Journal Home > Volume 3 , Issue 2

Organic light-emitting diodes (OLEDs) have demonstrated remarkable advancements in both device lifetime and luminous efficiency. However, insufficient operation lifetime due to device degradation remains a major hurdle, especially for brighter devices. Understanding the degradation mechanisms of OLEDs due to the degradation of functional materials and the formation of defects in device architectures continues to be a significant challenge. Herein, we evaluate the degradation characteristics by scrutinizing the electrical and optical properties, as well as analyzing the charge carrier dynamics in pristine and aged states of phosphorescent OLEDs (PhOLEDs). We show that degradation mechanisms in PhOLEDs can be elucidated in terms of the ideality factors of current and luminance in pristine and aged device states. The consistent shifts in distinct ideality factors across various states points out that the device degradation is attributed to the deterioration of the guest material, i.e. green-light-emitting phosphorescent material. Conversely, the incongruity in ideality factor changes between the two states indicates that the degradation results from the deterioration of non-light-emitting material. Subsequent characterization experiments provide further evidence that this degradation is primarily attributed to the deterioration of CBP-host material. The thorough understanding of degradation mechanisms established in this study can contribute to realizing the highly reliable PhOLEDs with a long lifetime.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Investigation into charge carrier dynamics in organic light-emitting diodes

Show Author's information Dong-Guang Zheng1,§Hyeon-Dong Lee2,§Gyeong Won Lee3Dong-Soo Shin3Jeongwon Kim4Jong-In Shim3( )Zhiqun Lin5( )Tae-Woo Lee2,6( )Dong Ha Kim4,7,8( )
Information Engineering College, Hangzhou Dianzi University, Hangzhou 311305, China
Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
Department of Photonics and Nanoelectronics, Hanyang University ERICA, 55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi 15588, Republic of Korea
Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
School of Chemical and Biological Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
Basic Sciences Research Institute (Priority Research Institute), Ewha Womans University, Seoul 03760, Republic of Korea
Nanobio∙Energy Materials Center (National Research Facilities and Equipment Center), Ewha Womans University, Seoul 03760, Republic of Korea

§ Dong-Guang Zheng and Hyeon-Dong Lee contributed equally to this work.

Abstract

Organic light-emitting diodes (OLEDs) have demonstrated remarkable advancements in both device lifetime and luminous efficiency. However, insufficient operation lifetime due to device degradation remains a major hurdle, especially for brighter devices. Understanding the degradation mechanisms of OLEDs due to the degradation of functional materials and the formation of defects in device architectures continues to be a significant challenge. Herein, we evaluate the degradation characteristics by scrutinizing the electrical and optical properties, as well as analyzing the charge carrier dynamics in pristine and aged states of phosphorescent OLEDs (PhOLEDs). We show that degradation mechanisms in PhOLEDs can be elucidated in terms of the ideality factors of current and luminance in pristine and aged device states. The consistent shifts in distinct ideality factors across various states points out that the device degradation is attributed to the deterioration of the guest material, i.e. green-light-emitting phosphorescent material. Conversely, the incongruity in ideality factor changes between the two states indicates that the degradation results from the deterioration of non-light-emitting material. Subsequent characterization experiments provide further evidence that this degradation is primarily attributed to the deterioration of CBP-host material. The thorough understanding of degradation mechanisms established in this study can contribute to realizing the highly reliable PhOLEDs with a long lifetime.

Keywords: degradation mechanism, organic light-emitting diodes, ideality factor, carrier transport processes

References(56)

[1]

Meerheim, R.; Walzer, K.; Pfeiffer, M.; Leo, K. Ultrastable and efficient red organic light emitting diodes with doped transport layers. Appl. Phys. Lett. 2006, 89, 061111.

[2]

Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Flexible light-emitting diodes made from soluble conducting polymers. Nature 1992, 357, 477–479.

[3]

Kwon, O. E.; Shin, J. W.; Oh, H.; Kang, C. M.; Cho, H.; Kwon, B. H.; Byun, C. W.; Yang, J. H.; Lee, K. M.; Han, J. H. et al. A prototype active-matrix OLED using graphene anode for flexible display application. J. Inf. Disp. 2020, 21, 49–56.

[4]

Tessler, N.; Harrison, N. T.; Friend, R. H. High peak brightness polymer light-emitting diodes. 3.0.CO;2-G">Adv. Mater. 1998, 10, 64–68.

[5]

Li, W.; Li, Y. Q.; Shen, Y.; Zhang, Y. X.; Jin, T. Y.; Chen, J. D.; Zhang, X. H.; Tang, J. X. Releasing the trapped light for efficient silver nanowires-based white flexible organic light-emitting diodes. Adv. Opt. Mater. 2019, 7, 1900985.

[6]
Laäaäperi, A.; Hyytiäinen, I.; Mustonen, T.; Kallio, S. 30.1: Invited Paper: OLED lifetime issues in mobile phone industry. SID Symp. Dig. Tech. 2007 , 38, 1183–1187.
DOI
[7]

Seo, Y.; Na, I.; Kim, Y.; Chae, H.; Oh, K.; Yang, J.; Yoon, S.; Joo, M. K. Degradation pattern of contact resistance and characteristic trap energy in blue organic light-emitting diodes. Org. Electron. 2021, 91, 106067.

[8]

Hauenstein, C.; Gottardi, S.; Torun, E.; Coehoorn, R. ; van Eersel, H. Identification of OLED degradation scenarios by kinetic Monte Carlo simulations of lifetime experiments. Front. Chem. 2022, 9, 823210.

[9]

Salameh, F.; Al Haddad, A.; Picot, A.; Canale, L.; Zissis, G.; Chabert, M.; Maussion, P. Modeling the luminance degradation of OLEDs using design of experiments. IEEE Trans. Ind. Appl. 2019, 55, 6548–6558.

[10]

Tyagi, P.; Srivastava, R.; Giri, L. I.; Tuli, S.; Lee, C. Degradation of organic light emitting diode: Heat related issues and solutions. Synth. Met. 2016, 216, 40–50.

[11]

Bangsund, J. S.; Hershey, K. W.; Holmes, R. J. Isolating degradation mechanisms in mixed emissive layer organic light-emitting devices. ACS Appl. Mater. Interfaces 2018, 10, 5693–5699.

[12]

Ha, D. G.; Tiepelt, J.; Fusella, M. A.; Weaver, M. S.; Brown, J. J.; Einzinger, M.; Sherrott, M. C.; Van Voorhis, T.; Thompson, N. J.; Baldo, M. A. Dominance of exciton lifetime in the stability of phosphorescent dyes. Adv. Opt. Mater. 2019, 7, 1901048.

[13]

Yang, R. Y.; Li, X. M.; Cao, X. A. Role of wide bandgap host in the degradation of blue phosphorescent organic light-emitting diodes. J. Appl. Phys. 2017, 122, 075501.

[14]

Yang, K.; Nam, S.; Kim, J.; Kwon, E. S.; Jung, Y.; Choi, H.; Kim, J. W.; Lee, J. Effects of charge dynamics in the emission layer on the operational lifetimes of blue phosphorescent organic light-emitting diodes. Adv. Funct. Mater. 2022, 32, 2108595.

[15]

Negi, S.; Mittal, P.; Kumar, B. Impact of different layers on performance of OLED. Microsyst. Technol. 2018, 24, 4981–4989.

[16]

Chulkin, P.; Vybornyi, O.; Lapkowski, M.; Skabara, P. J.; Data, P. Impedance spectroscopy of OLEDs as a tool for estimating mobility and the concentration of charge carriers in transport layers. J. Mater. Chem. C 2018, 6, 1008–1014.

[17]

Negi, S.; Mittal, P.; Kumar, B. Analytical modelling and parameters extraction of multilayered OLED. IET Circuits, Devices Syst. 2019, 13, 1255–1261.

[18]

Schober, M.; Anderson, M.; Thomschke, M.; Widmer, J.; Furno, M.; Scholz, R.; Lüssem, B.; Leo, K. Quantitative description of charge-carrier transport in a white organic light-emitting diode. Phys. Rev. B 2011, 84, 165326.

[19]

Grüne, J.; Bunzmann, N.; Meinecke, M.; Dyakonov, V.; Sperlich, A. Kinetic modeling of transient electroluminescence reveals TTA as an efficiency-limiting process in exciplex-based TADF OLEDs. J. Phys. Chem. C 2020, 124, 25667–25674.

[20]

Peng, X. M.; Qiu, W. D.; Li, W. Q.; Li, M. K.; Xie, W. T.; Li, W.; Lin, J. Y.; Yang, J. J.; Li, X.; Su, S. J. Synergetic horizontal dipole orientation induction for highly efficient and spectral stable thermally activated delayed fluorescence white organic light-emitting diodes. Adv. Funct. Mater. 2022, 32, 2203022.

[21]

Cai, M. H.; Zhang, D. D.; Xu, J. Y.; Hong, X. C.; Zhao, C. G.; Song, X. Z.; Qiu, Y.; Kaji, H.; Duan, L. Unveiling the role of Langevin and trap-assisted recombination in long lifespan OLEDs employing thermally activated delayed fluorophores. ACS Appl. Mater. Interfaces 2019, 11, 1096–1108.

[22]

Lee, J. H.; Lee, S.; Yoo, S. J.; Kim, K. H.; Kim, J. J. Langevin and trap-assisted recombination in phosphorescent organic light emitting diodes. Adv. Funct. Mater. 2014, 24, 4681–4688.

[23]

Kuik, M.; Koster, L. J. A.; Wetzelaer, G. A. H.; Blom, P. W. M. Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 2011, 107, 256805.

[24]

Sun, L.; Sun, J. X.; Xiong, C. H.; Shi, X. H. Trap-assisted recombination in disordered organic semiconductors extended by considering density dependent mobility. Sol. Energy 2016, 135, 308–316.

[25]

Zhang, D. D.; Song, X. Z.; Cai, M. H.; Kaji, H.; Duan, L. Versatile indolocarbazole-isomer derivatives as highly emissive emitters and ideal hosts for thermally activated delayed fluorescent OLEDs with alleviated efficiency roll-off. Adv. Mater. 2018, 30, 1705406.

[26]

Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M. Trap-assisted and Langevin-type recombination in organic light-emitting diodes. Phys. Rev. B 2011, 83, 165204.

[27]

Noguchi, Y.; Kim, H. J.; Ishino, R.; Goushi, K.; Adachi, C.; Nakayama, Y.; Ishii, H. Charge carrier dynamics and degradation phenomena in organic light-emitting diodes doped by a thermally activated delayed fluorescence emitter. Org. Electron. 2015, 17, 184–191.

[28]

Noguchi, Y.; Ninomiya, K.; Sato, K. Charge-carrier dynamics and exciton-polaron quenching studied using simultaneous observations of displacement current and photoluminescence intensity. J. Phys. Chem. C 2022, 126, 18520–18527.

[29]

Juhasz, P.; Nevrela, J.; Micjan, M.; Novota, M.; Uhrik, J.; Stuchlikova, L.; Jakabovic, J.; Harmatha, L.; Weis, M. Charge injection and transport properties of an organic light-emitting diode. Beilstein J. Nanotechnol. 2016, 7, 47–52.

[30]

Sem, S.; Jenatsch, S.; Sahay, P.; Züfle, S.; Schmid, M.; Brütting, W.; Ruhstaller, B. Detailed electro-optical modeling of thermally-activated delayed fluorescent OLEDs with different host-guest concentrations. Org. Electron. 2022, 107, 106553.

[31]

Amorim, C. A.; Cavallari, M. R.; Santos, G.; Fonseca, F. J.; Andrade, A. M.; Mergulhão, S. Determination of carrier mobility in MEH-PPV thin-films by stationary and transient current techniques. J. Non-Cryst. Solids 2012, 358, 484–491.

[32]

Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953–1010.

[33]

Kim, D.; Kwon, O.; Kim, M.; Lee, H. Charge carrier analysis via impedance spectroscopy and the achievement of high performance in CdSe/ZnS:di-[4-(N, N-di-p-tolyl-amino)-phenyl]cyclohexane hybrid quantum dot light-emitting diodes. Org. Electron. 2022, 108, 106593.

[34]

Nowy, S.; Ren, W.; Elschner, A.; Lövenich, W.; Brütting, W. Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes. J. Appl. Phys. 2010, 107, 054501.

[35]

Shockley, W. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J. 1949, 28, 435–489.

[36]

Duan, L. P.; Yi, H. M.; Xu, C.; Upama, M. B.; Mahmud, M. A.; Wang, D.; Shabab, F. H.; Uddin, A. Relationship between the diode ideality factor and the carrier recombination resistance in organic solar cells. IEEE J. Photovolt. 2018, 8, 1701–1709.

[37]

Na, I.; Kim, K. J.; Kim, G. T.; Seo, Y.; Kim, Y.; Kim, Y. K.; Joo, M. K. Origin of exciplex degradation in organic light emitting diodes: Thermal stress effects over glass transition temperature of emission layer. Appl. Phys. Lett. 2020, 117, 063303.

[38]

Kim, J.; Lee, T.; Kwak, J.; Lee, C. Photovoltaic characterizing method of degradation of polymer light-emitting diodes based on ideality factor and density of states. Appl. Phys. Lett. 2021, 119, 123301.

[39]

Wetzelaer, G. A. H.; Koster, L. J. A.; Blom, P. W. M. Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 2011, 107, 066605.

[40]

Wetzelaer, G. J. A. H.; Kuik, M.; Blom, P. W. M. Identifying the nature of charge recombination in organic solar cells from charge-transfer state electroluminescence. Adv. Energy Mater. 2012, 2, 1232–1237.

[41]

Wetzelaer, G. J. A. H.; Blom, P. W. M. Diffusion-driven currents in organic-semiconductor diodes. npg Asia Mater. 2014, 6, e110.

[42]

Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells. Phys. Rev. B 2010, 81, 125204.

[43]

Wu, J. H.; Fischer, A.; Reineke, S. Investigating free charge-carrier recombination in organic LEDs using open-circuit conditions. Adv. Opt. Mater. 2019, 7, 1801426.

[44]

Noguchi, Y.; Miyazaki, Y.; Tanaka, Y.; Sato, N.; Nakayama, Y.; Schmidt, T. D.; Brütting, W.; Ishii, H. Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. J. Appl. Phys. 2012, 111, 114508.

[45]

Lee, H.; Kim, K. J.; Moon, Y. J.; Kim, Y. K.; Kim, T. Analysis of interrelationship between efficiency and charge transport properties of green TADF organic light-emitting diodes with mixed host by impedance spectroscopy. Org. Electron. 2020, 84, 105816.

[46]
Nowy, S.; Ren, W.; Wagner, J.; Weber, J. A.; Brütting, W. Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation. In Proceedings of SPIE 7415, Organic Light Emitting Materials and Devices XIII, San Diego, California, United States, 2009, pp 74150G.
DOI
[47]

Han, T. H.; Kim, Y. H.; Kim, M. H.; Song, W.; Lee, T. W. Synergetic influences of mixed-host emitting layer structures and hole injection layers on efficiency and lifetime of simplified phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 2016, 8, 6152–6163.

[48]

Han, T. H.; Song, W.; Lee, T. W. Elucidating the crucial role of hole injection layer in degradation of organic light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 3117–3125.

[49]

Jeon, S. K.; Lee, H. L.; Yook, K. S.; Lee, J. Y. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material. Adv. Mater. 2019, 31, 1803524.

[50]

Gao, M. L.; Jang, J.; Leitner, T.; Mai, V. T. N.; Ranasinghe, C. S. K.; Chu, R.; Burn, P. L.; Pivrikas, A.; Shaw, P. E. Effect of host generation on the luminescent and charge transporting properties of solution processed OLEDs. Adv. Mater. Interfaces 2021, 8, 2100820.

[51]

Shih, C. J.; Lee, C. C.; Chen, Y. H.; Biring, S.; Kumar, G.; Yeh, T. H.; Sen, S.; Liu, S. W.; Wong, K. T. Exciplex-forming cohost for high efficiency and high stability phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 2151–2157.

[52]

Kondakov, D. Y.; Lenhart, W. C.; Nichols, W. F. Operational degradation of organic light-emitting diodes: Mechanism and identification of chemical products. J. Appl. Phys. 2007, 101, 024512.

[53]

Jankus, V.; Winscom, C.; Monkman, A. P. The photophysics of singlet, triplet, and degradation trap states in 4, 4- N,N'-dicarbazolyl-1,1'-biphenyl. J. Chem. Phys. 2009, 130, 074501.

[54]

Schmidbauer, S.; Hohenleutner, A.; König, B. Chemical degradation in organic light-emitting devices: Mechanisms and implications for the design of new materials. Adv. Mater. 2013, 25, 2114–2129.

[55]

Jesuraj, P. J.; Hafeez, H.; Kim, D. H.; Lee, J. C.; Lee, W. H.; Choi, D. K.; Kim, C. H.; Song, M.; Kim, C. S.; Ryu, S. Y. Recombination zone control without sensing layer and the exciton confinement in green phosphorescent OLEDs by excluding interface energy transfer. J. Phys. Chem. C 2018, 122, 2951–2958.

[56]

Lee, S.; Ha, H.; Lee, J. Y.; Shon, H. K.; Lee, T. G.; Suh, M. C.; Park, Y. Degradation mechanism of solution-processed organic light-emitting diodes: Sputter depth-profile study. Appl. Surf. Sci. 2021, 564, 150402.

File
0109_ESM.pdf (864.6 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 12 September 2023
Revised: 13 November 2023
Accepted: 22 November 2023
Published: 10 January 2024
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2020R1A2C3003958), the Basic Science Research Program (Priority Research Institute) through the NRF grant funded by the Ministry of Education (2021R1A6A1A10039823), and the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2020R1A6C101B194).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return