Journal Home > Volume 3 , Issue 2

Rechargeable zinc (Zn) metal batteries have long been plagued by dendrite growth and parasitic reactions due to the absence of a stable Zn-ion conductive solid-electrolyte interphase (SEI). Although the current strategies assist in suppressing dendritic Zn growth, it is still a challenge to obtain the operation-stability of Zn anode with high Coulombic efficiency (CE) required to implement a sustainable and long-cycling life of Zn metal batteries. In this perspective, we summarize the advantages of the functional gradient interphase (FGI) and try to fundamentally understand the transport behaviors of Zn ions, based on recently an article understanding Zn chemistry. The correlation between the function-orientated design of gradient interphase and key challenges of Zn metal anodes in accelerating Zn2+ transport kinetics, improving electrode reversibility, and inhibiting Zn dendrite growth and side reactions was particularly emphasized. Finally, the rational design and innovative directions are provided for the development and application of functional gradient interphase in rechargeable Zn metal battery systems.


menu
Abstract
Full text
Outline
About this article

A promising solution for highly reversible zinc metal anode chemistry: Functional gradient interphase

Show Author's information Xiaofeng He1,2Xiang-Yu Kong1,2Liping Wen1,2( )
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Rechargeable zinc (Zn) metal batteries have long been plagued by dendrite growth and parasitic reactions due to the absence of a stable Zn-ion conductive solid-electrolyte interphase (SEI). Although the current strategies assist in suppressing dendritic Zn growth, it is still a challenge to obtain the operation-stability of Zn anode with high Coulombic efficiency (CE) required to implement a sustainable and long-cycling life of Zn metal batteries. In this perspective, we summarize the advantages of the functional gradient interphase (FGI) and try to fundamentally understand the transport behaviors of Zn ions, based on recently an article understanding Zn chemistry. The correlation between the function-orientated design of gradient interphase and key challenges of Zn metal anodes in accelerating Zn2+ transport kinetics, improving electrode reversibility, and inhibiting Zn dendrite growth and side reactions was particularly emphasized. Finally, the rational design and innovative directions are provided for the development and application of functional gradient interphase in rechargeable Zn metal battery systems.

Keywords: energy storage, dendrite, solid-electrolyte interphase, zinc metal battery, gradient

References(26)

[1]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[2]

Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

[3]

He, X. F.; Liu, X.; Han, Q.; Zhang, P.; Song, X. S.; Zhao, Y. A liquid/liquid electrolyte interface that inhibits corrosion and dendrite growth of lithium in lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 6397–6405.

[4]

Cao, L. S.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C. Y.; Chen, L.; Vatamanu, J.; Hu, E. Y.; Hourwitz, M. J. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902–910.

[5]

Ma, L.; Schroeder, M. A.; Borodin, O.; Pollard, T. P.; Ding, M. S.; Wang, C. S.; Xu, K. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 2020, 5, 743–749.

[6]

Hou, S.; Ji, X.; Gaskell, K.; Wang, P. F.; Wang, L. N.; Xu, J. J.; Sun, R. M.; Borodin, O.; Wang, C. S. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 2021, 374, 172–178.

[7]

Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

[8]

Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.

[9]

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

[10]

Wang, P. J.; Liang, S. Q.; Chen, C.; Xie, X. S.; Chen, J. W.; Liu, Z. H.; Tang, Y.; Lu, B. G.; Zhou, J. Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv. Mater. 2022, 34, 2202733.

[11]

Liu, C.; Li, Q.; Lin, Y. L.; Wei, Z. Q.; Yang, Y. H.; Han, C. P.; Zhu, M. S.; Zhang, H. Y.; Li, H. F. Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry. Nano Res. Energy 2023, 2, e9120064.

[12]

Cui, Y. H.; Zhao, Q. H.; Wu, X. J.; Chen, X.; Yang, J. L.; Wang, Y. T.; Qin, R. Z.; Ding, S. X.; Song, Y. L.; Wu, J. W. et al. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem., Int. Ed. 2020, 59, 16594–16601.

[13]

Wang, Y.; Wang, Y. T.; Chen, C. X.; Chen, X.; Zhao, Q. H.; Yang, L. Y.; Yao, L.; Qin, R. Z.; Wu, H.; Jiang, Z. Y. et al. Optimizing the sulfonic groups of a polymer to coat the zinc anode for dendrite suppression. Chem. Commun. 2021, 57, 5326–5329.

[14]

Peng, H. J.; Fang, Y.; Wang, J. Z.; Ruan, P. C.; Tang, Y.; Lu, B. G.; Cao, X. X.; Liang, S. Q.; Zhou, J. Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries. Matter 2022, 5, 4363–4378.

[15]

Wu, J.; Yuan, C. G.; Li, T. Y.; Yuan, Z. Z.; Zhang, H. M.; Li, X. F. Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of Turing membrane. J. Am. Chem. Soc. 2021, 143, 13135–13144.

[16]

Li, S. Y.; Fu, J.; Miao, G. X.; Wang, S. P.; Zhao, W. Y.; Wu, Z. C.; Zhang, Y. J.; Yang, X. W. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 2021, 33, 2008424.

[17]

Chai, Y. Z.; Xie, X. S.; He, Z. X.; Guo, G. Y.; Wang, P. J.; Xing, Z. Y.; Lu, B. A.; Liang, S. Q.; Tang, Y.; Zhou, J. A smelting-rolling strategy for ZnIn bulk phase alloy anodes. Chem. Sci. 2022, 13, 11656–11665.

[18]

Bie, Z.; Yang, Q.; Cai, X. X.; Chen, Z.; Jiao, Z. Y.; Zhu, J. B.; Li, Z. F.; Liu, J. Z.; Song, W. X.; Zhi, C. Y. One-step construction of a polyporous and zincophilic interface for stable zinc metal anodes. Adv. Energy Mater. 2022, 12, 2202683.

[19]

Liang, G. J.; Zhu, J. X.; Yan, B. X.; Li, Q.; Chen, A.; Chen, Z.; Wang, X. Q.; Xiong, B.; Fan, J.; Xu, J. et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ. Sci. 2022, 15, 1086–1096.

[20]

Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1, e9120025.

[21]

Lu, H. Y.; Hu, J. S.; Wang, L. T.; Li, J. Z.; Ma, X.; Zhu, Z. C.; Li, H. Q.; Zhao, Y. J.; Li, Y. J.; Zhao, J. X. et al. Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv. Funct. Mater. 2022, 32, 2112540.

[22]

Ma, L. T.; Chen, S. M.; Li, X. L.; Chen, A.; Dong, B. B.; Zhi, C. Y. Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte. Angew. Chem., Int. Ed. 2020, 59, 23836–23844.

[23]

Wu, M. L.; Zhang, Y.; Xu, L.; Yang, C. P.; Hong, M.; Cui, M. J.; Clifford, B. C.; He, S. M.; Jing, S. S.; Yao, Y. et al. A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 2022, 5, 3402–3416.

[24]

Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.

[25]

Zampardi, G.; La Mantia, F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 2022, 13, 687.

[26]

He, X. F.; Cui, Y.; Qian, Y. C.; Wu, Y. D.; Ling, H. Y.; Zhang, H. R.; Kong, X. Y.; Zhao, Y.; Xue, M. Q.; Jiang, L. et al. Anion concentration gradient-assisted construction of a solid-electrolyte interphase for a stable zinc metal anode at high rates. J. Am. Chem. Soc. 2022, 144, 11168–11177.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 July 2023
Revised: 03 September 2023
Accepted: 04 September 2023
Published: 18 September 2023
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2022YFB3805904 and 2022YFB3805900), the National Natural Science Foundation of China (Nos. 22122207 and 21988102), CAS Project for Young Scientists in Basic Research (YSBR-039).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return