Journal Home > Volume 3 , Issue 2

As the cleanest energy source, hydrogen energy is regarded as the most promising fuel. Water electrolysis, as the primary means of hydrogen production, has constantly been the focus of attention in the energy conversion field. Developing eco-friendly, cheap, safe and efficient catalysts for electrochemical water splitting (EWS) is the key challenge. Herein, the intermetallic silicide alloy is first synthesized via a facile magnesiothermic reduction and employed as bifunctional electrocatalysts for EWS. Ferric-nickel silicide (denoted as FeNiSi) alloy is designed and shows a good electrocatalytic performance for EWS. The lattice distortions of FeNiSi enhance the electrocatalytic activity. Besides, the porous structure affords more active sites and improves the reaction kinetics. As a consequence, FeNiSi delivers an excellent performance with overpotential of 308 mV for oxygen evolution reaction (OER) and 386 mV for hydrogen evolution reaction (HER) at 10 mA·cm−2 in 1 M KOH. The stability structure of intermetallic silicide achieves an outstanding durability with an unchanged potential of 1.66 V for overall water splitting at 10 mA·cm−2 for 15 h. This work not only provides a facile method for the synthesis of intermetallic silicide with considerable porous structures, but also develops the potential of intermetallic silicide alloy as bifunctional electrocatalysts for EWS, which opens up a new avenue for the design and application of intermetallic silicide alloy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intermetallic ferric nickel silicide alloy derived from magadiite by magnesiothermic reaction as bifunctional electrocatalyst for overall water splitting

Show Author's information Xuyang Jing1Yang Mu1Zhanming Gao1Xueying Dong1Changgong Meng1,2Chi Huang3Yifu Zhang1( )
School of Chemistry, Dalian University of Technology, Dalian 116024, China
College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

Abstract

As the cleanest energy source, hydrogen energy is regarded as the most promising fuel. Water electrolysis, as the primary means of hydrogen production, has constantly been the focus of attention in the energy conversion field. Developing eco-friendly, cheap, safe and efficient catalysts for electrochemical water splitting (EWS) is the key challenge. Herein, the intermetallic silicide alloy is first synthesized via a facile magnesiothermic reduction and employed as bifunctional electrocatalysts for EWS. Ferric-nickel silicide (denoted as FeNiSi) alloy is designed and shows a good electrocatalytic performance for EWS. The lattice distortions of FeNiSi enhance the electrocatalytic activity. Besides, the porous structure affords more active sites and improves the reaction kinetics. As a consequence, FeNiSi delivers an excellent performance with overpotential of 308 mV for oxygen evolution reaction (OER) and 386 mV for hydrogen evolution reaction (HER) at 10 mA·cm−2 in 1 M KOH. The stability structure of intermetallic silicide achieves an outstanding durability with an unchanged potential of 1.66 V for overall water splitting at 10 mA·cm−2 for 15 h. This work not only provides a facile method for the synthesis of intermetallic silicide with considerable porous structures, but also develops the potential of intermetallic silicide alloy as bifunctional electrocatalysts for EWS, which opens up a new avenue for the design and application of intermetallic silicide alloy.

Keywords: bifunctional electrocatalyst, overall water splitting, magnesiothermic reduction, bimetallic silicide, magadiite

References(60)

[1]

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

[2]

Schlögl, R. Put the sun in the tank: Future developments in sustainable energy systems. Angew. Chem., Int. Ed. 2019, 58, 343–348.

[3]

Mu, Y.; Wang, T. T.; Zhang, J.; Meng, C. G.; Zhang, Y. F.; Kou, Z. K. Single-atom catalysts: Advances and challenges in metal-support interactions for enhanced electrocatalysis. Electrochem. Energy Rev. 2022, 5, 145–186.

[4]

Pei, X. Y.; Mu, Y.; Dong, X. Y.; Ding, C. T.; Xu, L. S.; Cui, M.; Meng, C. G.; Zhang, Y. F. Ion-change promoting Co nanoparticles@N-doped carbon framework on Co2SiO4/rGO support forming “double-triple-biscuit” structure boosts oxygen evolution reaction. Carbon Neutralizat. 2023, 2, 115–126.

[5]

Wang, X.; Gong, J.; Dong, Y.; An, S.; Zhang, X.; Tian, J. Energy band engineering of hydroxyethyl group grafted on the edge of 3D g-C3N4 nanotubes for enhanced photocatalytic H2 production. Mater. Today Phys. 2022, 27, 100806.

[6]

Dong, X. Y.; Peng, Y.; Wang, Y.; Wang, H. W.; Jiang, C. M.; Huang, C.; Meng, C. G.; Zhang, Y. F. Hemimorphite /C interface layer with dual-effect methodically redistricted Zn2+ deposition behavior for dendrite-free zinc metal anodes. Energy Storage Mater. 2023, 62, 102937.

[7]

Klemenz, S.; Stegmüller, A.; Yoon, S.; Felser, C.; Tüysüz, H.; Weidenkaff, A. Holistic view on materials development: Water electrolysis as a case study. Angew. Chem., Int. Ed. 2021, 60, 20094–20100.

[8]

Zhang, H. B.; Zhou, W.; Dong, J. C.; Lu, X. F.; Lou, X. W. Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 2019, 12, 3348–3355.

[9]

Sathre, R.; Greenblatt, J. B.; Walczak, K.; Sharp, I. D.; Stevens, J. C.; Ager III, J. W.; Houle, F. A. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energy Environ. Sci. 2016, 9, 803–819.

[10]

Wei, Y. M.; Chen, K. Y.; Kang, J. N.; Chen, W. M.; Wang, X. Y.; Zhang, X. Y. Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering 2022, 14, 52–63.

[11]

Yang, P. J.; Peng, S.; Benani, N.; Dong, L. Y.; Li, X. M.; Liu, R. P.; Mao, G. Z. An integrated evaluation on China’s provincial carbon peak and carbon neutrality. J. Cleaner Prod. 2022, 377, 134497.

[12]

Wang, Y.; Guo, C. H.; Chen, X. J.; Jia, L. Q.; Guo, X. N.; Chen, R. S.; Zhang, M. S.; Chen, Z. Y.; Wang, H. D. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects. China Geol. 2021, 4, 720–746.

[13]

Zhang, Z.; Pang, C. X.; Xu, W. C.; Liang, Y. Q.; Jiang, H.; Li, Z. Y.; Wu, S. L.; Zhu, S. L.; Wang, H.; Cui, Z. D. Synthesis and water splitting performance of FeCoNbS bifunctional electrocatalyst. J. Colloid Interface Sci. 2023, 638, 893–900.

[14]

Mu, Y.; Zhang, Y. F.; Feng, Z. Y.; Dong, X. Y.; Jing, X. Y.; Pei, X. Y.; Zhao, Y. F.; Kou, Z. K.; Meng, C. G. Bifunctional electrocatalyst junction engineering: CoP nanoparticles in-situ anchored on Co3(Si2O5)2(OH)2 nanosheets for highly efficient water splitting. Chem. Eng. J. 2023, 460, 141709.

[15]

Zeng, Y.; Cao, Z.; Liao, J. Z.; Liang, H. F.; Wei, B. B.; Xu, X.; Xu, H. W.; Zheng, J. X.; Zhu, W. J.; Cavallo, L. et al. Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B: Environ. 2021, 292, 120160.

[16]

Martinez, J.; Mazarío, J.; Olloqui-Sariego, J. L.; Calvente, J. J.; Darawsheh, M. D.; Mínguez-Espallargas, G.; E. Domine, M.; Oña-Burgos, P. Bimetallic intersection in PdFe@FeO x -C nanomaterial for enhanced water splitting electrocatalysis. Adv. Sustainable Syst. 2022, 6, 2200096.

[17]

Wang, Z. Q.; Wang, P.; Zhang, H. G.; Tian, W. J.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Construction of hierarchical IrTe nanotubes with assembled nanosheets for overall water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 18576–18581.

[18]

Pu, Z. H.; Liu, T. T.; Zhang, G. X.; Chen, Z. S.; Li, D. S.; Chen, N.; Chen, W. F.; Chen, Z. X.; Sun, S. H. General synthesis of transition-metal-based carbon-group intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range. Adv. Energy Mater. 2022, 12, 2200293.

[19]

Wang, J. Y.; He, P. L.; Shen, Y. L.; Dai, L. X.; Li, Z.; Wu, Y.; An, C. H. FeNi nanoparticles on Mo2TiC2T x MXene@nickel foam as robust electrocatalysts for overall water splitting. Nano Res. 2021, 14, 3474–3481.

[20]

Li, W. J.; Deng, Y. Q.; Luo, L.; Du, Y. S.; Cheng, X. H.; Wu, Q. Nitrogen-doped Fe2O3/NiTe2 as an excellent bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 416–423.

[21]

Huang, C. Q.; Zhou, Q. C.; Duan, D. S.; Yu, L.; Zhang, W.; Wang, Z. Z.; Liu, J.; Peng, B. W.; An, P. F.; Zhang, J. et al. The rapid self-reconstruction of Fe-modified Ni hydroxysulfide for efficient and stable large-current-density water/seawater oxidation. Energy Environ. Sci. 2022, 15, 4647–4658.

[22]

Da, P. F.; Zheng, Y.; Hu, Y.; Wu, Z. L.; Zhao, H. Y.; Wei, Y. C.; Guo, L. C.; Wang, J. J.; Wei, Y. P.; Xi, S. B. et al. Synthesis of bandgap-tunable transition metal sulfides through gas-phase cation exchange-induced topological transformation. Angew. Chem., Int. Ed. 2023, 135, e202301802.

[23]

Hu, Y.; Zheng, Y.; Jin, J.; Wang, Y. T.; Peng, Y.; Yin, J.; Shen, W.; Hou, Y. C.; Zhu, L.; An, L. et al. Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction. Nat. Commun. 2023, 14, 1949.

[24]

Huang, X. B.; Zheng, H. Y.; Lu, G. L.; Wang, P.; Xing, L. W.; Wang, J. J.; Wang, G. Enhanced water splitting electrocatalysis over MnCo2O4 via introduction of suitable Ce content. ACS Sustainable Chem. Eng. 2019, 7, 1169–1177.

[25]

Kim, J. S.; Park, I.; Jeong, E. S.; Jin, K.; Seong, W. M.; Yoon, G.; Kim, H.; Kim, B.; Nam, K. T.; Kang, K. Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst. Adv. Mater. 2017, 29, 1606893.

[26]

Imtiaz, S.; Kapuria, N.; Amiinu, I. S.; Sankaran, A.; Singh, S.; Geaney, H.; Kennedy, T.; Ryan, K. M. Directly deposited antimony on a copper silicide nanowire array as a high-performance potassium-ion battery anode with a long cycle life. Adv. Funct. Mater. 2023, 33, 2209566.

[27]

Qiu, P. F.; Cheng, J.; Chai, J.; Du, X. L.; Xia, X. G.; Ming, C.; Zhu, C. X.; Yang, J.; Sun, Y. Y.; Xu, F. et al. Exceptionally heavy doping boosts the performance of iron silicide for refractory thermoelectrics. Adv. Energy Mater. 2022, 12, 2200247.

[28]

Mondal, I.; Hausmann, J. N.; Vijaykumar, G.; Mebs, S.; Dau, H.; Driess, M.; Menezes, P. W. Nanostructured intermetallic nickel silicide (Pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 2022, 12, 2200269.

[29]

Chen, H.; Zhang, M. C.; Zhang, K. X.; Li, Z. Y.; Liang, X.; Ai, X.; Zou, X. X. Screening and understanding lattice silicon-controlled catalytically active site motifs from a library of transition metal-silicon intermetallics. Small 2022, 18, 2107371.

[30]

Zhang, B. P.; Gu, Q. F.; Zhang, H. Y.; Yu, X. B. Graphene confined intermetallic magnesium silicide nanocrystals with highly exposed (2 2 0) facets for anisotropic lithium storage. Chem. Eng. J. 2021, 419, 129660.

[31]

Kumar, R.; Bahri, M.; Song, Y.; Gonell, F.; Thomas, C.; Ersen, O.; Sanchez, C.; Laberty-Robert, C.; Portehault, D. Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction. Nanoscale 2020, 12, 15209–15213.

[32]

Hausmann, J. N.; Beltrán-Suito, R.; Mebs, S.; Hlukhyy, V.; Fässler, T. F.; Dau, H.; Driess, M.; Menezes, P. W. Evolving highly active oxidic iron(III) phase from corrosion of intermetallic iron silicide to master efficient electrocatalytic water oxidation and selective oxygenation of 5-hydroxymethylfurfural. Adv. Mater. 2021, 33, 2008823.

[33]

Chang, W. J.; Sim, E. S.; Kwon, J.; Jang, S.; Jeong, D. Y.; Song, T.; Oh, N.; Jang, H. W.; Chung, Y. C.; Park, W. I. Self-adaptive evolution of nickel silicide nanowires for the enhancement of bifunctional electrocatalytic activities. Chem. Eng. J. 2022, 434, 134668.

[34]

Jiang, Y. Z.; Li, Z. H.; Li, B. B.; Zhang, J. Y.; Niu, C. M. Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors. J. Power Sources 2016, 320, 13–19.

[35]

Zhang, H.; Zhong, X.; Shaw, J. C.; Liu, L. X.; Huang, Y.; Duan, X. F. Very high energy density silicide-air primary batteries. Energy Environ. Sci. 2013, 6, 2621–2625.

[36]

Liu, W.; Yin, K.; Zhang, Q. J.; Uher, C.; Tang, X. F. Eco-friendly high-performance silicide thermoelectric materials. Natl. Sci. Rev. 2017, 4, 611–626.

[37]

Lin, Y. C.; Chen, Y.; Xu, D.; Huang, Y. Growth of nickel silicides in Si and Si/SiO x core/shell nanowires. Nano Lett. 2010, 10, 4721–4726.

[38]

Liu, T.; Zhang, H. Y.; Wang, F.; Shi, J.; Ci, P.; Wang, L. W.; Ge, S. L.; Wang, Q. J.; Chu, P. K. Three-dimensional supercapacitors composed of Ba0.65Sr0.35TiO3 (BST)/NiSi2/silicon microchannel plates. Mater. Sci. Eng. B 2011, 176, 387–392.

[39]

Chen, Y.; Lin, Y. C.; Zhong, X.; Cheng, H. C.; Duan, X. F.; Huang, Y. Kinetic manipulation of silicide phase formation in Si nanowire templates. Nano Lett. 2013, 13, 3703–3708.

[40]

Song, Y.; Casale, S.; Miche, A.; Montero, D.; Laberty-Robert, C.; Portehault, D. Converting silicon nanoparticles into nickel iron silicide nanocrystals within molten salts for water oxidation electrocatalysis. J. Mater. Chem. A 2022, 10, 1350–1358.

[41]

Zhang, M. J.; Hu, X. M.; Xin, Y.; Wang, L. K.; Zhou, Z.; Yang, L.; Jiang, J. Z.; Zhang, D. P. FeNi coordination polymer based highly efficient and durable bifunction oxygen electrocatalyst for rechargeable zinc-air battery. Sep. Purif. Technol. 2023, 308, 122974.

[42]

Zaffran, J.; Stevens, M. B.; Trang, C. D. M.; Nagli, M.; Shehadeh, M.; Boettcher, S. W.; Caspary Toroker, M. Influence of electrolyte cations on Ni(Fe)OOH catalyzed oxygen evolution reaction. Chem. Mater. 2017, 29, 4761–4767.

[43]

Wang, Q. S.; Zhang, Y. F.; Hu, T.; Meng, C. G. Fe3O4 nanoparticles/polymer immobilized on silicate platelets for crude oil recovery. Microporous Mesoporous Mater. 2019, 278, 185–194.

[44]

Zhao, J.; Zhang, Y. F.; Zhang, S. Q.; Wang, Q. S.; Chen, M.; Hu, T.; Meng, C. G. Synthesis and characterization of Mn-silicalite-1 by the hydrothermal conversion of Mn-magadiite under the neutral condition and its catalytic performance on selective oxidation of styrene. Microporous Mesoporous Mater. 2018, 268, 16–24.

[45]

Ryu, J.; Hong, D.; Choi, S.; Park, S. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 2016, 10, 2843–2851.

[46]

Liao, Y. Y.; He, R. C.; Pan, W. H.; Li, Y.; Wang, Y. Y.; Li, J.; Li, Y. X. Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution. Chem. Eng. J. 2023, 464, 142669.

[47]

Li, M.; Li, H.; Jiang, X. C.; Jiang, M. Q.; Zhan, X.; Fu, G. T.; Lee, J. M.; Tang, Y. W. Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. J. Mater. Chem. A 2021, 9, 2999–3006.

[48]

Lee, S. H.; Kim, J.; Chung, D. Y.; Yoo, J. M.; Lee, H. S.; Kim, M. J.; Mun, B. S.; Kwon, S. G.; Sung, Y. E.; Hyeon, T. Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures. J. Am. Chem. Soc. 2019, 141, 2035–2045.

[49]

Xuan, C. J.; Wang, J.; Xia, W. W.; Peng, Z. K.; Wu, Z. X.; Lei, W.; Xia, K. D.; Xin, H. L.; Wang, D. L. Porous structured Ni-Fe-P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 26134–26142.

[50]

Lin, G. X.; Ju, Q. J.; Liu, L. J.; Guo, X. Y.; Zhu, Y.; Zhang, Z.; Zhao, C. D.; Wan, Y. J.; Yang, M. H.; Huang, F. Q. et al. Caged-cation-induced lattice distortion in bronze TiO2 for cohering nanoparticulate hydrogen evolution electrocatalysts. ACS Nano 2022, 16, 9920–9928.

[51]

Gan, T. J.; Wu, J. P.; Liu, S.; Ou, W. J.; Ling, B.; Kang, X. W. Low-crystallinity and heterostructured AuPt-Ru@CNTs as highly efficient multifunctional electrocatalyst. J. Electrochem. 2022, 28, 2201241.

[52]

Lefki, K.; Muret, P.; Bustarret, E.; Boutarek, N.; Madar, R.; Chevrier, J.; Derrien, J.; Brunel, M. Infrared and Raman characterization of beta iron silicide. Solid State Commun. 1991, 80, 791–795.

[53]

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

[54]

Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.

[55]

Jing, X. Y.; Zhang, Y. F.; Dong, X. Y.; Mu, Y.; Meng, C. G. Manganese silicate nanosheets for quasi-solid-state hybrid supercapacitors. ACS Appl. Nano Mater. 2021, 4, 8173–8183.

[56]

He, W. J.; Zhang, R.; Cao, D.; Li, Y.; Zhang, J.; Hao, Q. Y.; Liu, H.; Zhao, J. L.; Xin, H. L. Super-hydrophilic microporous Ni(OH) x/Ni3S2 heterostructure electrocatalyst for large-current-density hydrogen evolution. Small 2023, 19, 2205719.

[57]

Zeng, L. Y.; Sun, K. A.; Chen, Y. J.; Liu, Z.; Chen, Y. J.; Pan, Y.; Zhao, R. Y.; Liu, Y. Q.; Liu, C. G. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. J. Mater. Chem. A 2019, 7, 16793–16802.

[58]

Mu, Y.; Zhang, Y. F.; Pei, X. Y.; Dong, X. Y.; Kou, Z. K.; Cui, M.; Meng, C. G. Dispersed FeO x nanoparticles decorated with Co2SiO4 hollow spheres for enhanced oxygen evolution reaction. J. Colloid Interface Sci. 2022, 611, 235–245.

[59]

Cai, Z. X.; Goou, H.; Ito, Y.; Tokunaga, T.; Miyauchi, M.; Abe, H.; Fujita, T. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem. Sci. 2021, 12, 11306–11315.

[60]

Thiyagarajan, D.; Gao, M. Y.; Sun, L.; Dong, X. C.; Zheng, D. H.; Abdul Wahab, M.; Will, G.; Lin, J. J. Nanoarchitectured porous Cu-CoP nanoplates as electrocatalysts for efficient oxygen evolution reaction. Chem. Eng. J. 2022, 432, 134303.

File
0104_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 July 2023
Revised: 07 October 2023
Accepted: 09 October 2023
Published: 03 November 2023
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province (No. 2023-MS-115) and Large Instrument and Equipment Open Foundation of Dalian University of Technology.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return