, W. L. Evaporating potential. Joule 2022, 6, 690–701.

[7]

Van Der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 2006, 6, 2232–2237.

[8]

Wang, Z. Y.; Wu, Y. L.; Xu, K. Q.; Jiang, L. P.; Sun, J. K.; Cai, G. Y.; Li, G. F.; Xia, B. Y.; Liu, H. F. Hierarchical oriented metal-organic frameworks assemblies for water-evaporation induced electricity generation. Adv. Funct. Mater. 2021, 31, 2104732.

[9]

Shao, B. B.; Wu, Y. F.; Song, Z. H.; Yang, H. W.; Chen, X.; Zou, Y. T.; Zang, J. Q.; Yang, F.; Song, T.; Wang, Y. S. et al. Freestanding silicon nanowires mesh for efficient electricity generation from evaporation-induced water capillary flow. Nano Energy 2022, 94, 106917.

[10]

Liu, X. M.; Ueki, T.; Gao, H. Y.; Woodard, T. L.; Nevin, K. P.; Fu, T. D.; Fu, S.; Sun, L.; Lovley, D. R.; Yao, J. Microbial biofilms for electricity generation from water evaporation and power to wearables. Nat. Commun. 2022, 13, 4369.

[11]

Tabrizizadeh, T.; Wang, J.; Kumar, R.; Chaurasia, S.; Stamplecoskie, K.; Liu, G. J. Water-evaporation-induced electric generator built from carbonized electrospun polyacrylonitrile nanofiber mats. ACS Appl. Mater. Interfaces 2021, 13, 50900–50910.

[12]

Qin, Y. S.; Wang, Y. S.; Sun, X. Y.; Li, Y. J.; Xu, H.; Tan, Y. S.; Li, Y.; Song, T.; Sun, B. Q. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angew. Chem. 2020, 132, 10706–10712.

[13]

Shao, B. B.; Song, Z. H.; Chen, X.; Wu, Y. F.; Li, Y. J.; Song, C. C.; Yang, F.; Song, T.; Wang, Y. S.; Lee, S. T. et al. Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output. ACS Nano 2021, 15, 7472–7481.

[14]

Hu, Q. C.; Ma, Y. J.; Ren, G. P.; Zhang, B. T.; Zhou, S. G. Water evaporation-induced electricity with Geobacter sulfurreducens biofilms. Sci. Adv. 2022, 8, eabm8047.

[15]

Zhang, G.; Duan, Z.; Qi, X.; Xu, Y. T.; Li, L.; Ma, W. G.; Zhang, H.; Liu, C. H.; Yao, W. Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon 2019, 148, 1–8.

[16]

Ma, Q. L.; He, Q. Y.; Yin, P. F.; Cheng, H. F.; Cui, X. Y.; Yun, Q. B.; Zhang, H. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720.

[17]

Shao, C. X.; Ji, B. X.; Xu, T.; Gao, J.; Gao, X.; Xiao, Y. K.; Zhao, Y.; Chen, N.; Jiang, L.; Qu, L. T. Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Appl. Mater. Interfaces 2019, 11, 30927–30935.

[18]

Li, L. H.; Zheng, Z.; Ge, C. L.; Wang, Y. F.; Dai, H.; Li, L. L.; Wang, S. Q.; Gao, Q.; Liu, M. Y.; Sun, F. Q. A flexible tough hydrovoltaic coating for wearable sensing electronics. Adv. Mater. 2023, 35, 2304099.

[19]

Li, J. D.; Sheng, H.; Long, Y. Y.; Zhu, Y. L.; Deng, W.; Li, X. M.; Yin, J.; Guo, W. L. Passive gate-tunable kinetic photovoltage along semiconductor-water interfaces. Angew. Chem., Int. Ed. 2023, 62, e202218393.

[20]

Tian, B. K.; Jiang, X. F.; Chu, W. C.; Zheng, C. X.; Guo, W. L.; Zhang, Z. H. Integrating reduced graphene oxides and PPy nanoparticles for enhanced electricity from water evaporation. Int. J. Smart Nano Mater. 2023, 14, 230–242.

[21]

Li, J.; Liu, K.; Ding, T. P.; Yang, P. H.; Duan, J. J.; Zhou, J. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 2019, 58, 797–802.

[22]

Li, L. H.; Feng, S. J.; Bai, Y. Y.; Yang, X. Q.; Liu, M. Y.; Hao, M. M.; Wang, S. Q.; Wu, Y.; Sun, F. Q.; Liu, Z. et al. Enhancing hydrovoltaic power generation through heat conduction effects. Nat. Commun. 2022, 13, 1043.

[23]

Fang, S. M.; Chu, W. C.; Tan, J.; Guo, W. L. The mechanism for solar irradiation enhanced evaporation and electricity generation. Nano Energy 2022, 101, 107605.

[24]

Deng, W.; Feng, G.; Li, L. X.; Wang, X.; Lu, H.; Li, X. M.; Li, J. D.; Guo, W. L.; Yin, J. Capillary front broadening for water-evaporation-induced electricity of one kilovolt. Energy Environ. Sci. 2023, 16, 4442–4452.

[25]

Yin, J.; Li, X. M.; Yu, J.; Zhang, Z. H.; Zhou, J. X.; Guo, W. L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383.

[26]

Yin, J.; Zhang, Z. H.; Li, X. M.; Yu, J.; Zhou, J. X.; Chen, Y. Q.; Guo, W. L. Waving potential in graphene. Nat. Commun. 2014, 5, 3582.

[27]

Yang, S. S.; Su, Y. D.; Xu, Y.; Wu, Q.; Zhang, Y. B.; Raschke, M. B.; Ren, M. X.; Chen, Y.; Wang, J. L.; Guo, W. L. et al. Mechanism of electric power generation from ionic droplet motion on polymer supported graphene. J. Am. Chem. Soc. 2018, 140, 13746–13752.

[28]

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

[29]

Li, X. M.; Ning, X. Y.; Li, L. X.; Wang, X.; Li, B. W.; Li, J. D.; Yin, J.; Guo, W. L. Performance and power management of droplets-based electricity generators. Nano Energy 2022, 92, 106705.

[30]

Li, L. X.; Wang, X.; Deng, W.; Yin, J.; Li, X. M.; Guo, W. L. Hydrovoltaic energy from water droplets: Device configurations, mechanisms, and applications. Droplet 2023, 2, e77.

[31]

Li, L. X.; Li, X. M.; Yu, X.; Shen, C.; Wang, X.; Li, B. W.; Li, J. D.; Wang, L. F.; Yin, J.; Guo, W. L. Boosting the output of bottom-electrode droplets energy harvester by a branched electrode. Nano Energy 2022, 95, 107024.

[32]

Zheng, H. X.; Wu, H.; Yi, Z. R.; Song, Y. X.; Xu, W. H.; Yan, X. T.; Zhou, X. F.; Wang, S.; Wang, Z. K. Remote-controlled droplet chains-based electricity generators. Adv. Energy Mater. 2023, 13, 2203825.

[33]

Wei, X. L.; Zhao, Z. H.; Zhang, C. G.; Yuan, W.; Wu, Z. Y.; Wang, J.; Wang, Z. L. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 2021, 15, 13200–13208.

[34]

Zhang, N.; Gu, H. J.; Zheng, H. X.; Ye, S. M.; Kang, L.; Huang, C.; Lu, K. Y.; Xu, W. H.; Miao, Q. Q.; Wang, Z. K. et al. Boosting the output performance of volume effect electricity generator (VEEG) with water column. Nano Energy 2020, 73, 104748.

[35]

Wang, X.; Fang, S. M.; Tan, J.; Hu, T.; Chu, W. C.; Yin, J.; Zhou, J. X.; Guo, W. L. Dynamics for droplet-based electricity generators. Nano Energy 2021, 80, 105558.

[36]

Cheedarala, R. K.; Song, J. I. Sand-polished Kapton film and aluminum as source of electron transfer triboelectric nanogenerator through vertical contact separation mode. Int. J. Smart Nano Mater. 2020, 11, 38–46.

[37]

Xu, T.; Ding, X. T.; Cheng, H. H.; Han, G. Y.; Qu, L. T. Moisture-enabled electricity from hygroscopic materials: A new type of clean energy. Adv. Mater. 2023, 2209661.

[38]

Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916.

[39]

Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

[40]

Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

[41]

Xu, T.; Ding, X. T.; Huang, Y. X.; Shao, C. X.; Song, L.; Gao, X.; Zhang, Z. P.; Qu, L. T. An efficient polymer moist-electric generator. Energy Environ. Sci. 2019, 12, 972–978.

[42]

Deng, W.; Li, Y. Novel superhydrophilic antifouling PVDF-BiOCl nanocomposite membranes fabricated via a modified blending-phase inversion method. Sep. Purif. Technol. 2021, 254, 117656.

Video
Supplementary Video 1.mp4
Supplementary Video 2.mp4
File
0110_ESM.pdf (504.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 November 2023
Revised: 28 November 2023
Accepted: 29 November 2023
Published: 03 January 2024
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. T2293691, 12172176, 12272181, 12311530052, and 12150002), the National Key Research and Development Program of China (No. 2019YFA0705400), Natural Science Foundation of Jiangsu Province (Nos. BK20220074, BK20211191, and BK20212008), the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures (MCMS-I-0421G01 and MCMS-I-0422K01), the Fundamental Research Funds for the Central Universities (NE2023003, NC2023001, NJ2023002, and NJ2022002) and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return