AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Dissociation of singlet excitons dominates photocurrent improvement in high-efficiency non-fullerene organic solar cells

Qicong Li1,2,§Shizhong Yue1,§Zhitao Huang1Chao Li1Jiaqian Sun1Keqian Dong1Zhijie Wang1( )Kong Liu1( )Shengchun Qu1( )Yong Lei3( )
Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
China Electronics Standardization Institution, Beijing 100007, China
Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany

§ Qicong Li and Shizhong Yue contributed equally to this work.

Show Author Information

Graphical Abstract

Increasing the ratio of singlet excitons in high-efficiency non-fullerene organic solar cells enhances the photocurrent.

Abstract

In organic solar cells, the singlet and triplet excitons dissociate into free charge carriers with different mechanisms due to their opposite spin state. Therefore, the ratio of the singlet and triplet excitons directly affects the photocurrent. Many methods were used to optimize the performance of the low-efficiency solar cell by improving the ratio of triplet excitons, which shows a long diffusion length. Here we observed that in high-efficiency systems, the proportion of singlet excitons under linearly polarized light excitation is higher than that of circularly polarized light. Since the singlet charge transfer state has lower binding energy than the triplet state, it makes a significant contribution to the charge carrier generation and enhancement of the photocurrent. Further, the positive magnetic field effect reflects that singlet excitons dissociation plays a major role in the photocurrent, which is opposite to the case of low-efficiency devices where triplet excitons dominate the photocurrent.

Electronic Supplementary Material

Download File(s)
0099_ESM.pdf (703.7 KB)

References

[1]

Wang, J. P.; Chepelianskii, A.; Gao, F.; Greenham, N. C. Control of exciton spin statistics through spin polarization in organic optoelectronic devices. Nat. Commun. 2012, 3, 1191.

[2]

Kumar, K. S.; Ruben, M. Sublimable spin-crossover complexes: From spin-state switching to molecular devices. Angew. Chem., Int. Ed. 2021, 60, 7502–7521.

[3]

Cardano, F.; Marrucci, L. Spin-orbit photonics. Nat. Photonics 2015, 9, 776–778.

[4]

Cui, L. S.; Gillett, A. J.; Zhang, S. F.; Ye, H.; Liu, Y.; Chen, X. K.; Lin, Z. S.; Evans, E. W.; Myers, W. K.; Ronson, T. K. et al. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photonics 2020, 14, 636–642.

[5]

Wada, Y.; Nakagawa, H.; Matsumoto, S.; Wakisaka, Y.; Kaji, H. Organic light emitters exhibiting very fast reverse intersystem crossing. Nat. Photonics 2020, 14, 643–649.

[6]

Lu, K.; Zhao, C.; Luan, L.; Duan, J. S.; Xie, Y. L.; Shao, M.; Hu, B. Exploring the role of spin-triplets and trap states in photovoltaic processes of perovskite solar cells. J. Mater. Chem. C 2018, 6, 5055–5062.

[7]

An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685–690.

[8]

Dediu, V. A.; Hueso, L. E.; Bergenti, I.; Taliani, C. Spin routes in organic semiconductors. Nat. Mater. 2009, 8, 707–716.

[9]

Wu, Y.; Xu, Z. H.; Hu, B.; Howe, J. Tuning magnetoresistance and magnetic-field-dependent electroluminescence through mixing a strong-spin-orbital-coupling molecule and a weak-spin-orbital-coupling polymer. Phys. Rev. B 2007, 75, 035214.

[10]

Busby, E.; Xia, J. L.; Wu, Q.; Low, J. Z.; Song, R.; Miller, J. R.; Zhu, X. Y.; Campos, L. M.; Sfeir, M. Y. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nat. Mater. 2015, 14, 426–433.

[11]

Hu, B.; Yan, L.; Shao, M. Magnetic-field effects in organic semiconducting materials and devices. Adv. Mater. 2009, 21, 1500–1516.

[12]

Deibel, C.; Strobel, T.; Dyakonov, V. Role of the charge transfer state in organic donor–acceptor solar cells. Adv. Mater. 2010, 22, 4097–4111.

[13]

Frenkel, J. On the transformation of light into heat in solids. I. Phys. Rev. 1931, 37, 17–44.

[14]

Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 1937, 52, 191–197.

[15]

Dou, Y. X.; Demangeat, C.; Wang, M. S.; Xu, H. X.; Dryzhakov, B.; Kim, E.; Le Bahers, T.; Lee, K. S.; Attias, A. J.; Hu, B. Spin-orbital coupling and slow phonon effects enabled persistent photoluminescence in organic crystal under isomer doping. Nat. Commun. 2021, 12, 3485.

[16]

Luppi, B. T.; Majak, D.; Gupta, M.; Rivard, E.; Shankar, K. Triplet excitons: Improving exciton diffusion length for enhanced organic photovoltaics. J. Mater. Chem. A 2019, 7, 2445–2463.

[17]

Xu, Z. H.; Hu, B. Photovoltaic processes of singlet and triplet excited states in organic solar cells. Adv. Funct. Mater. 2008, 18, 2611–2617.

[18]

Zhu, X. X.; Zhang, G. C.; Zhang, J.; Yip, H. L.; Hu, B. Self-stimulated dissociation in non-fullerene organic bulk-heterojunction solar cells. Joule 2020, 4, 2443–2457.

[19]

Li, Q. C.; Sun, Y.; Xue, X. D.; Yue, S. Z.; Liu, K.; Azam, M.; Yang, C.; Wang, Z. J.; Tan, F. R.; Chen, Y. H. Insights into charge separation and transport in ternary polymer solar cells. ACS Appl. Mater. Interfaces 2019, 11, 3299–3307.

[20]

Sun, Y.; Yang, C.; Li, Q. C.; Liu, K.; Xue, X. D.; Zhang, Y.; Azam, M.; Ren, K. K.; Chen, Y. H.; Wang, Z. J. et al. The route and optimization of charge transport in ternary organic solar cells based on O6T-4F and PC71BM as acceptors. J. Power Sources 2020, 449, 227583.

[21]

Zhou, Y. Y.; Li, M.; Shen, S. S.; Wang, J.; Zheng, R.; Lu, H.; Liu, Y. H.; Ma, Z. F.; Song, J. S.; Bo, Z. S. Hybrid nonfused-ring electron acceptors with fullerene pendant for high-efficiency organic solar cells. ACS Appl. Mater. Interfaces 2021, 13, 1603–1611.

[22]

Wade, J.; Wood, S.; Beatrup, D.; Hurhangee, M.; Bronstein, H.; McCulloch, I.; Durrant, J. R.; Kim, J. S. Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy. J. Chem. Phys. 2015, 142, 244904.

[23]

Otieno, F.; Kotane, L.; Airo, M.; Billing, C.; Erasmus, R. M.; Wamwangi, D.; Billing, D. G. Probing the properties of polymer/non-fullerene/fullerene bulk heterojunction ternary blend solar cells, study of varied blend ratios of PBDB-T:ITIC-Th:PC71BM. Eur. Phys. J. Plus 2021, 136, 171.

[24]

Gilot, J.; Abbel, R.; Lakhwani, G.; Meijer, E. W.; Schenning, A. P. H. J.; Meskers, S. C. J. Polymer photovoltaic cells sensitive to the circular polarization of light. Adv. Mater. 2010, 22, E131–E134.

[25]

Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688–4698.

[26]

Wei, M. M.; Hao, X. T.; Saxena, A. B.; Qin, W.; Xie, S. J. Optical helicity-manipulated photocurrents and photovoltages in organic solar cells. J. Phys. Chem. C 2018, 122, 12566–12571.

[27]

Wang, F. J.; Bässler, H.; Vardeny, Z. V. Magnetic field effects in π-conjugated polymer-fullerene blends: Evidence for multiple components. Phys. Rev. Lett. 2008, 101, 236805.

[28]

Kosaka, H.; Shigyou, H.; Mitsumori, Y.; Rikitake, Y.; Imamura, H.; Kutsuwa, T.; Arai, K.; Edamatsu, K. Coherent transfer of light polarization to electron spins in a semiconductor. Phys. Rev. Lett. 2008, 100, 096602.

[29]

Bauke, H.; Ahrens, S.; Grobe, R. Electron-spin dynamics in elliptically polarized light waves. Phys. Rev. A 2014, 90, 052101.

[30]

Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P. General theory of van der Waals’ forces. Sov. Phys. Usp. 1961, 4, 153–176.

[31]

Zhang, J.; Wu, T.; Duan, J. S.; Ahmadi, M.; Jiang, F. Y.; Zhou, Y. H.; Hu, B. Exploring spin-orbital coupling effects on photovoltaic actions in Sn and Pb based perovskite solar cells. Nano Energy 2017, 38, 297–303.

[32]

Qin, W.; Xu, H. X.; Hu, B. Effects of spin states on photovoltaic actions in organo-metal halide perovskite solar cells based on circularly polarized photoexcitation. ACS Photonics 2017, 4, 2821–2827.

[33]

Vetter, E.; VonWald, I.; Yang, S. J.; Yan, L.; Koohfar, S.; Kumah, D.; Yu, Z. G.; You, W.; Sun, D. L. Tuning of spin-orbit coupling in metal-free conjugated polymers by structural conformation. Phys. Rev. Mater. 2020, 4, 085603.

[34]

Beljonne, D.; Shuai, Z.; Pourtois, G.; Bredas, J. L. Spin-orbit coupling and intersystem crossing in conjugated polymers: A configuration interaction description. J. Phys. Chem. A 2001, 105, 3899–3907.

[35]

He, L.; Li, M. X.; Urbas, A.; Hu, B. Magnetophotoluminescence line-shape narrowing through interactions between excited states in organic semiconducting materials. Phys. Rev. B 2014, 89, 155304.

[36]

Wohlgenannt, M.; Vardeny, Z. V. Spin-dependent exciton formation rates in π-conjugated materials. J. Phys.: Condens. Matter 2003, 15, R83–R107.

[37]

Hu, B.; Wu, Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat. Mater. 2007, 6, 985–991.

[38]

Frankevich, E.; Zakhidov, A.; Yoshino, K.; Maruyama, Y.; Yakushi, K. Photoconductivity of poly(2,5-diheptyloxy-p-phenylene vinylene) in the air atmosphere: Magnetic-field effect and mechanism of generation and recombination of charge carriers. Phys. Rev. B 1996, 53, 4498–4508.

[39]

Steiner, U. E.; Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 1989, 89, 51–147.

[40]

Li, M. X.; Wang, H. F.; He, L.; Zang, H. D.; Xu, H. X.; Hu, B. Optically tunable spin-exchange energy at donor: Acceptor interfaces in organic solar cells. Appl. Phys. Lett. 2014, 105, 023302.

[41]

Jin, K.; Xiao, Z.; Ding, L. M. D18, an eximious solar polymer. J. Semicond. 2021, 42, 010502.

[42]

Cao, J. M.; Yi, L. F.; Ding, L. M. The origin and evolution of Y6 structure. J. Semicond. 2022, 43, 030202.

Nano Research Energy
Cite this article:
Li Q, Yue S, Huang Z, et al. Dissociation of singlet excitons dominates photocurrent improvement in high-efficiency non-fullerene organic solar cells. Nano Research Energy, 2024, 3: e9120099. https://doi.org/10.26599/NRE.2023.9120099

1230

Views

196

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 09 July 2023
Revised: 23 August 2023
Accepted: 31 August 2023
Published: 22 September 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return