Journal Home > Volume 3 , Issue 2

As global energy demand continues to rise and climate change accelerates, the need for sustainable and energy-efficient cooling solutions has reached a critical level. Conventional air conditioning systems heavily rely on energy-intensive mechanical cooling, which significantly contributes to both electricity demand and greenhouse gas emissions. Passive cooling strategies, particularly radiative cooling (RC) and evaporative cooling (EC), present an alternative approach by harnessing natural processes for temperature regulation. While standalone RC can be affected by weather conditions and EC relies on water availability, Radiative-coupled EC (REC) offers a versatile and sustainable cooling solution suitable for various applications. Here we summarize an overview of the theoretical foundations and mathematical models of REC, encompassing REC by bulk water (REC-BW), REC by perspiration (REC-P), and REC by sorbed water (REC-SW). Moreover, we explore a range of applications, spanning from industrial processes to personal thermal management, and examine the advantages and challenges associated with each REC approach. The significance of REC lies in its potential to revolutionize cooling technology, reduce energy consumption, and minimize the environmental impact. REC-BW can conserve water resources in industrial cooling processes, while REC-P offers innovative solutions for wearable electronics and textiles. REC-SW’s adaptability makes it suitable for food preservation and future potable cooling devices. By addressing the challenges posed by REC, including water consumption, textile design, and optimization of bilayer structures, we can unlock the transformative potential of REC and contribute to sustainable cooling technologies in a warming world.


menu
Abstract
Full text
Outline
About this article

Radiative-coupled evaporative cooling: Fundamentals, development, and applications

Show Author's information Li Yu1,2Yimou Huang1Weihong Li2Changmin Shi3Brian W. Sheldon3Zhuo Chen1Meijie Chen1( )
School of Energy Science and Engineering, Central South University, Changsha 410083, China
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
School of Engineering, Brown University, Providence, RI 02912, USA

Abstract

As global energy demand continues to rise and climate change accelerates, the need for sustainable and energy-efficient cooling solutions has reached a critical level. Conventional air conditioning systems heavily rely on energy-intensive mechanical cooling, which significantly contributes to both electricity demand and greenhouse gas emissions. Passive cooling strategies, particularly radiative cooling (RC) and evaporative cooling (EC), present an alternative approach by harnessing natural processes for temperature regulation. While standalone RC can be affected by weather conditions and EC relies on water availability, Radiative-coupled EC (REC) offers a versatile and sustainable cooling solution suitable for various applications. Here we summarize an overview of the theoretical foundations and mathematical models of REC, encompassing REC by bulk water (REC-BW), REC by perspiration (REC-P), and REC by sorbed water (REC-SW). Moreover, we explore a range of applications, spanning from industrial processes to personal thermal management, and examine the advantages and challenges associated with each REC approach. The significance of REC lies in its potential to revolutionize cooling technology, reduce energy consumption, and minimize the environmental impact. REC-BW can conserve water resources in industrial cooling processes, while REC-P offers innovative solutions for wearable electronics and textiles. REC-SW’s adaptability makes it suitable for food preservation and future potable cooling devices. By addressing the challenges posed by REC, including water consumption, textile design, and optimization of bilayer structures, we can unlock the transformative potential of REC and contribute to sustainable cooling technologies in a warming world.

Keywords: evaporative cooling, mass transfer, thermal radiation, passive cooling, radiative cooling

References(87)

[1]

Brosemer, K.; Schelly, C.; Gagnon, V.; Arola, K. L.; Pearce, J. M.; Bessette, D.; Schmitt Olabisi, L. The energy crises revealed by COVID: Intersections of indigeneity, inequity, and health. Energy Res. Soc. Sci. 2020, 68, 101661.

[2]

Aktar, M. A.; Alam, M.; Al-Amin, A. Q. Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19. Sustain. Prod. Consum. 2021, 26, 770–781.

[3]
IEA. The Global Energy Crisis-World Energy Outlook 2022-Analysis [Online]. https//www.iea.org/reports/world-energy-outlook-2022/the-global-energy-crisis (accessed Aug 20, 2023).
[4]

Akeiber, H.; Nejat, P.; Majid, M. Z. A.; Wahid, M. A.; Jomehzadeh, F.; Zeynali Famileh, I.; Calautit, J. K.; Hughes, B. R.; Zaki, S. A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew. Sustain. Energy Rev. 2016, 60, 1470–1497.

[5]

Soares, N.; Costa, J. J.; Gaspar, A. R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 2013, 59, 82–103.

[6]

Yang, Y. F.; Cui, G.; Lan, C. Q. Developments in evaporative cooling and enhanced evaporative cooling—A review. Renew. Sustain. Energy Rev. 2019, 113, 109230.

[7]

Chen, M. J.; Pang, D.; Chen, X. Y.; Yan, H. J.; Yang, Y. Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat 2022, 4, e12153.

[8]

Yu, L.; Xi, Z. Y.; Li, S.; Pang, D.; Yan, H. J.; Chen, M. J. All-day continuous electrical power generator by solar heating and radiative cooling from the sky. Appl. Energy 2022, 322, 119403.

[9]

Zhai, Y.; Ma, Y. G.; David, S. N.; Zhao, D. L.; Lou, R. N.; Tan, G.; Yang, R. G.; Yin, X. B. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066.

[10]

Raman, A. P.; Anoma, M. A.; Zhu, L. X.; Rephaeli, E.; Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544.

[11]

Atiganyanun, S.; Plumley, J. B.; Han, S. J.; Hsu, K.; Cytrynbaum, J.; Peng, T. L.; Han, S. M.; Han, S. E. Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 2018, 5, 1181–1187.

[12]

Chen, M. J.; Pang, D.; Mandal, J.; Chen, X. Y.; Yan, H. J.; He, Y. R.; Yu, N. F.; Yang, Y. Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 2021, 21, 1412–1418.

[13]

Song, J.; Seo, J.; Han, J.; Lee, J.; Lee, B. J. Ultrahigh emissivity of grating-patterned PDMS film from 8 to 13 μm wavelength regime. Appl. Phys. Lett. 2020, 117, 094101.

[14]

Aili, A.; Wei, Z. Y.; Chen, Y. Z.; Zhao, D. L.; Yang, R. G.; Yin, X. B. Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 2019, 10, 100127.

[15]

Zhu, R. K.; Hu, D. W.; Chen, Z.; Xu, X. B.; Zou, Y. S.; Wang, L.; Gu, Y. Plasmon-enhanced infrared emission approaching the theoretical limit of radiative cooling ability. Nano Lett. 2020, 20, 6974–6980.

[16]

Chen, M. J.; Pang, D.; Yan, H. J. Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres. Appl. Therm. Eng. 2022, 216, 119125.

[17]

Chen, M. J.; Pang, D.; Yan, H. J. Sustainable and self-cleaning bilayer coatings for high-efficiency daytime radiative cooling. J. Mater. Chem. C 2022, 10, 8329–8338.

[18]

Liang, J.; Wu, J. W.; Guo, J.; Li, H. G.; Zhou, X. J.; Liang, S.; Qiu, C. W.; Tao, G. M. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 2023, 10, nwac208.

[19]
Li, R. Y.; Wang, W. B.; Shi, Y. F.; Wang, A. C.; Wang, P. Advanced material design and engineering for water-based evaporative cooling. Adv. Mater., in press, DOI: 10.1002/adma.202209460.
DOI
[20]

Xuan, Y. M.; Xiao, F.; Niu, X. F.; Huang, X.; Wang, S. W. Research and applications of evaporative cooling in China: A review (II)-systems and equipment. Renew. Sustain. Energy Rev. 2012, 16, 3523–3534.

[21]

Xuan, Y. M.; Xiao, F.; Niu, X. F.; Huang, X.; Wang, S. W. Research and application of evaporative cooling in China: A review (I)—Research. Renew. Sustain. Energy Rev. 2012, 16, 3535–3546.

[22]

Han, D.; Ng, B. F.; Wan, M. P. Preliminary study of passive radiative cooling under Singapore’s tropical climate. Solar Energy Mater. Solar Cells 2020, 206, 110270.

[23]

Aili, A.; Yin, X. B.; Yang, R. G. Passive sub-ambient cooling: Radiative cooling versus evaporative cooling. Appl. Therm. Eng. 2022, 202, 117909.

[24]

Mekonnen, M. M.; Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323.

[25]

Wu, M. C.; Li, R. Y.; Shi, Y.; Altunkaya, M.; Aleid, S.; Zhang, C. L.; Wang, W. B.; Wang, P. Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting. Mater. Horiz. 2021, 8, 1518–1527.

[26]

Tu, Y. D.; Wang, R. Z.; Zhang, Y. N.; Wang, J. Y. Progress and expectation of atmospheric water harvesting. Joule 2018, 2, 1452–1475.

[27]

Heidarinejad, G.; Farmahini Farahani, M.; Delfani, S. Investigation of a hybrid system of nocturnal radiative cooling and direct evaporative cooling. Build. Environ. 2010, 45, 1521–1528.

[28]

Lu, Z. M.; Leroy, A.; Zhang, L. N.; Patil, J. J.; Wang, E. N.; Grossman, J. C. Significantly enhanced sub-ambient passive cooling enabled by evaporation, radiation, and insulation. Cell Rep. Phys. Sci. 2022, 3, 101068.

[29]

Peng, Y. C.; Li, W.; Liu, B. F.; Jin, W. L.; Schaadt, J.; Tang, J.; Zhou, G. M.; Wang, G. Y.; Zhou, J. W.; Zhang, V. et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 2021, 12, 6122.

[30]

Zhao, D. L.; Aili, A.; Zhai, Y.; Xu, S. Y.; Tan, G.; Yin, X. B.; Yang, R. G. Radiative sky cooling: Fundamental principles, materials, and applications. Appl. Phys. Rev. 2019, 6, 021306.

[31]

Zhou, L.; Rada, J.; Tian, Y. P.; Han, Y.; Lai, Z. P.; McCabe, M. F.; Gan, Q. Q. Radiative cooling for energy sustainability: Materials, systems, and applications. Phys. Rev. Mater. 2022, 6, 090201.

[32]

Chowdhury, F. I.; Xu, Q. W.; Sinha, K.; Wang, X. H. Cellulose-upgraded polymer films for radiative sky cooling. J. Quant. Spectrosc. Radiat. Transf. 2021, 272, 107824.

[33]

Xi, Z. Y.; Li, S.; Yu, L.; Yan, H. J.; Chen, M. J. All-day fresh water harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces. 2022, 14, 26255–26263.

[34]

Leroy, A.; Bhatia, B.; Kelsall, C. C.; Castillejo-Cuberos, A.; Di Capua H., M.; Zhao, L.; Zhang, L.; Guzman, A. M.; Wang, E. N. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 2019, 5, eaat9480.

[35]

Wu, S. L.; Cao, Y. J.; Li, Y. Q.; Sun, W. Recent advances in material engineering and applications for passive daytime radiative cooling. Adv. Opt. Mater. 2023, 11, 2202163.

[36]

Chen, M. J.; Pang, D.; Yan, H. J. Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations. iScience 2022, 25, 104726.

[37]

Ibrahim, I.; Seo, D. H.; McDonagh, A. M.; Shon, H. K.; Tijing, L. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 2021, 500, 114853.

[38]

Lu, Z. M.; Strobach, E.; Chen, N. X.; Ferralis, N.; Grossman, J. C. Passive sub-ambient cooling from a transparent evaporation-insulation bilayer. Joule 2020, 4, 2693–2701.

[39]

Thomson, G. W. The Antoine equation for vapor-pressure data. Chem. Rev. 1946, 38, 1–39.

[40]

Li, J. L.; Wang, X. Y.; Lin, Z. H.; Xu, N.; Li, X. Q.; Liang, J.; Zhao, W.; Lin, R. X.; Zhu, B.; Liu, G. L. et al. Over 10 kg·m−2·h−1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 2020, 4, 928–937.

[41]

Halder, A.; Dhall, A.; Datta, A. K. Modeling transport in porous media with phase change: Applications to food processing. J. Heat Transfer. 2011, 133, 031010.

[42]

Dong, M. H.; Chen, N.; Zhao, X. D.; Fan, S. H.; Chen, Z. Nighttime radiative cooling in hot and humid climates. Opt. Express 2019, 27, 31587–31598.

[43]

Huang, J. Y.; Lin, C. J.; Li, Y.; Huang, B. L. Effects of humidity, aerosol, and cloud on subambient radiative cooling. Int. J. Heat Mass Transf. 2022, 186, 122438.

[44]

Goldstein, E. A.; Raman, A. P.; Fan, S. H. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2017, 2, 17143.

[45]

Farmahini Farahani, M.; Heidarinejad, G.; Delfani, S. A two-stage system of nocturnal radiative and indirect evaporative cooling for conditions in Tehran. Energy Build. 2010, 42, 2131–2138.

[46]

Lillywhite, H. B. Water relations of tetrapod integument. J. Exp. Biol. 2006, 209, 202–226.

[47]

Hsu, P. C.; Song, A. Y.; Catrysse, P. B.; Liu, C.; Peng, Y. C.; Xie, J.; Fan, S. H.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023.

[48]

Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y. X.; Xu, N.; Wu, Z.; Li, J. L.; Li, X. Q. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 2021, 16, 1342–1348.

[49]

Cai, L. L.; Song, A. Y.; Li, W.; Hsu, P. C.; Lin, D. C.; Catrysse, P. B.; Liu, Y. Y.; Peng, Y. C.; Chen, J.; Wang, H. X. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 2018, 30, 1802152.

[50]

Iqbal, M. I.; Shi, S.; Kumar, G. M. S.; Hu, J. L. Evaporative/radiative electrospun membrane for personal cooling. Nano Res. 2023, 16, 2563–2571.

[51]

Cao, D.; Li, X. M.; Gu, Y. Highly optically selective polyethylene porous films as versatile optical shields for daytime radiative cooling applications. Solar Energy Mater. Solar Cells 2022, 240, 111727.

[52]

Peng, Y. C.; Chen, J.; Song, A. Y.; Catrysse, P. B.; Hsu, P. C.; Cai, L. L.; Liu, B. F.; Zhu, Y. Y.; Zhou, G. M.; Wu, D. S. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112.

[53]
Wu, X. K.; Li, J. L.; Jiang, Q. Y.; Zhang, W. S.; Wang, B. S.; Li, R.; Zhao, S. M.; Wang, F.; Huang, Y.; Lyu, P. et al. An all-weather radiative human body cooling textile. Nat. Sustain., in press, DOI: 10.1038/s41893-023-01200-x.
DOI
[54]

Fang, Y. S.; Zhao, X.; Chen, G. R.; Tat, T.; Chen, J. Smart polyethylene textiles for radiative and evaporative cooling. Joule 2021, 5, 752–754.

[55]

Lao, L.; Shou, D.; Wu, Y. S.; Fan, J. T. “Skin-like” fabric for personal moisture management. Sci. Adv. 2020, 6, eaaz0013.

[56]

Xu, D.; Chen, Z.; Liu, Y. C.; Ge, C.; Gao, C.; Jiao, L. A.; Guo, W. Q.; Zhang, Q.; Fang, J.; Xu, W. L. Hump-inspired hierarchical fabric for personal thermal protection and thermal comfort management. Adv. Funct. Mater. 2023, 33, 2212626.

[57]

Alberghini, M.; Hong, S.; Lozano, L. M.; Korolovych, V.; Huang, Y.; Signorato, F.; Zandavi, S. H.; Fucetola, C.; Uluturk, I.; Tolstorukov, M. Y. et al. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat. Sustain. 2021, 4, 715–724.

[58]

Hu, R. J.; Wang, N.; Hou, L. L.; Liu, J. C.; Cui, Z. M.; Zhang, C. H.; Zhao, Y. Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl. Mater. Interfaces 2022, 14, 9833–9843.

[59]

Cai, L. L.; Peng, Y. C.; Xu, J. W.; Zhou, C. Y.; Zhou, C. X.; Wu, P. L.; Lin, D. C.; Fan, S. H.; Cui, Y. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 2019, 3, 1478–1486.

[60]

Galib, R. H.; Tian, Y. P.; Lei, Y.; Dang, S. C.; Li, X. L.; Yudhanto, A.; Lubineau, G.; Gan, Q. Q. Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 2023, 14, 6707.

[61]

Wang, G.; Li, Y.; Qiu, H. H.; Yan, H.; Zhou, Y. G. High-performance and wide relative humidity passive evaporative cooling utilizing atmospheric water. Droplet 2023, 2, e32.

[62]

Xu, L.; Sun, D. W.; Tian, Y.; Fan, T. H.; Zhu, Z. W. Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chem. Eng. J. 2023, 457, 141231.

[63]

Xu, L.; Sun, D. W.; Tian, Y.; Sun, L. B.; Fan, T. H.; Zhu, Z. W. Combined effects of radiative and evaporative cooling on fruit preservation under solar radiation: Sunburn resistance and temperature stabilization. ACS Appl. Mater. Interfaces 2022, 14, 45788–45799.

[64]

Yang, M.; Zou, W. Z.; Luo, H.; Liu, Y.; Zhao, N.; Xu, J. Bright-white hydrogels for on-demand passive cooling. Sci. China Chem. 2023, 66, 1511–1519.

[65]

Zhang, Y. X.; Nandakumar, D. K.; Tan, S. C. Digestion of ambient humidity for energy generation. Joule 2020, 4, 2532–2536.

[66]

Lord, J.; Thomas, A.; Treat, N.; Forkin, M.; Bain, R.; Dulac, P.; Behroozi, C. H.; Mamutov, T.; Fongheiser, J.; Kobilansky, N. et al. Global potential for harvesting drinking water from air using solar energy. Nature 2021, 598, 611–617.

[67]

Li, R. Y.; Shi, Y.; Wu, M. C.; Hong, S.; Wang, P. Improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent. Nano Energy 2020, 67, 104255.

[68]

Wang, C. X.; Hua, L. J.; Yan, H. Z.; Li, B. J.; Tu, Y. D.; Wang, R. Z. A thermal management strategy for electronic devices based on moisture sorption–desorption processes. Joule 2020, 4, 435–447.

[69]

Pu, S. R.; Fu, J.; Liao, Y. T.; Ge, L. R.; Zhou, Y. H.; Zhang, S. L.; Zhao, S. L.; Liu, X. W.; Hu, X. J.; Liu, K. et al. Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 2020, 32, 1907307.

[70]

Chen, Z. H.; Song, S. Y.; Ma, B. C.; Li, Y. Q.; Shao, Y.; Shi, J. W.; Liu, M. C.; Jin, H.; Jing, D. W. Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy. Solar Energy Mater. Solar Cells 2021, 230, 111233.

[71]

Li, Z. P.; Ma, T.; Ji, F.; Shan, H.; Dai, Y. J.; Wang, R. Z. A hygroscopic composite backplate enabling passive cooling of photovoltaic panels. ACS Energy Lett. 2023, 8, 1921–1928.

[72]

Ni, F.; Xiao, P.; Zhang, C.; Zhou, W.; Liu, D. P.; Kuo, S. W.; Chen, T. Atmospheric hygroscopic ionogels with dynamically stable cooling interfaces enable a durable thermoelectric performance enhancement. Adv. Mater. 2021, 33, 2103937.

[73]

Sun, Y. L.; Ji, Y. T.; Javed, M.; Li, X. Y.; Fan, Z. Z.; Wang, Y. Q.; Cai, Z. S.; Xu, B. Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling. Adv. Mater. Technol. 2022, 7, 2100803.

[74]

Li, J. L.; Wang, X. Y.; Liang, D.; Xu, N.; Zhu, B.; Li, W.; Yao, P. C.; Jiang, Y.; Min, X. Z.; Huang, Z. Z. et al. A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 2022, 8, eabq0411.

[75]

Chen, S. R.; Lin, K. X.; Pan, A. Q.; Ho, T. C.; Zhu, Y. H.; Tso, C. Y. Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control. Renew. Energy 2023, 211, 326–335.

[76]

Zhao, B. C.; Yue, X. J.; Tian, Q.; Qiu, F. X.; Li, Y. Q.; Zhang, T. Bio-inspired BC aerogel/PVA hydrogel bilayer gel for enhanced daytime sub-ambient building cooling. Cellulose 2022, 29, 7775–7787.

[77]

Tang, H. J.; Guo, C. Y.; Xu, Q. H.; Zhao, D. L. Boosting evaporative cooling performance with microporous aerogel. Micromachines 2023, 14, 219.

[78]

Díaz-Marín, C. D.; Zhang, L. N.; El Fil, B.; Lu, Z. M.; Alshrah, M.; Grossman, J. C.; Wang, E. N. Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 2022, 195, 123103.

[79]

Díaz-Marín, C. D.; Zhang, L. N.; Lu, Z. M.; Alshrah, M.; Grossman, J. C.; Wang, E. N. Kinetics of sorption in hygroscopic hydrogels. Nano Lett. 2022, 22, 1100–1107.

[80]

Aili, A.; Zhao, D. L.; Tan, G.; Yin, X. B.; Yang, R. G. Reduction of water consumption in thermal power plants with radiative sky cooling. Appl. Energy 2021, 302, 117515.

[81]

Katramiz, E.; Al Jebaei, H.; Alotaibi, S.; Chakroun, W.; Ghaddar, N.; Ghali, K. Sustainable cooling system for Kuwait hot climate combining diurnal radiative cooling and indirect evaporative cooling system. Energy 2020, 213, 119045.

[82]

Pires, L.; Silva, P. D.; Castro Gomes, J. P. Performance of textile and building materials for a particular evaporative cooling purpose. Exp. Therm. Fluid Sci. 2011, 35, 670–675.

[83]

Peng, Y. C.; Lai, J. C.; Xiao, X.; Jin, W. L.; Zhou, J. W.; Yang, Y. F.; Gao, X.; Tang, J.; Fan, L. L.; Fan, S. H. et al. Colorful low-emissivity paints for space heating and cooling energy savings. Proc. Natl. Acad. Sci. USA 2023, 120, e2300856120.

[84]

Li, X. Q.; Ma, B. R.; Dai, J. Y.; Sui, C. X.; Pande, D.; Smith, D. R.; Brinson, L. C.; Hsu, P. C. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 2021, 7, eabj7906.

[85]

Zhu, Y. Z.; Haghniaz, R.; Hartel, M. C.; Guan, S. H.; Bahari, J.; Li, Z. J.; Baidya, A.; Cao, K.; Gao, X. X.; Li, J. H. et al. A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 2023, 35, 2209300.

[86]

Feng, C. Z.; Yang, P. H.; Liu, H. D.; Mao, M. R.; Liu, Y. P.; Xue, T.; Fu, J.; Cheng, T.; Hu, X. J.; Fan, H. J. et al. Bilayer porous polymer for efficient passive building cooling. Nano Energy 2021, 85, 105971.

[87]

Yao, H. Z.; Cheng, H. H.; Liao, Q. H.; Hao, X. Z.; Zhu, K. X.; Hu, Y. J.; Qu, L. T. Integrated radiative and evaporative cooling beyond daytime passive cooling power limit. Nano Res. Energy 2023, 2, e9120060.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 September 2023
Revised: 02 November 2023
Accepted: 08 November 2023
Published: 27 November 2023
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hunan Province (No. 2021JJ40732) and the Central South University Innovation-Driven Research Program (No. 2023CXQD012).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return