AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

How to select heterogeneous CO2 reduction electrocatalyst

Ji ShenDingsheng Wang( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

It plays a very important role by exploring the element type and surface structure of the catalyst in improving the targeted conversion of CO2 into C1 and C2+ products.

Abstract

As an important part of carbon neutralization, carbon dioxide electroreduction reaction (CO2RR) can convert CO2 into high value-added chemicals and fuels to realize the recycling of carbon resources and solve the problem of environmental pollution. Therefore, exploring the element species and surface structure of the catalyst plays a central role in improving the performance of the catalyst, enhancing the CO2 conversion efficiency and forming C1 and C2+ products. Here, we summarize the recent progress in the selective regulation of CO2RR reaction products by different elements. In particular, we emphasize the structure-property relationship of CO2RR by the microenvironment of metal center and substrate, heteroatom doping, hydrogen bond network of metal-free polymer, and construction of heterogeneous catalytic system. At the same time, the recent advances for the identification of CO2RR active sites and mechanistic studies on the process of reducing CO2 conversion to different products are reviewed, as well as a comprehensive review to the final products. Finally, we outline the inevitable challenges faced by CO2RR and present our own recommendations aimed at contributing to CO2 resource utilization.

References

[1]

Lees, E. W.; Mowbray, B. A. W.; Parlane, F. G. L.; Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 2022, 7, 55–64.

[2]

Salvatore, D. A.; Gabardo, C. M.; Reyes, A.; O’Brien, C. P.; Holdcroft, S.; Pintauro, P.; Bahar, B.; Hickner, M.; Bae, C.; Sinton, D. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 2021, 6, 339–348.

[3]

Liu, M.; Liu, M. X.; Wang, X. M.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H. M.; Qiu, X. Q.; Liu, K.; Hu, J. H. et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule 2019, 3, 1703–1718.

[4]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[5]

Tang, M. H.; Zhang, F. T.; Zhao, Y. F.; Wang, Y. P.; Ke, Z. G.; Li, R. P.; Zeng, W.; Han, B. X.; Liu, Z. M. A CO2-mediated base catalysis approach for the hydration of triple bonds in ionic liquids. Green Chem. 2021, 23, 9870–9875.

[6]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[7]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[8]

Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F. W.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.

[9]

Gür, T. M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies. Prog. Energy Combust. Sci. 2022, 89, 100965.

[10]

Dietrich, H. M.; Righetto, R. D.; Kumar, A.; Wietrzynski, W.; Trischler, R.; Schuller, S. K.; Wagner, J.; Schwarz, F. M.; Engel, B. D.; Müller, V. et al. Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature 2022, 607, 823–830.

[11]

Shafaat, H. S.; Yang, J. Y. Uniting biological and chemical strategies for selective CO2 reduction. Nat. Catal. 2021, 4, 928–933.

[12]

Wang, M. M.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Ni-Co bimetallic hydroxide nanosheet arrays anchored on graphene for adsorption-induced enhanced photocatalytic CO2 reduction. Adv. Mater. 2022, 34, 2202960.

[13]

Wang, Q.; Pan, Z. H. Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Res. 2022, 15, 10090–10109.

[14]

Dai, Y. T.; Xiong, Y. J. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Res. Energy 2022, 1, e9120006.

[15]

Mehla, S.; Kandjani, A. E.; Babarao, R.; Lee, A. F.; Periasamy, S.; Wilson, K.; Ramakrishna, S.; Bhargava, S. K. Porous crystalline frameworks for thermocatalytic CO2 reduction: An emerging paradigm. Energy Environ. Sci. 2021, 14, 320–352.

[16]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450

[17]

Wang, Q. S.; Zheng, X. B.; Wu, J. B.; Wang, Y.; Wang, D. S.; Li, Y. D. Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 2022, 3, 2200059.

[18]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[19]

Zhao, Z. B.; Zhang, J. G.; Lei, M.; Lum, Y. Reviewing the impact of halides on electrochemical CO2 reduction. Nano Res. Energy 2023, 2, e9120044.

[20]

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[21]

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

[22]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[23]

Zhu, P.; Wang, H. T. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 2021, 4, 943–951.

[24]

Lai, W. C.; Qiao, Y.; Zhang, J. W.; Lin, Z. Q.; Huang, H. W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci., 2022, 15, 3603–3629.

[25]

Hu, M. K.; Wang, N.; Ma, D. D.; Zhu, Q. L. Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Res. 2022, 15, 10070–10077.

[26]

Ma, W. C.; He, X. Y.; Wang, W.; Xie, S. J.; Zhang, Q. H.; Wang, Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev., 2021, 50, 12897–12914.

[27]

Hu, C. G.; Paul, R.; Dai, Q. B.; Dai, L. M. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev., 2021, 50, 11785–11843.

[28]

Xu, Y. Y.; Xue, H. R.; Li, X. J.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2023, 2, e9120052.

[29]

Quan, Y. L.; Zhu, J. X.; Zheng, G. F. Electrocatalytic reactions for converting CO2 to value-added products. Small Sci. 2021, 1, 2100043.

[30]

Verma, S.; Lu, S.; Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 2019, 4, 466–474.

[31]

Salvatore, D.; Berlinguette, C. P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 2020, 5, 215−220.

[32]

Fan, Q. K.; Gao, P. F.; Ren, S.; Qu, Y. T.; Kong, C. C.; Yang, J.; Wu, Y. E. Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Res. 2023, 16, 2003–2010.

[33]

Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci., 2021, 14, 765–780.

[34]

Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115, 28–126.

[35]

Xu, B. Y.; Zhang, Y.; Li, L. G.; Shao, Q.; Huang, X. Q. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord. Chem. Rev. 2022, 459, 214388.

[36]

Zhao, Q.; Martirez, J. M. P.; Carter, E. A. Revisiting understanding of electrochemical CO2 reduction on Cu(111): Competing proton-coupled electron transfer reaction mechanisms revealed by embedded correlated wavefunction theory. J. Am. Chem. Soc. 2021, 143, 6152−6164.

[37]

Wang, M. M.; Li, M.; Liu, Y. Q.; Zhang, C.; Pan, Y. Structural regulation of single-atomic site catalysts for enhanced electrocatalytic CO2 reduction. Nano Res. 2022, 15, 4925–4941.

[38]

Chen, Y. L.; Huang, Y. F.; Cheng, T.; Goddard, W. A. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations. J. Am. Chem. Soc. 2019, 141, 11651−11657.

[39]

Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.

[40]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[41]

Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

[42]

Braunstein, P.; Bender, R.; Kervennal, J. Selective carbonylation of nitrobenzene over a mixed palladium-molybdenum cluster-derived catalyst. Organometallics 1982, 1, 1236–1238.

[43]

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

[44]

Wan, H.; Jiao, Y.; Bagger, A.; Rossmeisl, J. Three-dimensional carbon electrocatalysts for CO2 or CO reduction. ACS Catal. 2021, 11, 533−541.

[45]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[46]

Chen, Y. Q.; Li, G. C.; Zeng, Y.; Yan, L. J.; Wang, X. Z.; Yang, L. J.; Wu, Q.; Hu, Z. Boosting faradaic efficiency of CO2 electroreduction to CO for Fe-N-C single-site catalysts by stabilizing Fe3+ sites via F-doping. Nano Res. 2022, 15, 7896–7902.

[47]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[48]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[49]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[50]

Wang, J. Z.; Hao, Q.; Zhong, H. X.; Li, K.; Zhang, X. B. Ligand centered electrocatalytic efficient CO2 reduction reaction at low overpotential on single-atom Ni regulated molecular catalyst. Nano Res. 2022, 15, 5816–5823.

[51]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[52]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[53]

Zhang, W. J.; Jiang, M. H.; Yang, S. Y.; Hu, Y.; Mu, B.; Tie, Z. X.; Jin, Z. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res. Energy 2022, 1, e9120033.

[54]

Rajeshwar, K.; Vali, A.; De Brito, J. F.; Zanoni, M. V. B. Naming photoelectrochemical processes: Why thermodynamics holds the key. ACS Energy Lett. 2021, 6, 2198−2201.

[55]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[56]

Li, Q. Q.; Rao, X. F.; Sheng, J. W.; Xu, J.; Yi, J.; Liu, Y. Y.; Zhang, J. J. Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes. J CO2 Util. 2018, 27, 48–59.

[57]

Jiang, N.; Zhu, Z. W.; Xue, W. J.; Xia, B. Y.; You, B. Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Adv. Mater. 2022, 34, 2105852.

[58]

Li, H.; Jiang, T. W.; Qin, X. X.; Chen, J.; Ma, X. Y.; Jiang, K.; Zhang, X. G.; Cai, W. B. Selective reduction of CO2 to CO on an Sb-modified Cu electrode: Spontaneous fabrication and physical insight. ACS Catal. 2021, 11, 6846−6856.

[59]

Sun, Z. M.; Wang, D.; Lin, L.; Liu, Y. H.; Yuan, M. W.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Yang, X. J. Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery. Nano Res. 2022, 15, 1171–1177.

[60]

Xu, H. J.; Cai, H. Z.; Cui, L. X.; Yu, L. M.; Gao, R.; Shi, C. Molecular modulating of cobalt phthalocyanines on amino-functionalized carbon nanotubes for enhanced electrocatalytic CO2 conversion. Nano Res. 2023, 16, 3649−3657.

[61]

Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.

[62]

Pan, F. P.; Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci., 2020, 13, 2275–2309.

[63]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[64]

Franco, F.; Rettenmaier, C.; Jeon, H. S.; Cuenya, B. R. Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884–6946.

[65]

Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

[66]

Chen, Z. S.; Zhang, G. X.; Du, L.; Zheng, Y.; Sun, L. X.; Sun, S. H. Nanostructured cobalt-based electrocatalysts for CO2 reduction: Recent progress, challenges, and perspectives. Small 2020, 16, 2004158.

[67]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[68]

Zhuang, J. H.; Wang, D. S. Current advances and future challenges of single-atom catalysis. Chem. J. Chin. Univ. 2022, 43, 20220043.

[69]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[70]

Zhao, S. Q.; Tang, Z. Y.; Guo, S. J.; Han, M. M.; Zhu, C.; Zhou, Y. J.; Bai, L.; Gao, J.; Huang, H.; Li, Y. Y. et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst. ACS Catal. 2018, 8, 188−197.

[71]

Zhang, L.; Mao, F. X.; Zheng, L. R.; Wang, H. F.; Yang, X. H.; Yang, H. G. Tuning metal catalyst with metal-C3N4 interaction for efficient CO2 electroreduction. ACS Catal. 2018, 8, 11035−11041.

[72]

Yin, Z. L.; Peng, H. Q.; Wei, X.; Zhou, H.; Gong, J.; Huai, M. M.; Xiao, L.; Wang, G. W.; Lu, J. T.; Zhuang, L. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 2019, 12, 2455–2462.

[73]

Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv. Funct. Mater. 2018, 28, 1804762.

[74]

Cho, M.; Song, J. T.; Back, S.; Jung, Y.; Oh, J. The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction. ACS Catal. 2018, 8, 1178−1185.

[75]

Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 14563–14570.

[76]

Wang, J.; Yu, J. L.; Sun, M. Z.; Liao, L. W.; Zhang, Q. H.; Zhai, L.; Zhou, X. C.; Li, L. J.; Wang, G.; Meng, F. Q. et al. Surface molecular functionalization of unusual phase metal nanomaterials for highly efficient electrochemical carbon dioxide reduction under industry-relevant current density. Small 2022, 18, 2106766.

[77]

Lee, J.; Lim, J.; Roh, C. W.; Whang, H. S.; Lee, H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J CO2 Util. 2019, 31, 244–250.

[78]

Zhu, W. L.; Kattel, S.; Jiao, F.; Chen, J. G. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 2019, 9, 1802840.

[79]

Chang, Q. W.; Kim, J.; Lee, J. H.; Kattel, S.; Chen, J. G.; Choi, S. I.; Chen, Z. Boosting activity and selectivity of CO2 electroreduction by pre-hydridizing Pd nanocubes. Small 2020, 16, 2005305.

[80]

Wang, J. J.; Kattel, S.; Hawxhurst, C. J.; Lee, J. H.; Tackett, B. M.; Chang, K.; Rui, N.; Liu, C. J.; Chen, J. G. Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew. Chem., Int. Ed. 2019, 58, 6271−6275.

[81]

Liu, Y. M.; Tian, D.; Biswas, A. N.; Xie, Z. H.; Hwang, S.; Lee, J. H.; Meng, H.; Chen, J. G. Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 11345−11348.

[82]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388−13393.

[83]

Thevenon, A.; Rosas-Hernández, A.; Fontani Herreros, A. M.; Agapie, T.; Peters, J. C. Dramatic HER suppression on Ag electrodes via molecular films for highly selective CO2 to CO reduction. ACS Catal. 2021, 11, 4530−4537.

[84]

Li, C. S.; Xiong, H. C.; He, M.; Xu, B. J.; Lu, Q. Oxyhydroxide species enhances CO2 electroreduction to CO on Ag via coelectrolysis with O2. ACS Catal. 2021, 11, 12029−12037.

[85]

Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160–2163.

[86]

Liu, S. B.; Tao, H. B.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Rational design of silver sulfide nanowires for efficient CO2 electroreduction in ionic liquid. ACS Catal. 2018, 8, 1469−1475.

[87]

Liu, S. B.; Wang, X. Z.; Tao, H. B.; Li, T. F.; Liu, Q.; Xu, Z. H.; Fu, X. Z.; Luo, J. L. Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO. Nano Energy 2018, 45, 456–462.

[88]

De Jesus Gálvez-Vázquez, M.; Moreno-García, P.; Xu, H.; Hou, Y. H.; Hu, H. F.; Montiel, I. Z.; Rudnev, A. V.; Alinejad, S.; Grozovski, V.; Wiley, B. J. et al. Environment matters: CO2RR electrocatalyst performance testing in a gas-fed zero-gap electrolyzer. ACS Catal. 2020, 10, 13096−13108.

[89]

Liu, S. B.; Sun, C.; Xiao, J.; Luo, J. L. Unraveling structure sensitivity in CO2 electroreduction to near-unity CO on silver nanocubes. ACS Catal. 2020, 10, 3158−3163.

[90]

Ye, K.; Liu, T. F.; Song, Y. P.; Wang, Q.; Wang, G. X. Tailoring the interactions of heterogeneous Ag2S/Ag interface for efficient CO2 electroreduction. Appl. Catal. B Environ. 2021, 296, 120342.

[91]

Zhang, S.; Fan, Q.; Xia, R.; Meyer, T. J. CO2 reduction: From homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 2020, 53, 255–264.

[92]

Kemna, A.; Rey, N. G.; Braunschweig, B. Mechanistic insights on CO2 reduction reactions at platinum/[BMIM][BF4] interfaces from in operando spectroscopy. ACS Catal. 2019, 9, 6284−6292.

[93]

Ratschmeier, B.; Braunschweig, B. Cations of ionic liquid electrolytes can act as a promoter for CO2 electrocatalysis through reactive intermediates and electrostatic stabilization. J. Phys. Chem. C 2021, 125, 16498−16507.

[94]

Tian, Y.; Zhu, C. Y.; Yan, L. K.; Zhao, J. X.; Su, Z. M. Two-dimensional π-conjugated metal bis(dithiolene) nanosheets as promising electrocatalysts for carbon dioxide reduction: A computational study. J. Mater. Chem. A 2019, 7, 15341–15346.

[95]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[96]

Derrick, J. S.; Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J. Metal-ligand cooperativity via exchange coupling promotes iron-catalyzed electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 20489–20501.

[97]

Li, E. L.; Yang, F.; Wu, Z. M.; Wang, Y.; Ruan, M. B.; Song, P.; Xing, W.; Xu, W. L. A bifunctional highly efficient FeN x /C electrocatalyst. Small 2018, 14, 1702827.

[98]

Yang, H. J.; Wang, X. P.; Wang, S. B.; Zhang, P. Y.; Xiao, C.; Maleki Kheimeh Sari, H.; Liu, J. H.; Jia, J. C.; Cao, B.; Qin, J. et al. Double boosting single atom Fe-N4 sites for high efficiency O2 and CO2 electroreduction. Carbon 2021, 182, 109–116.

[99]

Yang, H. J.; Zhang, P. Y.; Yi, X. Y.; Yan, C.; Pang, D. W.; Chen, L. N.; Wang, S. B.; Wang, C. R.; Liu, B. H.; Zhang, G. N. et al. Constructing highly utilizable Fe-N4 single-atom sites by one-step gradient pyrolysis for electroreduction of O2 and CO2. Chem. Eng. J. 2022, 440, 135749.

[100]

Pan, F. P.; Li, B. Y.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X. H.; Xiang, X. M.; Adli, N. M.; Li, T.; Su, D. et al. Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy 2020, 68, 104384.

[101]

Li, Z.; Wu, R.; Xiao, S. H.; Yang, Y. C.; Lai, L.; Chen, J. S.; Chen, Y. Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem. Eng. J. 2022, 430, 132882.

[102]

Ren, M. M.; Guo, X. Y.; Huang, S. P. Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom. Chem. Eng. J. 2022, 433, 134270.

[103]

Liu, S.; Wang, L.; Yang, H.; Gao, S. S.; Liu, Y. F.; Zhang, S. S.; Chen, Y.; Liu, X. J.; Luo, J. Nitrogen-doped carbon polyhedrons confined Fe-P nanocrystals as high-efficiency bifunctional catalysts for aqueous Zn-CO2 batteries. Small 2022, 18, 2104965.

[104]

Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.

[105]

Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Feng, X. H.; Gang, Y.; Xiang, X. M.; Fang, L. Z.; Li, T.; Hu, Y. H. et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 2020, 10, 10803–10811.

[106]

Liu, W. P.; Wang, K.; Gong, L.; Zhi, Q. J.; Jiang, R.; Liu, W. B.; Sun, T. T.; Zhang, Y. X.; Jiang, J. Z. Edge-located Fe-N4 sites on porous graphene-like nanosheets for boosting CO2 electroreduction. Chem. Eng. J. 2022, 431, 134269.

[107]

Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K. J.; Lee, K. S.; Han, J. W. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649.

[108]

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

[109]

Hwa Jeong, G.; Chuan Tan, Y.; Tae Song, J.; Lee, G. Y.; Jin Lee, H.; Lim, J.; Young Jeong, H.; Won, S.; Oh, J.; Ouk Kim, S. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction. Chem. Eng. J. 2021, 426, 131063.

[110]

Hu, X. M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M. et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 2018, 8, 6255−6264.

[111]

Pan, F. P.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B Environ. 2018, 226, 463–472.

[112]

Yuan, C. Z.; Li, H. B.; Jiang, Y. F.; Liang, K.; Zhao, S. J.; Fang, X. X.; Ma, L. B.; Zhao, T.; Lin, C.; Xu, A. W. Tuning the activity of N-doped carbon for CO2 reduction via in situ encapsulation of nickel nanoparticles into nano-hybrid carbon substrates. J. Mater. Chem. A 2019, 7, 6894–6900.

[113]

Chen, B. T.; Li, B. R.; Tian, Z. Q.; Liu, W. B.; Liu, W. P.; Sun, W. W.; Wang, K.; Chen, L.; Jiang, J. Z. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni-N4 sites. Adv. Energy Mater. 2021, 11, 2102152.

[114]

Zhu, Z. Z.; Li, Z.; Wei, X. X.; Wang, J. J.; Xiao, S. H.; Li, R.; Wu, R.; Chen, J. S. Achieving efficient electroreduction of CO2 to CO in a wide potential window by encapsulating Ni nanoparticles in N-doped carbon nanotubes. Carbon 2021, 185, 9–16.

[115]

Gang, Y.; Sarnello, E.; Pellessier, J.; Fang, S. Y.; Suarez, M.; Pan, F. P.; Du, Z. C.; Zhang, P.; Fang, L. Z.; Liu, Y. Z. et al. One-step chemical vapor deposition synthesis of hierarchical Ni and N Co-doped carbon nanosheet/nanotube hybrids for efficient electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 2021, 11, 10333–10344.

[116]

Guo, Y. B.; Yao, S.; Xue, Y. Y.; Hu, X.; Cui, H. J.; Zhou, Z. Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Appl. Catal. B Environ. 2022, 304, 120997.

[117]

Liu, Z. K.; Yan, T.; Shi, H.; Pan, H.; Cheng, Y. Y.; Kang, P. Acidic electrocatalytic CO2 reduction using space-confined nanoreactors. ACS Appl. Mater. Interfaces 2022, 14, 7900−7908.

[118]

Li, Z. D.; He, D.; Yan, X. X.; Dai, S.; Younan, S.; Ke, Z. J.; Pan, X. Q.; Xiao, X. H.; Wu, H. J.; Gu, J. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 18572–18577.

[119]

Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.

[120]

Tan, X. Y.; Yu, C.; Cui, S.; Ni, L.; Guo, W.; Wang, Z.; Chang, J. W.; Ren, Y. W.; Yu, J. H.; Huang, H. L. et al. Activity descriptor of Ni,N-Codoped carbon electrocatalyst in CO2 electroreduction reaction. Chem. Eng. J. 2022, 433, 131965.

[121]

Liang, M. F.; Liu, Y.; Zhang, J.; Wang, F. Y.; Miao, Z. C.; Diao, L. C.; Mu, J. L.; Zhou, J.; Zhuo, S. P. Understanding the role of metal and N species in M@NC catalysts for electrochemical CO2 reduction reaction. Appl. Catal. B Environ. 2022, 306, 121115.

[122]

Leverett, J.; Yuwono, J. A.; Kumar, P.; Tran-Phu, T.; Qu, J. T.; Cairney, J.; Wang, X. C.; Simonov, A. N.; Hocking, R. K.; Johannessen, B. et al. Impurity tolerance of unsaturated Ni-N-C active sites for practical electrochemical CO2 reduction. ACS Energy Lett. 2022, 7, 920–928.

[123]

Lu, Q.; Chen, C.; Di, Q.; Liu, W. L.; Sun, X. H.; Tuo, Y. X.; Zhou, Y.; Pan, Y.; Feng, X.; Li, L. N. et al. Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range. ACS Catal. 2022, 12, 1364–1374.

[124]

Hou, Y.; Liang, Y. L.; Shi, P. C.; Huang, Y. B.; Cao, R. Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl. Catal. B Environ. 2020, 271, 118929.

[125]

Qiu, L. M.; Shen, S. W.; Ma, C.; Lv, C. M.; Guo, X.; Jiang, H. L.; Liu, Z.; Qiao, W. M.; Ling, L. C.; Wang, J. T. Controllable fabrication of atomic dispersed low-coordination nickel-nitrogen sites for highly efficient electrocatalytic CO2 reduction. Chem. Eng. J. 2022, 440, 135956.

[126]

Chen, Z. P.; Zhang, X. X.; Liu, W.; Jiao, M. Y.; Mou, K. W.; Zhang, X. P.; Liu, L. C. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 2021, 14, 2349–2356.

[127]

Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 32, 2111322.

[128]

Daiyan, R.; Zhu, X. F.; Tong, Z. Z.; Gong, L. L.; Razmjou, A.; Liu, R. S.; Xia, Z. H.; Lu, X. Y.; Dai, L. M.; Amal, R. Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy 2020, 78, 105213.

[129]

Wang, X. Y.; Wang, Y.; Sang, X. H.; Zheng, W. Z.; Zhang, S. H.; Shuai, L.; Yang, B.; Li, Z. J.; Chen, J. M.; Lei, L. C. et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4192–4198.

[130]

Gu, X. K.; Jiao, Y. Y.; Wei, B.; Xu, T. F.; Zhai, P. B.; Wei, Y.; Zuo, J. H.; Liu, W.; Chen, Q.; Yang, Z. L. et al. Boron bridged NiN4B2C x single-atom catalyst for superior electrochemical CO2 reduction. Mater. Today 2022, 54, 63–71.

[131]

Cheng, Y.; Zhao, S. Y.; Li, H. B.; He, S.; Veder, J. P.; Johannessen, B.; Xiao, J. P.; Lu, S. F.; Pan, J.; Chisholm, M. F. et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B Environ. 2019, 243, 294–303.

[132]

Pan, F. P.; Zhang, H. G.; Liu, Z. Y.; Cullen, D.; Liu, K. X.; More, K.; Wu, G.; Wang, G. F.; Li, Y. Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction. J. Mater. Chem. A 2019, 7, 26231–26237.

[133]

Wen, C. F.; Mao, F. X.; Liu, Y. W.; Zhang, X. Y.; Fu, H. Q.; Zheng, L. R.; Liu, P. F.; Yang, H. G. Nitrogen-stabilized low-valent ni motifs for efficient CO2 electrocatalysis. ACS Catal. 2020, 10, 1086–1093.

[134]

Lu, C. B.; Yang, J.; Wei, S. C.; Bi, S.; Xia, Y.; Chen, M. X.; Hou, Y.; Qiu, M.; Yuan, C.; Su, Y. Z. et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 2019, 29, 1806884.

[135]

Zhang, M. D.; Si, D. H.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020, 16, 2005254.

[136]

Yi, J. D.; Si, D. H.; Xie, R. K.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 17108–17114.

[137]

Chen, K. J.; Cao, M. Q.; Ni, G. H.; Chen, S. Y.; Liao, H. X.; Zhu, L.; Li, H. M.; Fu, J. W.; Hu, J. H.; Cortés, E. et al. Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction. Appl. Catal. B Environ. 2022, 306, 121093.

[138]

Wei, S. T.; Zou, H. Y.; Rong, W. F.; Zhang, F. X.; Ji, Y. F.; Duan, L. L. Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window. Appl. Catal. B Environ. 2021, 284, 119739.

[139]

Zhang, G. X.; Jia, Y.; Zhang, C.; Xiong, X. Y.; Sun, K.; Chen, R. D.; Chen, W. X.; Kuang, Y.; Zheng, L. R.; Tang, H. L. et al. A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci. 2019, 12, 1317–1325.

[140]

Wang, X. P.; Ding, S. S.; Yue, T.; Zhu, Y.; Fang, M. W.; Li, X. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M. Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction. Nano Energy 2021, 82, 105689.

[141]

Lu, Y.; Zhang, J.; Wei, W. B.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units. ACS Appl. Mater. Interfaces 2020, 12, 37986−37992.

[142]

Song, X. K.; Zhang, H.; Yang, Y. Q.; Zhang, B.; Zuo, M.; Cao, X.; Sun, J. H.; Lin, C.; Li, X. P.; Jiang, Z. Bifunctional nitrogen and cobalt codoped hollow carbon for electrochemical syngas production. Adv. Sci. 2018, 5, 1800177.

[143]

Daiyan, R.; Chen, R.; Kumar, P.; Bedford, N. M.; Qu, J. T.; Cairney, J. M.; Lu, X. Y.; Amal, R. Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 9307−9315.

[144]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[145]

Guo, Y.; Wang, Y. C.; Shen, Y.; Cai, Z. Y.; Li, Z.; Liu, J.; Chen, J. W.; Xiao, C.; Liu, H. C.; Lin, W. B. et al. Tunable cobalt-polypyridyl catalysts supported on metal-organic layers for electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 21493–21501.

[146]

Yang, H. P.; Lin, Q.; Wu, Y.; Li, G. D.; Hu, Q.; Chai, X. Y.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 2020, 70, 104454.

[147]

Sun, M. L.; Wang, Y. R.; He, W. W.; Zhong, R. L.; Liu, Q. Z.; Xu, S. Y.; Xu, J. M.; Han, X. L.; Ge, X. Y.; Li, S. L. et al. Efficient electron transfer from electron-sponge polyoxometalate to single-metal site metal-organic frameworks for highly selective electroreduction of carbon dioxide. Small 2021, 17, 2100762.

[148]

Dou, S.; Sun, L. B.; Xi, S. B.; Li, X. G.; Su, T.; Fan, H. J.; Wang, X. Enlarging the π-conjugation of cobalt porphyrin for highly active and selective CO2 electroreduction. ChemSusChem 2021, 14, 2126–2132.

[149]

Wang, T. X.; Guo, L. L.; Pei, H.; Chen, S. T.; Li, R. J.; Zhang, J.; Peng, T. Y. Electron-rich pincer ligand-coupled cobalt porphyrin polymer with single-atom sites for efficient (Photo)electrocatalytic CO2 reduction at ultralow overpotential. Small 2021, 17, 2102957.

[150]

Wu, Q.; Xie, R. K.; Mao, M. J.; Chai, G. L.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 2020, 5, 1005−1012.

[151]

Chi, S. Y.; Chen, Q.; Zhao, S. S.; Si, D. H.; Wu, Q. J.; Huang, Y. B.; Cao, R. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide. J. Mater. Chem. A 2022, 10, 4653–4659.

[152]

Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369.

[153]

Tan, X. Y.; Yu, C.; Song, X. D.; Zhao, C. T.; Cui, S.; Xu, H. Y.; Chang, J. W.; Guo, W.; Wang, Z.; Xie, Y. Y. et al. Toward an understanding of the enhanced CO2 electroreduction in NaCl electrolyte over CoPc molecule-implanted graphitic carbon nitride catalyst. Adv. Energy Mater. 2021, 11, 2100075.

[154]

Su, J. J.; Zhang, J. J.; Chen, J. C.; Song, Y.; Huang, L. B.; Zhu, M. H.; Yakobson, B. I.; Tang, B. Z.; Ye, R. Q. Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrially relevant current. Energy Environ. Sci. 2021, 14, 483–492.

[155]

Song, Y.; Zhang, J. J.; Zhu, Z. H.; Chen, X.; Huang, L. B.; Su, J. J.; Xu, Z. T.; Ly, T. H.; Lee, C. S.; Yakobson, B. I. et al. Zwitterionic ultrathin covalent organic polymers for high-performance electrocatalytic carbon dioxide reduction. Appl. Catal. B Environ. 2021, 284, 119750.

[156]

Gong, S. H.; Xiao, X. X.; Wang, W. B.; Sam, D. K.; Lu, R. Q.; Xu, Y. G.; Liu, J.; Wu, C. D.; Lv, X. M. Silk fibroin-derived carbon aerogels embedded with copper nanoparticles for efficient electrocatalytic CO2-to-CO conversion. J. Colloid Interface Sci. 2021, 600, 412–420.

[157]

Cheng, H. Y.; Wu, X. M.; Li, X. C.; Nie, X. W.; Fan, S.; Feng, M. M.; Fan, Z. H.; Tan, M. Q.; Chen, Y. G.; He, G. H. Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction. Chem. Eng. J. 2021, 407, 126842.

[158]

Majidi, L.; Ahmadiparidari, A.; Shan, N. N.; Misal, S. N.; Kumar, K.; Huang, Z. H.; Rastegar, S.; Hemmat, Z.; Zou, X. D.; Zapol, P. et al. 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials. Adv. Mater. 2021, 33, 2004393.

[159]

Filippi, J.; Rotundo, L.; Gobetto, R.; Miller, H. A.; Nervi, C.; Lavacchi, A.; Vizza, F. Turning manganese into gold: Efficient electrochemical CO2 reduction by a fac-Mn(apbpy)(CO)3Br complex in a gas-liquid interface flow cell. Chem. Eng. J. 2021, 416, 129050.

[160]

Dubed Bandomo, G. C.; Mondal, S. S.; Franco, F.; Bucci, A.; Martin-Diaconescu, V.; Ortuño, M. A.; Van Langevelde, P. H.; Shafir, A.; López, N.; Lloret-Fillol, J. Mechanically constrained catalytic Mn(CO)3Br single sites in a two-dimensional covalent organic framework for CO2 electroreduction in H2O. ACS Catal. 2021, 11, 7210−7222.

[161]

Peng, X. Y.; Chen, Y.; Mi, Y. Y.; Zhuo, L. C.; Qi, G. C.; Ren, J. Q.; Qiu, Y.; Liu, X. J.; Luo, J. Efficient electroreduction CO2 to CO over MnO2 nanosheets. Inorg. Chem. 2019, 58, 8910–8914.

[162]

Han, H.; Jin, S.; Park, S.; Kim, Y.; Jang, D.; Seo, M. H.; Kim, W. B. Plasma-induced oxygen vacancies in amorphous MnO x boost catalytic performance for electrochemical CO2 reduction. Nano Energy 2021, 79, 105492.

[163]

Kang, M. P. L.; Kolb, M. J.; Calle-Vallejo, F.; Yeo, B. S. The role of undercoordinated sites on zinc electrodes for CO2 reduction to CO. Adv. Funct. Mater. 2022, 32, 2111597.

[164]

Jeon, H. S.; Sinev, I.; Scholten, F.; Divins, N. J.; Zegkinoglou, I.; Pielsticker, L.; Cuenya, B. R. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 9383−9386.

[165]

Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303−12307.

[166]

Wang, N.; Liu, Z. H.; Ma, J. Y.; Liu, J. J.; Zhou, P.; Chao, Y. G.; Ma, C. B.; Bo, X. J.; Liu, J.; Hei, Y. S. et al. Sustainability perspective-oriented synthetic strategy for zinc single-atom catalysts boosting electrocatalytic reduction of carbon dioxide and oxygen. ACS Sustainable Chem. Eng. 2020, 8, 13813−13822.

[167]

Jiang, X. L.; Li, H. B.; Xiao, J. P.; Gao, D. F.; Si, R.; Yang, F.; Li, Y. S.; Wang, G. X.; Bao, X. H. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. Nano Energy 2018, 52, 345–350.

[168]

Al-Attas, T. A.; Marei, N. N.; Yong, X.; Yasri, N. G.; Thangadurai, V.; Shimizu, G.; Siahrostami, S.; Kibria, M. G. Ligand-engineered metal-organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide. ACS Catal. 2021, 11, 7350−7357.

[169]

Luo, W.; Zhang, J.; Li, M.; Züttel, A. Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 2019, 9, 3783−3791.

[170]

Gu, J.; Héroguel, F.; Luterbacher, J.; Hu, X. L. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 2943–2947.

[171]

Zhao, Y.; Liang, J. J.; Wang, C. Y.; Ma, J. M.; Wallace, G. G. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 2018, 8, 1702524.

[172]

Xu, J.; Lai, S. H.; Hu, M.; Ge, S. M.; Xie, R. C.; Li, F.; Hua, D. D.; Xu, H.; Zhou, H.; Wu, R. et al. Semimetal 1H-SnS2 enables high-efficiency electroreduction of CO2 to CO. Small Methods 2020, 4, 2000567.

[173]

Li, F. F.; Ai, H. Q.; Shi, C. M.; Lo, K. H.; Pan, H. Single transition metal atom catalysts on Ti2CN2 for efficient CO2 reduction reaction. Int. J. Hydrogen Energy 2021, 46, 12886–12896.

[174]

Lv, K. L.; Teng, C.; Shi, M. H.; Yuan, Y.; Zhu, Y.; Wang, J. R.; Kong, Z.; Lu, X. Y.; Zhu, Y. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Adv. Funct. Mater. 2018, 28, 1802339.

[175]

Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569−16573.

[176]

Qu, D.; Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Zhao, S. Z.; Liu, X. J.; Luo, J. Nitrogen doping and titanium vacancies synergistically promote CO2 fixation in seawater. Nanoscale 2020, 12, 17191–17195.

[177]

Sung, S.; Kumar, D.; Gil-Sepulcre, M.; Nippe, M. Electrocatalytic CO2 reduction by imidazolium-functionalized molecular catalysts. J. Am. Chem. Soc. 2017, 139, 13993–13996.

[178]

Li, X. H.; Panetier, J. A. Computational study for CO2-to-CO conversion over proton reduction using [Re[bpyMe(Im-R)](CO)3Cl]+ (R = Me, Me2, and Me4) electrocatalysts and comparison with manganese analogues. ACS Catal. 2021, 11, 12989−13000.

[179]

Wang, S. G.; Zhou, P.; Zhou, L.; Lv, F.; Sun, Y. J.; Zhang, Q. H.; Gu, L.; Yang, H.; Guo, S. J. A unique gas-migration, trapping, and emitting strategy for high-loading single atomic Cd sites for carbon dioxide electroreduction. Nano Lett. 2021, 21, 4262−4269.

[180]

Li, S. T.; Nagarajan, A. V.; Alfonso, D. R.; Sun, M. K.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 6351–6356.

[181]

Sun, Y. N.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. Y. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021, 11, 11551−11560.

[182]

Hao, J. C.; Zhu, H.; Li, Y. Z.; Liu, P. X.; Lu, S. L.; Duan, F.; Dong, W. F.; Lu, Y. Y.; Liu, T. X.; Du, M. L. Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction. Chem. Eng. J. 2021, 404, 126523.

[183]

Nam, D. H.; Shekhah, O.; Lee, G.; Mallick, A.; Jiang, H.; Li, F. W.; Chen, B.; Wicks, J.; Eddaoudi, M.; Sargent, E. H. Intermediate binding control using metal-organic frameworks enhances electrochemical CO2 reduction. J. Am. Chem. Soc. 2020, 142, 21513−21521.

[184]

Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864.

[185]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251−3263.

[186]

Lee, W. H.; Nong, H. N.; Choi, C. H.; Chae, K. H.; Hwang, Y. J.; Min, B. K.; Strasser, P.; Oh, H. S. Carbon-supported IrCoO x nanoparticles as an efficient and stable OER electrocatalyst for practicable CO2 electrolysis. Appl. Catal. B Environ. 2020, 269, 118820.

[187]

Bagchi, D.; Sarkar, S.; Singh, A. K.; Vinod, C. P.; Peter, S. C. Potential- and time-dependent dynamic nature of an oxide-derived PdIn nanocatalyst during electrochemical CO2 reduction. ACS Nano 2022, 16, 6185−6196.

[188]

Piontek, S.; Puring, K. J.; Siegmund, D.; Smialkowski, M.; Sinev, I.; Tetzlaff, D.; Cuenya, B. R.; Apfel, U. P. Bio-inspired design: Bulk iron-nickel sulfide allows for efficient solvent-dependent CO2 reduction. Chem. Sci., 2019, 10, 1075–1081

[189]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[190]

He, Q.; Zhang, Y. X.; Li, H. J.; Yang, Y.; Chen, S.; Yan, W. J.; Dong, J. C.; Zhang, X. M.; Fan, X. J. Engineering steam induced surface oxygen vacancy onto Ni-Fe bimetallic nanocomposite for CO2 electroreduction. Small 2022, 18, 2108034.

[191]

Dilpazir, S.; Ren, P. J.; Liu, R. J.; Yuan, M. L.; Imran, M.; Liu, Z. J.; Xie, Y. B.; Zhao, H.; Yang, Y. J.; Wang, X. et al. Efficient tetra-functional electrocatalyst with synergetic effect of different active sites for multi-model energy conversion and storage. ACS Appl. Mater. Interfaces 2020, 12, 23017−23027.

[192]

Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

[193]

Wang, C. Q.; Cao, M. L.; Jiang, X. X.; Wang, M. K.; Shen, Y. A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochim. Acta 2018, 271, 544–550.

[194]

Liang, Y. X.; Zhao, J. K.; Yang, Y.; Huang, S. F.; Li, J.; Zhang, S. Z.; Zhao, Y.; Zhang, A.; Wang, C.; Appadoo, D. et al. Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling. Nat. Commun.2023, 14, 474.

[195]

Bernal, M.; Bagger, A.; Scholten, F.; Sinev, I.; Bergmann, A.; Ahmadi, M.; Rossmeisl, J.; Cuenya, B. R. CO2 electroreduction on copper-cobalt nanoparticles: Size and composition effect. Nano Energy 2018, 53, 27–36.

[196]

Wang, J. J.; Zheng, X. R.; Wang, G. J.; Cao, Y. H.; Ding, W. L.; Zhang, J. F.; Wu, H.; Ding, J.; Hu, H. L.; Han, X. P. et al. Defective bimetallic selenides for selective CO2 electroreduction to CO. Adv. Mater. 2022, 34, 2106354.

[197]

Sui, P. F.; Liu, S. B.; Xu, C. Y.; Xiao, J.; Duan, N. Q.; Feng, R. F.; Luo, J. L. Directionally maximizing CO selectivity to near-unity over cupric oxide with indium species for electrochemical CO2 reduction. Chem. Eng. J. 2022, 427, 131654.

[198]

Cheng, H. Y.; Wu, X. M.; Feng, M. M.; Li, X. C.; Lei, G. P.; Fan, Z. H.; Pan, D. W.; Cui, F. J.; He, G. H. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction. ACS Catal. 2021, 11, 12673–12681.

[199]

Yin, P. F.; Fu, J. J.; Yun, Q. B.; Chen, B.; Liu, G. G.; Li, L. J.; Huang, Z. Q.; Ge, Y. Y.; Zhang, H. Preparation of amorphous SnO2-encapsulated multi-phased crystalline Cu heterostructures for highly efficient CO2 reduction. Adv. Mater. 2022, 34, 2201114.

[200]

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci., 2018, 11, 1204–1210.

[201]

Wang, J. J.; Wang, G. J.; Zhang, J. F.; Wang, Y. D.; Wu, H.; Zheng, X. R.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B. Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping. Angew. Chem., Int. Ed. 2021, 60, 7602−7606.

[202]

Liang, Z.; Song, L. P.; Sun, M. Z.; Huang, B. L.; Du, Y. P. Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn-Ln dual atomic catalysts. Sci. Adv. 2021, 7, eabl4915.

[203]

Wu, Q. L.; Gao, J.; Feng, J. R.; Liu, Q.; Zhou, Y. J.; Zhang, S. B.; Nie, M. X.; Liu, Y.; Zhao, J. P.; Liu, F. C. et al. A CO2 adsorption dominated carbon defect-based electrocatalyst for efficient carbon dioxide reduction. J. Mater. Chem. A 2020, 8, 1205–1211.

[204]

Li, H. Q.; Xiao, N.; Hao, M. Y.; Song, X. D.; Wang, Y. W.; Ji, Y. Q.; Liu, C.; Li, C.; Guo, Z.; Zhang, F. et al. Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets. Chem. Eng. J. 2018, 351, 613–621.

[205]

Tuci, G.; Filippi, J.; Ba, H.; Rossin, A.; Luconi, L.; Pham-Huu, C.; Vizza, F.; Giambastiani, G. How to teach an old dog new (electrochemical) tricks: Aziridine-functionalized CNTs as efficient electrocatalysts for the selective CO2 reduction to CO. J. Mater. Chem. A 2018, 6, 16382–16389.

[206]

Chen, K. Y.; Deng, J.; Zhao, J.; Liu, X.; Imhanria, S.; Wang, W. Electrocatalytic production of tunable syngas from CO2 via a metal-free porous nitrogen-doped carbon. Ind. Eng. Chem. Res. 2021, 60, 7739−7745.

[207]

Li, J. J.; Zan, W. Y.; Kang, H. X.; Dong, Z. P.; Zhang, X. M.; Lin, Y. X.; Mu, Y. W.; Zhang, F. W.; Zhang, X. M.; Gu, J. Graphitic-N highly doped graphene-like carbon: A superior metal-free catalyst for efficient reduction of CO2. Appl. Catal. B Environ. 2021, 298, 120510.

[208]

Xue, X. Y.; Yang, H.; Yang, T.; Yuan, P. F.; Li, Q.; Mu, S. C.; Zheng, X. L.; Chi, L. F.; Zhu, J.; Li, Y. G. et al. N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J. Mater. Chem. A 2019, 7, 15271–15277.

[209]

Li, R. R.; Liu, F.; Zhang, Y. H.; Guo, M. M.; Liu, D. Nitrogen, sulfur co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 44578−44587.

[210]

Yang, H. P.; Wu, Y.; Lin, Q.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Composition tailoring via N and S Co-doping and structure tuning by constructing hierarchical pores: Metal-free catalysts for high-performance electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 15476–15480.

[211]

Liu, S. Z.; Cheng, L.; Li, K.; Yin, C.; Tang, H.; Wang, Y.; Wu, Z. J. RuN4 doped graphene oxide, a highly efficient bifunctional catalyst for oxygen reduction and CO2 reduction from computational study. ACS Sustainable Chem. Eng. 2019, 7, 8136−8144.

[212]

Du, J.; Xin, Y.; Dong, M. H.; Yang, J. J.; Xu, Q. L.; Liu, H. Z.; Han, B. X. Copper/carbon heterogenous interfaces for enhanced selective electrocatalytic reduction of CO2 to formate. Small 2021, 17, 2102629.

[213]

Ni, W.; Li, C. X.; Zang, X. G.; Xu, M.; Huo, S. L.; Liu, M. Q.; Yang, Z. Y.; Yan, Y. M. Efficient electrocatalytic reduction of CO2 on Cu x O decorated graphene oxides: An insight into the role of multivalent Cu in selectivity and durability. Appl. Catal. B Environ. 2019, 259, 118044.

[214]

Li, J. C.; Kuang, Y.; Meng, Y. T.; Tian, X.; Hung, W. H.; Zhang, X.; Li, A. W.; Xu, M. Q.; Zhou, W.; Ku, C. S. et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 2020, 142, 7276−7282.

[215]

Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem., Int. Ed. 2017, 56, 3645–3649.

[216]

Li, F. W.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem., Int. Ed. 2017, 56, 505–509.

[217]

Han, N.; Wang, Y. Y.; Deng, J.; Zhou, J. H.; Wu, Y. L.; Yang, H.; Ding, P.; Li, Y. G. Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction. J. Mater. Chem. A 2019, 7, 1267–1272.

[218]

Liu, S. B.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Efficient electrochemical reduction of CO2 to HCOOH over Sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem., Int. Ed. 2019, 58, 8499−8503.

[219]

Liu, G. B.; Li, Z. H.; Shi, J. J.; Sun, K.; Ji, Y. J.; Wang, Z. G.; Qiu, Y. F.; Liu, Y. Y.; Wang, Z. J.; Hu, P. A. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Appl. Catal. B Environ. 2020, 260, 118134.

[220]

Chen, Z.; Fan, T. T.; Zhang, Y. Q.; Xiao, J.; Gao, M. R.; Duan, N. Q.; Zhang, J. W.; Li, J. H.; Liu, Q. X.; Yi, X. D. et al. Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Appl. Catal. B Environ. 2020, 261, 118243.

[221]

Li, Z. J.; Cao, A.; Zheng, Q.; Fu, Y. Y.; Wang, T. T.; Arul, K. T.; Chen, J. L.; Yang, B.; Adli, N. M.; Lei, L. C. et al. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv. Mater. 2021, 33, 2005113.

[222]

Yuan, L. P.; Jiang, W. J.; Liu, X. L.; He, Y. H.; He, C.; Tang, T.; Zhang, J. N.; Hu, J. S. Molecularly engineered strong metal oxide-support interaction enables highly efficient and stable CO2 electroreduction. ACS Catal. 2020, 10, 13227–13235.

[223]

Liu, L. X.; Zhou, Y.; Chang, Y. C.; Zhang, J. R.; Jiang, L. P.; Zhu, W. L.; Lin, Y. H. Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density. Nano Energy 2020, 77, 105296.

[224]

Qian, Y.; Liu, Y. F.; Tang, H. H.; Lin, B. L. Highly efficient electroreduction of CO2 to formate by nanorod@2D nanosheets SnO. J. CO2 Util. 2020, 42, 101287.

[225]

He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem., Int. Ed. 2018, 57, 16114−16119.

[226]

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358−364.

[227]

Wu, D.; Huo, G.; Chen, W. Y.; Fu, X. Z.; Luo, J. L. Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B Environ. 2020, 271, 118957.

[228]

Qiao, Y.; Lai, W. C.; Huang, K.; Yu, T. T.; Wang, Q. Y.; Gao, L.; Yang, Z. L.; Ma, Z. S.; Sun, T. L.; Liu, M. et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal. 2022, 12, 2357−2364.

[229]

Zheng, H. Z.; Wu, G. L.; Gao, G. H.; Wang, X. X. The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO2 reduction to formate. Chem. Eng. J. 2021, 421, 129606.

[230]

He, Y. C.; Ma, D. D.; Zhou, S. H.; Zhang, M.; Tian, J. J.; Zhu, Q. L. Integrated 3D open network of interconnected bismuthene arrays for energy-efficient and electrosynthesis-assisted electrocatalytic CO2 reduction. Small 2022, 18, e2105246.

[231]

Li, F. W.; Xue, M. Q.; Li, J. Z.; Ma, X. L.; Chen, L.; Zhang, X. J.; MacFarlane, D. R.; Zhang, J. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem., Int. Ed. 2017, 56, 14718–14722.

[232]

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

[233]

Cao, S. F.; Wei, S. X.; Wei, X. F.; Zhou, S. N.; Chen, H. Y.; Hu, Y. Y.; Wang, Z. J.; Liu, S. Y.; Guo, W. Y.; Lu, X. Q. Can N, S cocoordination promote single atom catalyst performance in CO2RR? Fe-N2S2 porphyrin versus Fe-N4 porphyrin. Small 2021, 17, 2100949.

[234]

Xing, G. R.; Cheng, L.; Li, K.; Gao, Y.; Tang, H.; Wang, Y.; Wu, Z. J. Theoretical study of two-dimensional bis(iminothiolato)metal monolayers as promising electrocatalysts for carbon dioxide reduction. New J. Chem., 2020, 44, 12299–12306.

[235]

Ye, F. H.; Gao, J. H.; Chen, Y. L.; Fang, Y. M. Oxidized indium with transformable dimensions for CO2 electroreduction toward formate aided by oxygen vacancies. Sustainable Energy Fuels 2020, 4, 3726–3731.

[236]

Hou, P. F.; Wang, X. P.; Kang, P. Membrane-electrode assembly electrolysis of CO2 to formate using indium nitride nanomaterials. J. CO2 Util. 2021, 45, 101449.

[237]

Wang, C.; Zhang, D. H.; Zheng, W. H.; Zhu, C. Y.; Zhang, M.; Geng, Y.; Su, Z. M. CO2 electroreduction performance of transition metals supported on g-C(CN)3 monolayer with specific TMN3 active sites. Appl. Surf. Sci. 2022, 573, 151544.

[238]

Wei, Y. J.; Liu, J.; Cheng, F. Y.; Chen, J. Mn-doped atomic SnO2 layers for highly efficient CO2 electrochemical reduction. J. Mater. Chem. A 2019, 7, 19651–19656.

[239]

Xie, W. F.; Li, H.; Cui, G. Q.; Li, J. B.; Song, Y. K.; Li, S. J.; Zhang, X.; Lee, J. Y.; Shao, M. F.; Wei, M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7382−7388.

[240]

Lucas, F. W. S.; Lima, F. H. B. Electrodeposited Tin-antimony alloys as novel electrocatalysts for selective and stable carbon dioxide reduction to formate. ChemElectroChem 2020, 7, 3733−3742.

[241]

Wei, B.; Xiong, Y. S.; Zhang, Z. Y.; Hao, J. H.; Li, L. H.; Shi, W. D. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl. Catal. B Environ. 2021, 283, 119646.

[242]

Peng, L. W.; Wang, Y. X.; Masood, I.; Zhou, B.; Wang, Y. F.; Lin, J.; Qiao, J. L.; Zhang, F. Y. Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction. Appl. Catal. B Environ. 2020, 264, 118447.

[243]

Rabiee, H.; Ge, L.; Zhang, X. Q.; Hu, S. H.; Li, M. R.; Smart, S.; Zhu, Z. H.; Wang, H.; Yuan, Z. G. Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction. Appl. Catal. B Environ. 2021, 298, 120538.

[244]

Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554−12559.

[245]

Liu, B. W.; Xie, Y.; Wang, X. L.; Gao, C.; Chen, Z. M.; Wu, J.; Meng, H. Y.; Song, Z. C.; Du, S. C.; Ren, Z. Y. Copper-triggered delocalization of bismuth p-orbital favours high-throughput CO2 electroreduction. Appl. Catal. B Environ. 2022, 301, 120781.

[246]

Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

[247]

Coskun, H.; Aljabour, A.; De Luna, P.; Farka, D.; Greunz, T.; Stifter, D.; Kus, M.; Zheng, X. L.; Liu, M.; Hassel, A. W. et al. Biofunctionalized conductive polymers enable efficient CO2 electroreduction. Sci. Adv. 2017, 3, e1700686.

[248]

Yang, F.; Ma, X. Y.; Cai, W. B.; Song, P.; Xu, W. L. Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 20451−20459.

[249]

Bhowmik, A.; Hansen, H. A.; Vegge, T. Electrochemical reduction of CO2 on Ir x Ru(1− x )O2(110) surfaces. ACS Catal. 2017, 7, 8502−8513.

[250]

Tian, Y.; Wang, Y. L.; Yan, L. K.; Zhao, J. X.; Su, Z. M. Electrochemical reduction of carbon dioxide on the two-dimensional M3(Hexaiminotriphenylene)2 sheet: A computational study. Appl. Surf. Sci. 2019, 467–468, 98–103.

[251]

Xing, G. R.; Cheng, L.; Li, K.; Gao, Y.; Tang, H.; Wang, Y.; Wu, Z. J. Efficient electroreduction of CO2 by single-atom catalysts two-dimensional metal hexahydroxybenzene frameworks: A theoretical study. Appl. Surf. Sci. 2021, 550, 149389.

[252]

Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717−12723.

[253]

Liu, J. J.; Yang, D.; Zhou, Y.; Zhang, G.; Xing, G. L.; Liu, Y. P.; Ma, Y. H.; Terasaki, O.; Yang, S. B.; Chen, L. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 14473−14479.

[254]

Yang, X.; Cheng, J.; Yang, X.; Xu, Y.; Sun, W. F.; Zhou, J. H. MOF-derived Cu@Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol. Chem. Eng. J. 2022, 431, 134171.

[255]

Ji, L.; Chang, L.; Zhang, Y.; Mou, S. Y.; Wang, T.; Luo, Y. L.; Wang, Z. M.; Sun, X. P. Electrocatalytic CO2 reduction to alcohols with high selectivity over a two-dimensional Fe2P2S6 nanosheet. ACS Catal. 2019, 9, 9721−9725.

[256]

Low, Q. H.; Loo, N. W. X.; Calle-Vallejo, F.; Yeo, B. S. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam. Angew. Chem., Int. Ed. 2019, 58, 2256−2260.

[257]

Liu, T. F.; Wang, G. X.; Bao, X. H. Electrochemical CO2 reduction reaction on 3d transition metal single-atom catalysts supported on graphdiyne: A DFT study. J. Phys. Chem. C 2021, 125, 26013−26020.

[258]

Umeda, M.; Niitsuma, Y.; Horikawa, T.; Matsuda, S.; Osawa, M. Electrochemical reduction of CO2 to methane on platinum catalysts without overpotentials: Strategies for improving conversion efficiency. ACS Appl. Energy Mater. 2020, 3, 1119−1127.

[259]

Umeda, M.; Yoshida, Y.; Matsuda, S. Highly selective methane generation by carbon dioxide electroreduction on carbon-supported platinum catalyst in polymer electrolyte fuel cell. Electrochim. Acta 2020, 340, 135945.

[260]

Qu, T.; Hu, J. X.; Dai, X.; Tan, Q.; Liu, Y.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N. Electrospinning highly dispersed Ru nanoparticle-embedded carbon nanofibers boost CO2 reduction in a H2/CO2 fuel cell. ACS Appl. Mater. Interfaces 2021, 13, 23523−23531.

[261]

Wang, X.; Xu, A. N.; Li, F. W.; Hung, S. F.; Nam, D. H.; Gabardo, C., M.; Wang, Z. Y.; Xu, Y.; Ozden, A.; Rasouli, A. S. et al. Efficient methane electrosynthesis enabled by tuning local CO2 availability. J. Am. Chem. Soc. 2020, 142, 3525−3531.

[262]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[263]

Hu, Q.; Han, Z.; Wang, X. D.; Li, G. M.; Wang, Z. Y.; Huang, X. W.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem., Int. Ed. 2020, 59, 19054−19059.

[264]

Fan, Q. K.; Zhang, X.; Ge, X. H.; Bai, L. C.; He, D. S.; Qu, Y. T.; Kong, C. C.; Bi, J. L.; Ding, D. W.; Cao, Y. Q. et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424.

[265]

Zhang, L.; Li, X. X.; Lang, Z. L.; Liu, Y.; Liu, J.; Yuan, L.; Lu, W. Y.; Xia, Y. S.; Dong, L. Z.; Yuan, D. Q. et al. Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4. J. Am. Chem. Soc. 2021, 143, 3808−3816.

[266]

Zhang, J.; Xu, T. S.; Yuan, D.; Tian, J. L.; Ma, D. W. CO2 electroreduction by transition metal-embedded two-dimensional C3N: A theoretical study. J. CO2 Util. 2021, 43, 101367.

[267]

Zhang, Y. Q.; Liu, T. Y.; Wang, X. H.; Dang, Q.; Zhang, M. J.; Zhang, S. Y.; Li, X. X.; Tang, S. B.; Jiang, J. Dual-atom metal and nonmetal site catalyst on a single nickel atom supported on a hybridized BCN nanosheet for electrochemical CO2 reduction to methane: Combining high activity and selectivity. ACS Appl. Mater. Interfaces 2022, 14, 9073−9083.

[268]

Fu, Z. Z.; Li, Q.; Bai, X. W.; Huang, Y. H.; Shi, L.; Wang, J. L. Promoting the conversion of CO2 to CH4 via synergistic dual active sites. Nanoscale 2021, 13, 12233−12241.

[269]

Esmaeilirad, M.; Baskin, A.; Kondori, A.; Sanz-Matias, A.; Qian, J.; Song, B. A.; Tamadoni Saray, M.; Kucuk, K.; Belmonte, A. R.; Delgado, P. N. M. et al. Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction. Nat. Commun. 2021, 12, 5067.

[270]

Wang, S.; Li, L.; Li, J.; Yuan, C. Z.; Kang, Y.; Hui, K. S.; Zhang, J. T.; Bin, F.; Fan, X.; Chen, F. M. et al. High-throughput screening of nitrogen-coordinated bimetal catalysts for multielectron reduction of CO2 to CH4 with high selectivity and low limiting potential. J. Phys. Chem. C 2021, 125, 7155−7165.

[271]

Guo, C.; Zhang, T.; Lu, X. Q.; Wu, C. M. L. Rational design and effective control of gold-based bimetallic electrocatalyst for boosting CO2 reduction reaction: A first-principles study. ChemSusChem 2021, 14, 2731–2739.

[272]

Chang, C. J.; Lin, S. C.; Chen, H. C.; Wang, J. L.; Zheng, K. J.; Zhu, Y. P.; Chen, H. M. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 2020, 142, 12119−12132.

[273]

Xiong, L. K.; Zhang, X.; Chen, L.; Deng, Z.; Han, S.; Chen, Y. F.; Zhong, J.; Sun, H.; Lian, Y. B.; Yang, B. Y. et al. Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Adv. Mater. 2021, 33, 2101741.

[274]

Linghu, Y. Y.; Tong, T. Y.; Li, C. C.; Wu, C. The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T'-MoS2 monolayers. Appl. Surf. Sci. 2022, 590, 153001.

[275]

Li, Y.; Chen, Y. P.; Guo, Z. L.; Tang, C. C.; Sa, B. S.; Miao, N. H.; Zhou, J.; Sun, Z. M. Breaking the linear scaling relations in MXene catalysts for efficient CO2 reduction. Chem. Eng. J. 2022, 429, 132171.

[276]

Lin, L.; Liu, T. F.; Xiao, J. P.; Li, H. F.; Wei, P. F.; Gao, D. F.; Nan, B.; Si, R.; Wang, G. X.; Bao, X. H. Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew. Chem., Int. Ed. 2020, 59, 22408−22413.

[277]

Yang, Y. J.; Liu, J.; Wu, D. W.; Ding, J. Y.; Xiong, B. Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: A theoretical screening study. Chem. Eng. J. 2021, 424, 130541.

[278]

Cao, S. F.; Zhou, S. N.; Chen, H. Y.; Wei, S. X.; Liu, S. Y.; Lin, X. J.; Chen, X. D.; Wang, Z. J.; Guo, W. Y.; Lu, X. Q. How can the dual-atom catalyst FeCo-NC surpass single-atom catalysts Fe-NC/Co-NC in CO2RR?-CO intermediate assisted promotion via a synergistic effect. Energy Environ. Mater. 2023, 6, e12287.

[279]

Song, H.; Song, J. T.; Kim, B.; Tan, Y. C.; Oh, J. Activation of C2H4 reaction pathways in electrochemical CO2 reduction under low CO2 partial pressure. Appl. Catal. B Environ. 2020, 272, 119049.

[280]

Wei, X.; Yin, Z. L.; Lyu, K. J.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 2020, 10, 4103−4111.

[281]

Ma, L. S.; Hu, W. B.; Mei, B. B.; Liu, H.; Yuan, B.; Zang, J.; Chen, T.; Zou, L. L.; Zou, Z. Q.; Yang, B. et al. Covalent triazine framework confined copper catalysts for selective electrochemical CO2 reduction: Operando diagnosis of active sites. ACS Catal. 2020, 10, 4534−4542.

[282]

Wang, X. L.; Klingan, K.; Klingenhof, M.; Möller, T.; De Araújo, J. F.; Martens, I.; Bagger, A.; Jiang, S.; Rossmeisl, J.; Dau, H. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 2021, 12, 794.

[283]

Jun, M.; Kwak, C.; Lee, S. Y.; Joo, J.; Kim, J. M.; Im, D. J.; Cho, M. K.; Baik, H.; Hwang, Y. J.; Kim, H. et al. Microfluidics-assisted synthesis of hierarchical Cu2O nanocrystal as C2-selective CO2 reduction electrocatalyst. Small Methods 2022, 6, 2200074.

[284]

Zhang, W.; Huang, C. Q.; Xiao, Q.; Yu, L.; Shuai, L.; An, P. F.; Zhang, J.; Qiu, M.; Ren, Z. F.; Yu, Y. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2020, 142, 11417−11427.

[285]

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; García de Arquer, F. P.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378−11386.

[286]

Choi, C.; Cheng, T.; Espinosa, M. F.; Fei, H. L.; Duan, X. F.; Goddard, W. A.; Huang, Y. A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials. Adv. Mater. 2019, 31, 1805405.

[287]

Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624−4633.

[288]

Li, M. H.; Ma, Y. Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. P. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+. Angew. Chem., Int. Ed. 2021, 60, 11487−11493.

[289]

Jeon, H. S.; Timoshenko, J.; Rettenmaier, C.; Herzog, A.; Yoon, A.; Chee, S. W.; Oener, S.; Hejral, U.; Haase, F. T.; Cuenya, B. R. Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction. J. Am. Chem. Soc. 2021, 143, 7578−7587.

[290]

Li, H.; Yu, P. P.; Lei, R. B.; Yang, F. P.; Wen, P.; Ma, X.; Zeng, G. S.; Guo, J. H.; Toma, F. M.; Qiu, Y. J. et al. Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene. Angew. Chem., Int. Ed. 2021, 60, 24838−24843.

[291]

Sun, H.; Chen, L.; Xiong, L. K.; Feng, K.; Chen, Y. F.; Zhang, X.; Yuan, X. Z.; Yang, B. Y.; Deng, Z.; Liu, Y. et al. Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. Nat. Commun. 2021, 12, 6823.

[292]

Pan, Y.; Li, H. D.; Xiong, J.; Yu, Y. D.; Du, H. Y.; Li, S. X.; Wu, Z. C.; Li, S. P.; Lai, J. P.; Wang, L. Protecting the state of Cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C-C coupling. Appl. Catal. B Environ. 2022, 306, 121111.

[293]

Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

[294]

Shao, P.; Zhou, W.; Hong, Q. L.; Yi, L. C.; Zheng, L. R.; Wang, W. J.; Zhang, H. X.; Zhang, H. B.; Zhang, J. Synthesis of a boron-imidazolate framework nanosheet with dimer copper units for CO2 electroreduction to ethylene. Angew. Chem., Int. Ed. 2021, 60, 16687–16692.

[295]

Chen, Y.; Fan, Z. X.; Wang, J.; Ling, C. Y.; Niu, W. X.; Huang, Z. Q.; Liu, G. G.; Chen, B.; Lai, Z. C.; Liu, X. Z. et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760−12766.

[296]

Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490−2499.

[297]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[298]

Zheng, Y. Q.; Zhang, J. W.; Ma, Z. S.; Zhang, G. G.; Zhang, H. F.; Fu, X. W.; Ma, Y. Y.; Liu, F.; Liu, M. C.; Huang, H. W. Seeded growth of gold-copper janus nanostructures as a tandem catalyst for efficient electroreduction of CO2 to C2+ products. Small 2022, 18, 2201695.

[299]

Zhang, S. S.; Zhao, S. L.; Qu, D. X.; Liu, X. J.; Wu, Y. P.; Chen, Y. H.; Huang, W. Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness. Small 2021, 17, 2102293.

[300]

Ma, Y. B.; Yu, J. L.; Sun, M. Z.; Chen, B.; Zhou, X. C.; Ye, C. L.; Guan, Z. Q.; Guo, W. H.; Wang, G.; Lu, S. Y. et al. Confined growth of silver-copper janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, 2110607.

[301]

Wang, X. L.; De Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 2019, 14, 1063–1070.

[302]

Sultan, S.; Lee, H.; Park, S.; Kim, M. M.; Yoon, A.; Choi, H.; Kong, T. H.; Koe, Y. J.; Oh, H. S.; Lee, Z. et al. Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. Energy Environ. Sci. 2022, 15, 2397–2409.

[303]

Kim, C.; Cho, K. M.; Park, K.; Kim, J. Y.; Yun, G. T.; Toma, F. M.; Gereige, I.; Jung, H. T. Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Adv. Funct. Mater. 2021, 31, 2102142.

[304]

Wang, X.; Wang, Z. Y.; De Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

[305]

Zhang, X.; Li, J. C.; Li, Y. Y.; Jung, Y.; Kuang, Y.; Zhu, G. Z.; Liang, Y. Y.; Dai, H. J. Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes. J. Am. Chem. Soc. 2021, 143, 3245−3255.

[306]

Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary Operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

[307]

Meng, Y. N.; Li, K.; Xiao, D. H.; Yuan, Y.; Wang, Y.; Wu, Z. J. High selective and efficient Fe2-N6 sites for CO2 electroreduction: A theoretical investigation. Int. J. Hydrogen Energy 2020, 45, 14311–14319.

[308]

Lakshmanan, K.; Huang, W. H.; Chala, S. A.; Taklu, B. W.; Moges, E. A.; Lee, J. F.; Huang, P. Y.; Lee, Y. C.; Tsai, M. C.; Su, W. N. et al. Highly active oxygen coordinated configuration of Fe single-atom catalyst toward electrochemical reduction of CO2 into multi-carbon products. Adv. Funct. Mater. 2022, 32, 2109310.

[309]

Ting, L. R. L.; Piqué, O.; Lim, S. Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B. S. Enhancing CO2 Electroreduction to ethanol on copper-silver composites by opening an alternative catalytic pathway. ACS Catal. 2020, 10, 4059−4069.

[310]

Chang, C. J.; Hung, S. F.; Hsu, C. S.; Chen, H. C.; Lin, S. C.; Liao, Y. F.; Chen, H. M. Quantitatively unraveling the redox shuttle of spontaneous oxidation/electroreduction of CuO x on silver nanowires using in situ X-ray absorption spectroscopy. ACS Cent. Sci. 2019, 5, 1998−2009.

[311]

Li, X. Q.; Duan, G. Y.; Wang, R.; Han, L. J.; Wang, Y. F.; Xu, B. H. Poly(ionic liquid)-based bimetallic tandem catalysts for highly efficient carbon dioxide electroreduction. Appl. Catal. B Environ. 2022, 313, 121459.

[312]

Qi, F. X. Y.; Liu, K.; Ma, D. K.; Cai, F. F.; Liu, M.; Xu, Q. L.; Chen, W.; Qi, C. Z.; Yang, D. P.; Huang, S. M. Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol. J. Mater. Chem. A 2021, 9, 6790–6796.

[313]

Roongcharoen, T.; Mano, P.; Jitwatanasirikul, T.; Sikam, P.; Butburee, T.; Takahashi, K.; Namuangruk, S. Theoretical insight on why N-vacancy promotes the selective CO2 reduction to ethanol on NiMn doped graphitic carbon nitride sheets. Appl. Surf. Sci. 2022, 595, 153527.

[314]

Cai, R. M.; Sun, M. Z.; Ren, J. Z.; Ju, M.; Long, X.; Huang, B. L.; Yang, S. H. Unexpected high selectivity for acetate formation from CO2 reduction with copper based 2D hybrid catalysts at ultralow potentials. Chem. Sci. 2021, 12, 15382−15388.

[315]

Zang, D. J.; Li, Q.; Dai, G. Y.; Zeng, M. Y.; Huang, Y. C.; Wei, Y. G. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 2021, 281, 119426.

[316]

Guo, F.; Liu, B.; Liu, M. P.; Xia, Y.; Wang, T. L.; Hu, W.; Fyffe, P.; Tian, L. H.; Chen, X. B. Selective electrocatalytic CO2 reduction to acetate on polymeric Cu-L (L = pyridinic N and carbonyl group) complex core-shell microspheres. Green Chem. 2021, 23, 5129–5137.

[317]

Rahaman, M.; Dutta, A.; Zanetti, A.; Broekmann, P. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: An identical location (IL) study. ACS Catal. 2017, 7, 7946−7956.

[318]

Rahaman, M.; Kiran, K.; Montiel, I. Z.; Grozovski, V.; Dutta, A.; Broekmann, P. Selective n-propanol formation from CO2 over degradation-resistant activated PdCu alloy foam electrocatalysts. Green Chem. 2020, 22, 6497–6509.

[319]

Peng, C.; Luo, G.; Zhang, J. B.; Chen, M. H.; Wang, Z. Q.; Sham, T. K.; Zhang, L. J.; Li, Y. F.; Zheng, G. F. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 2021, 12, 1580.

[320]

Qi, K.; Zhang, Y.; Onofrio, N.; Petit, E.; Cui, X. Q.; Ma, J. Y.; Fan, J. C.; Wu, H. L.; Wang, W. S.; Li, J. et al. Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation. Nat. Catal. 2023, 6, 319–331.

[321]

Zhou, Y. S.; Martín, A. J.; Dattila, F.; Xi, S. B.; López, N.; Pérez-Ramírez, J.; Yeo, B. S. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat. Catal. 2022, 5, 545–554.

[322]

Gao, J.; Bahmanpour, A.; Kröcher, O.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. Nat. Chem. 2023, 15, 705–713.

[323]

Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem., Int. Ed. 2021, 60, 20627–20648.

[324]

Ma, Y. B.; Wang, J.; Yu, J. L.; Zhou, J. W.; Zhou, X. C.; Li, H. X.; He, Z.; Long, H. W.; Wang, Y. H.; Lu, P. Y. et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter 2021, 4, 888–926.

[325]

Yan, Y.; Ke, L. W.; Ding, Y.; Zhang, Y.; Rui, K.; Lin, H. J.; Zhu, J. X. Recent advances in Cu-based catalysts for electroreduction of carbon dioxide. Mater. Chem. Front. 2021, 5, 2668–2683.

[326]

Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

Nano Research Energy
Article number: e9120096
Cite this article:
Shen J, Wang D. How to select heterogeneous CO2 reduction electrocatalyst. Nano Research Energy, 2024, 3: e9120096. https://doi.org/10.26599/NRE.2023.9120096

3141

Views

795

Downloads

31

Crossref

31

Scopus

Altmetrics

Received: 01 August 2023
Revised: 18 August 2023
Accepted: 20 August 2023
Published: 05 September 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return