Journal Home > Volume 3 , Issue 1

Colloidal quantum dot (CQD) shows great potential for application in infrared solar cells due to the simple synthesis techniques, tunable infrared absorption spectrum, and high stability and solution-processability. Thanks to significant efforts made on the surface chemistry of CQDs, device structure optimization, and device physics of CQD solar cells (CQDSCs), remarkable breakthroughs are achieved to boost the infrared photovoltaic performance and stability of CQDSCs. In particular, the CQDSC with a high power conversion efficiency of ~ 14% and good stability is reported, which is very promising for infrared-absorbing solar cells. In this review, we highlight the unique optoelectronic properties of CQDs for the development of infrared-absorbing solar cells. Meanwhile, the latest advances in finely controlling surface properties of CQDs are comprehensively summarized and discussed. Moreover, the device operation of CQDSCs is discussed in-depth to highlight the impact of the device structure optimization of CQDSCs on their photovoltaic performance, and the emerging novel types of CQDSCs, such as semitransparent, flexible, and lightweight CQDSCs, are also demonstrated. The device stability of CQDSCs is also highlighted from the viewpoint of practical applications. Finally, the conclusions and possible challenges and opportunities are presented to promote the development steps of the CQDSCs with higher infrared photovoltaic performance and robust stability.


menu
Abstract
Full text
Outline
About this article

Colloidal quantum dot for infrared-absorbing solar cells: State-of-the-art and prospects

Show Author's information Siyu Zheng1,§Xinyi Mei1,§Jingxuan Chen1Erik M. J. Johansson2Xiaoliang Zhang1( )
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Department of Chemistry-Ångström, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden

§ Siyu Zheng and Xinyi Mei contributed equally to this work.

Abstract

Colloidal quantum dot (CQD) shows great potential for application in infrared solar cells due to the simple synthesis techniques, tunable infrared absorption spectrum, and high stability and solution-processability. Thanks to significant efforts made on the surface chemistry of CQDs, device structure optimization, and device physics of CQD solar cells (CQDSCs), remarkable breakthroughs are achieved to boost the infrared photovoltaic performance and stability of CQDSCs. In particular, the CQDSC with a high power conversion efficiency of ~ 14% and good stability is reported, which is very promising for infrared-absorbing solar cells. In this review, we highlight the unique optoelectronic properties of CQDs for the development of infrared-absorbing solar cells. Meanwhile, the latest advances in finely controlling surface properties of CQDs are comprehensively summarized and discussed. Moreover, the device operation of CQDSCs is discussed in-depth to highlight the impact of the device structure optimization of CQDSCs on their photovoltaic performance, and the emerging novel types of CQDSCs, such as semitransparent, flexible, and lightweight CQDSCs, are also demonstrated. The device stability of CQDSCs is also highlighted from the viewpoint of practical applications. Finally, the conclusions and possible challenges and opportunities are presented to promote the development steps of the CQDSCs with higher infrared photovoltaic performance and robust stability.

Keywords: solar cell, solar energy, colloidal quantum dot, photovoltaic performance, infrared absorbing

References(291)

[1]

Chen, J. X.; Jia, D. L.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. L. Emerging perovskite quantum dot solar cells: Feasible approaches to boost performance. Energy Environ. Sci. 2021, 14, 224–261.

[2]

Carey, G. H.; Levina, L.; Comin, R.; Voznyy, O.; Sargent, E. H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Adv. Mater. 2015, 27, 3325–3330.

[3]

Zhang, F.; Ma, Z. Z.; Shi, Z. F.; Chen, X.; Wu, D.; Li, X. J.; Shan, C. X. Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application. Energy Mater. Adv. 2021, 2021, 5198145.

[4]

Sliz, R.; Lejay, M.; Fan, J. Z.; Choi, M. J.; Kinge, S.; Hoogland, S.; Fabritius, T.; García De arquer, F. P.; Sargent, E. H. Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 2019, 13, 11988–11995.

[5]

Bi, C. H.; Kershaw, S. V.; Rogach, A. L.; Tian, J. J. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 2019, 29, 1902446.

[6]

Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

[7]

Sun, Q. J.; Wang, Y. A.; Li, L. S.; Wang, D. Y.; Zhu, T.; Xu, J.; Yang, C. H.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722.

[8]

Mei, X. Y.; Jia, D. L.; Chen, J. X.; Zheng, S. Y.; Zhang, X. L. Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today 2022, 43, 101449.

[9]

Chen, J.; Du, W. N.; Shi, J. W.; Li, M. L.; Wang, Y.; Zhang, Q.; Liu, X. F. Perovskite quantum dot lasers. InfoMat 2020, 2, 170–183.

[10]

Hoogland, S.; Sukhovatkin, V.; Howard, I.; Cauchi, S.; Levina, L.; Sargent, E. H. A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength. Opt. Express 2006, 14, 3273–3281.

[11]

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

[12]

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

[13]

Lan, X. Z.; Masala, S.; Sargent, E. H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat. Mater. 2014, 13, 233–240.

[14]

Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 2012, 488, 304–312.

[15]

Jia, D. L.; Chen, J. X.; Zhuang, R. S.; Hua, Y.; Zhang, X. L. Antisolvent-assisted in situ cation exchange of perovskite quantum dots for efficient solar cells. Adv. Mater. 2023, 35, 2212160.

[16]

Ning, Z. J.; Gong, X. W.; Comin, R.; Walters, G.; Fan, F. J.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E. H. Quantum-dot-in-perovskite solids. Nature 2015, 523, 324–328.

[17]

Yuan, M. J.; Liu, M. X.; Sargent, E. H. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 2016, 1, 16016.

[18]

Wang, X. H.; Koleilat, G. I.; Tang, J.; Liu, H.; Kramer, I. J.; Debnath, R.; Brzozowski, L.; Barkhouse, D. A. R.; Levina, L.; Hoogland, S. et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat. Photonics 2011, 5, 480–484.

[19]

Chen, J. X.; Jia, D. L.; Zhuang, R. S.; Hua, Y.; Zhang, X. L. Highly orientated perovskite quantum dot solids for efficient solar cells. Adv. Mater. 2022, 34, 2204259.

[20]

Zhang, X. L.; Zhang, J. D.; Liu, J. H.; Johansson, E. M. J. Solution processed flexible and bending durable heterojunction colloidal quantum dot solar cell. Nanoscale 2015, 7, 11520–11524.

[21]

Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 2006, 128, 10337–10346.

[22]

Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

[23]

Cirloganu, C. M.; Padilha, L. A.; Lin, Q. L.; Makarov, N. S.; Velizhanin, K. A.; Luo, H. M. et al. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Commun. 2014, 5, 4148.

[24]

Zhang, Z. L.; Chen, Z. H.; Zhang, J. B.; Chen, W. J.; Yang, J. F.; Wen, X. M.; Wang, B.; Kobamoto, N.; Yuan, L.; Stride, J. A. et al. Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer. Adv. Energy Mater. 2017, 7, 1601773.

[25]

Cao, Y. T.; Geng, W.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Liu, L. M.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Thiolate-mediated photoinduced synthesis of ultrafine Ag2S quantum dots from silver nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 14952–14957.

[26]

Hwang, I.; Seol, M.; Kim, H.; Yong, K. Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with Cds. Appl. Phys. Lett. 2013, 103, 023902.

[27]

Öberg, V. A.; Zhang, X. L.; Johansson, M. B.; Johansson, E. M. J. Hot-injection synthesized Ag2S quantum dots with broad light absorption and high stability for solar cell applications. ChemNanoMat 2018, 4, 1223–1230.

[28]

Tian, Q. H.; Deng, D.; Zhang, Z.; Li, Y.; Yang, Y.; Guo, X. Y. Facile synthesis of Ag2Se quantum dots and their application in dye/Ag2Se co-sensitized solar cells. J. Mater. Sci. 2017, 52, 12131–12140.

[29]

Frohleiks, J.; Wefers, F.; Wepfer, S.; Hong, A. R.; Jang, H. S.; Nannen, E. CuInS2-based quantum dot light-emitting electrochemical cells (QLECs). Adv. Mater. Technol. 2017, 2, 1700154.

[30]

Peer, A.; Hu, Z. J.; Singh, A.; Hollingsworth, J. A.; Biswas, R.; Htoon, H. Photoluminescence enhancement of CuInS2 quantum dots in solution coupled to plasmonic gold nanocup array. Small 2017, 13, 1700660.

[31]

Bernechea, M.; Cates, N.; Xercavins, G.; So, D.; Stavrinadis, A.; Konstantatos, G. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10, 521–525.

[32]

Öberg, V. A.; Johansson, M. B.; Zhang, X. L.; Johansson, E. M. J. Cubic AgBiS2 colloidal nanocrystals for solar cells. ACS Appl. Nano Mater. 2020, 3, 4014–4024.

[33]

Wang, Y. J.; Kavanagh, S. R.; Burgués-Ceballos, I.; Walsh, A.; Scanlon, D. O.; Konstantatos, G. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photonics 2022, 16, 235–241.

[34]

Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032.

[35]

Tawada, Y.; Tsuge, K.; Kondo, M.; Okamoto, H.; Hamakawa, Y. Properties and structure Of a-SiC: H for high-efficiency a-Si solar cell. J. Appl. Phys. 1982, 53, 5273–5281.

[36]

Ghosh, A. K.; Fishman, C.; Feng, T. SnO2/Si solar cells-heterostructure or Schottky-barrier or MIS-type device. J. Appl. Phys. 1978, 49, 3490–3498.

[37]
Bauhuis, G. J.; Mulder, P.; Haverkamp, E. J.; Huijben, J. C. C. M.; Schermer, J. J. 26.1% thin-film GaAs solar cell using epitaxial lift-off. Sol. Energy Mater. Sol. Cells 2009 , 93, 1488–1491.
DOI
[38]

Hubbard, S. M.; Cress, C. D.; Bailey, C. G.; Raffaelle, R. P.; Bailey, S. G.; Wilt, D. M. Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 2008, 92, 123512.

[39]

Nakayama, K.; Tanabe, K.; Atwater, H. A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 2008, 93, 121904.

[40]

Durmusoglu, E. G.; Selopal, G. S.; Mohammadnezhad, M.; Zhang, H.; Dagtepe, P.; Barba, D.; Sun, S. H.; Zhao, H. G.; Acar, H. Y.; Wang, Z. M. et al. Low-cost, air-processed quantum dot solar cells via diffusion-controlled synthesis. ACS Appl. Mater. Interfaces 2020, 12, 36301–36310.

[41]

Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012.

[42]

Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023–3030.

[43]

Xia, Y.; Liu, S. S.; Wang, K.; Yang, X. K.; Lian, L. Y.; Zhang, Z. M.; He, J. G.; Liang, G. J.; Wang, S.; Tan, M. L. et al. Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 2020, 30, 1907379.

[44]

Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424.

[45]

Zhang, X. L.; Liu, J. H.; Johansson, E. M. J. Efficient charge-carrier extraction from Ag2S quantum dots prepared by the SILAR method for utilization of multiple exciton generation. Nanoscale 2015, 7, 1454–1462.

[46]

Cunningham, P. D.; Boercker, J. E.; Foos, E. E.; Lumb, M. P.; Smith, A. R.; Tischler, J. G.; Melinger, J. S. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett. 2011, 11, 3476–3481.

[47]

Luther, J. M.; Beard, M. C.; Song, Q.; Law, M.; Ellingson, R. J.; Nozik, A. J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 2007, 7, 1779–1784.

[48]

Chan, S.; Liu, M. N.; Latham, K.; Haruta, M.; Kurata, H.; Teranishi, T.; Tachibana, Y. Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors. J. Mater. Chem. C 2017, 5, 2182–2187.

[49]

Albaladejo-Siguan, M.; Baird, E. C.; Becker-Koch, D.; Li, Y. X.; Rogach, A. L.; Vaynzof, Y. Stability of quantum dot solar cells: A matter of (life)time. Adv. Energy Mater. 2021, 11, 2003457.

[50]

Asil, D.; Walker, B. J.; Ehrler, B.; Vaynzof, Y.; Sepe, A.; Bayliss, S.; Sadhanala, A.; Chow, P. C. Y.; Hopkinson, P. E.; Steiner, U. et al. Role of PbSe structural stabilization in photovoltaic cells. Adv. Funct. Mater. 2015, 25, 928–935.

[51]

Hughes, B. K.; Ruddy, D. A.; Blackburn, J. L.; Smith, D. K.; Bergren, M. R.; Nozik, A. J.; Johnson, J. C.; Beard, M. C. Control of PbSe quantum dot surface chemistry and photophysics using an alkylselenide ligand. ACS Nano 2012, 6, 5498–5506.

[52]

Tamang, S.; Lee, S.; Choi, H.; Jeong, S. Tuning size and size distribution of colloidal InAs nanocrystals via continuous supply of prenucleation clusters on nanocrystal seeds. Chem. Mater. 2016, 28, 8119–8122.

[53]

Choi, H.; Jeong, S. A review on eco-friendly quantum dot solar cells: Materials and manufacturing processes. Int. J. Precis. Eng. Manuf.-Green Technol. 2018, 5, 349–358.

[54]

Chen, D. Z.; Shivarudraiah, S. B.; Geng, P.; Ng, M.; Li, C. H. A.; Tewari, N.; Zou, X. H.; Wong, K. S.; Guo, L.; Halpert, J. E. Solution-processed, inverted AgBiS2 nanocrystal solar cells. ACS Appl. Mater. Interfaces 2022, 14, 1634–1642.

[55]

Ding, C.; Wang, D. D.; Liu, D.; Li, H.; Li, Y. S.; Hayase, S.; Sogabe, T.; Masuda, T.; Zhou, Y.; Yao, Y. F. et al. Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: Reducing nonradiative recombination and balancing charge carrier extraction. Adv. Energy Mater. 2022, 12, 2201676.

[56]

Andruszkiewicz, A.; Zhang, X. L.; Johansson, M. B.; Yuan, L.; Johansson, E. M. J. Perovskite and quantum dot tandem solar cells with interlayer modification for improved optical semitransparency and stability. Nanoscale 2021, 13, 6234–6240.

[57]

Kim, T.; Gao, Y. Q.; Hu, H. L.; Yan, B. Y.; Ning, Z. J.; Jagadamma, L. K.; Zhao, K.; Kirmani, A. R.; Eid, J.; Adachi, M. M. et al. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells. Nano Energy 2015, 17, 196–205.

[58]

Yuan, L.; Michaels, H.; Roy, R.; Johansson, M.; Öberg, V.; Andruszkiewicz, A.; Zhang, X. L.; Freitag, M.; Johansson, E. M. J. Four-terminal tandem solar cell with dye-sensitized and PbS colloidal quantum-dot-based subcells. ACS Appl. Energy Mater. 2020, 3, 3157–3161.

[59]

Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.

[60]

Yue, D.; Zhang, J. W.; Zhang, J. B.; Lin, Y. Preparation of PbS quantum dots using inorganic sulfide as precursor and their characterization. Acta Phys.-Chim. Sin. 2011, 27, 1239–1243.

[61]

Kramer, I. J.; Sargent, E. H. The architecture of colloidal quantum dot solar cells: Materials to devices. Chem. Rev. 2014, 114, 863–882.

[62]

Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

[63]

Zhang, X. L.; Hägglund, C.; Johansson, M. B.; Sveinbjörnsson, K.; Liu, J. H.; Johansson, E. M. J. FTO-free top-illuminated colloidal quantum dot photovoltaics: Enhanced electro-optics in devices. Sol. Energy 2017, 158, 533–542.

[64]

Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; De Arquer, F. P. G. et al. A tuned alternating D–A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater. 2020, 32, 2004985.

[65]

Luther, J. M.; Gao, J. B.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707.

[66]

Zhitomirsky, D.; Voznyy, O.; Levina, L.; Hoogland, S.; Kemp, K. W.; Ip, A. H.; Thon, S. M.; Sargent, E. H. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nat. Commun. 2014, 5, 3803.

[67]

Sun, B.; Ouellette, O.; De Arquer, F. P. G.; Voznyy, O.; Kim, Y.; Wei, M. Y.; Proppe, A. H.; Saidaminov, M. I.; Xu, J. X.; Liu, M. X. et al. Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nat. Commun. 2018, 9, 4003.

[68]

Wang, R. L.; Shang, Y. Q.; Kanjanaboos, P.; Zhou, W. J.; Ning, Z. J.; Sargent, E. H. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130–1143.

[69]

Zhang, Y. H.; Wu, G. H.; Liu, F.; Ding, C.; Zou, Z. G.; Shen, Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: Insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 2020, 49, 49–84.

[70]

Pan, Z. X.; Rao, H. S.; Mora-Seró, I.; Bisquert, J.; Zhong, X. H. Quantum dot-sensitized solar cells. Chem. Soc. Rev. 2018, 47, 7659–7702.

[71]

Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488–3492.

[72]

Zhao, N.; Osedach, T. P.; Chang, L. Y.; Geyer, S. M.; Wanger, D.; Binda, M. T.; Arango, A. C.; Bawendi, M. G.; Bulovic, V. Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 2010, 4, 3743–3752.

[73]

Zhou, S. J.; Liu, Z. K.; Wang, Y. J.; Lu, K. Y.; Yang, F.; Gu, M. F.; Xu, Y. L.; Chen, S.; Ling, X. F.; Zhang, Y. N. et al. Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications. J. Mater. Chem. C 2019, 7, 1575–1583.

[74]

Hou, B.; Cho, Y.; Kim, B. S.; Hong, J.; Park, J. B.; Ahn, S. J.; Sohn, J. I.; Cha, S. N.; Kim, J. M. Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells. ACS Energy Lett. 2016, 1, 834–839.

[75]

Borrelli, N. F.; Smith, D. W. Quantum confinement of PbS microcrystals in glass. J. Non-Cryst. Solids 1994, 180, 25–31.

[76]

Voznyy, O.; Levina, L.; Fan, J. Z.; Askerka, M.; Jain, A.; Choi, M. J.; Ouellette, O.; Todorović, P.; Sagar, L. K.; Sargent, E. H. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 2019, 13, 11122–11128.

[77]

Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size Distribution. Adv. Mater. 2003, 15, 1844–1849.

[78]

Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; Von Freymann, G.; Ozin, G. A. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 2006, 110, 671–673.

[79]

Zhou, R.; Xu, J.; Huang, F.; Ji, F. W.; Wan, L.; Niu, H. H.; Mao, X. L.; Xu, J. Z.; Cao, G. Z. A novel anion-exchange strategy for constructing high performance PbS quantum dot-sensitized solar cells. Nano Energy 2016, 30, 559–569.

[80]

Spangler, L. C.; Lu, L.; Kiely, C. J.; Berger, B. W.; McIntosh, S. Biomineralization of PbS and PbS-CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells. J. Mater. Chem. A 2016, 4, 6107–6115.

[81]

Zhang, C. W.; Xia, Y.; Zhang, Z. M.; Huang, Z.; Lian, L. Y.; Miao, X. S.; Zhang, D. L.; Beard, M. C.; Zhang, J. B. Combination of cation exchange and quantized ostwald ripening for controlling size distribution of lead chalcogenide quantum dots. Chem. Mater. 2017, 29, 3615–3622.

[82]

Miller, E. M.; Kroupa, D. M.; Zhang, J. B.; Schulz, P.; Marshall, A. R.; Kahn, A.; Lany, S.; Luther, J. M.; Beard, M. C.; Perkins, C. L. et al. Revisiting the valence and conduction band size dependence of PbS quantum dot thin films. ACS Nano 2016, 10, 3302–3311.

[83]

Gao, J.; Luther, J. M.; Semonin, O. E.; Ellingson, R. J.; Nozik, A. J.; Beard, M. C. Quantum dot size dependent J V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Lett. 2011, 11, 1002–1008.

[84]

Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X. H.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374–3380.

[85]

Lim, H.; Kim, D.; Choi, M. J.; Sargent, E. H.; Jung, Y. S.; Kim, J. Y. Suppressing interfacial dipoles to minimize open-circuit voltage loss in quantum dot photovoltaics. Adv. Energy Mater. 2019, 9, 1901938.

[86]

Wang, Y. J.; Lu, K. Y.; Han, L.; Liu, Z. K.; Shi, G. Z.; Fang, H. H.; Chen, S.; Wu, T.; Yang, F.; Gu, M. F. et al. In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 2018, 30, 1704871.

[87]

Liu, M. X.; Voznyy, O.; Sabatini, R.; De Arquer, F. P. G.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.

[88]

Liu, Y.; Kim, D.; Morris, O. P.; Zhitomirsky, D.; Grossman, J. C. Origins of the stokes shift in PbS quantum dots: Impact of polydispersity, ligands, and defects. ACS Nano 2018, 12, 2838–2845.

[89]

Voznyy, O.; Levina, L.; Fan, F. J.; Walters, G.; Fan, J. Z.; Kiani, A.; Ip, A. H.; Thon, S. M.; Proppe, A. H.; Liu, M. X. et al. Origins of stokes shift in PbS nanocrystals. Nano Lett. 2017, 17, 7191–7195.

[90]

Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 2016, 15, 557–563.

[91]

Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026.

[92]

Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H. W.; Law, M. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 2010, 10, 1960–1969.

[93]

Efros, A. L.; Shklovskii, B. I. Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C: Solid State Phys. 1975, 8, L49–L51.

[94]

Chen, T.; Reich, K. V.; Kramer, N. J.; Fu, H.; Kortshagen, U. R.; Shklovskii, B. I. Metal-insulator transition in films of doped semiconductor nanocrystals. Nat. Mater. 2016, 15, 299–303.

[95]

Gilmore, R. H.; Winslow, S. W.; Lee, E. M. Y.; Ashner, M. N.; Yager, K. G.; Willard, A. P.; Tisdale, W. A. Inverse temperature dependence of charge carrier hopping in quantum dot solids. ACS Nano 2018, 12, 7741–7749.

[96]

Kang, M. S.; Sahu, A.; Norris, D. J.; Frisbie, C. D. Size- and temperature-dependent charge transport in PbSe nanocrystal thin films. Nano Lett. 2011, 11, 3887–3892.

[97]

Yu, D.; Wang, C. J.; Wehrenberg, B. L.; Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 2004, 92, 216802.

[98]

Gilmore, R. H.; Lee, E. M. Y.; Weidman, M. C.; Willard, A. P.; Tisdale, W. A. Charge carrier hopping dynamics in homogeneously broadened PbS quantum dot solids. Nano Lett. 2017, 17, 893–901.

[99]

Beard, M. C. Multiple exciton generation in semiconductor quantum dots. J. Phys. Chem. Lett. 2011, 2, 1282–1288.

[100]

Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519.

[101]

Beard, M. C.; Luther, J. M.; Semonin, O. E.; Nozik, A. J. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc. Chem. Res. 2013, 46, 1252–1260.

[102]

Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J. B.; Nozik, A. J.; Beard, M. C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011, 334, 1530–1533.

[103]

Beard, M. C.; Midgett, A. G.; Hanna, M. C.; Luther, J. M.; Hughes, B. K.; Nozik, A. J. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: Implications for enhancement of solar energy conversion. Nano Lett. 2010, 10, 3019–3027.

[104]

Yan, Y.; Crisp, R. W.; Gu, J.; Chernomordik, B. D.; Pach, G. F.; Marshall, A. R.; Turner, J. A.; Beard, M. C. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%. Nat. Energy 2017, 2, 17052.

[105]

Guillemoles, J. F.; Kirchartz, T.; Cahen, D.; Rau, U. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photonics 2019, 13, 501–505.

[106]

Sargent, E. H. Colloidal quantum dot solar cells. Nat. Photonics 2012, 6, 133–135.

[107]

Fischer, A.; Rollny, L.; Pan, J.; Carey, G. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Kim, J. Y.; Bakr, O. M. et al. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Adv. Mater. 2013, 25, 5742–5749.

[108]

Park, D.; Yim, S. Cascaded band alignments of PbS heterojunction layers for improved performance of PbS quantum dot solar cells. Sol. Energy Mater. Sol. Cells 2020, 208, 110363.

[109]

Yang, X. K.; Yang, J.; Ullah, M. I.; Xia, Y.; Liang, G. J.; Wang, S.; Zhang, J. B.; Hsu, H. Y.; Song, H. S.; Tang, J. Enhanced passivation and carrier collection in ink-processed PbS quantum dot solar cells via a supplementary ligand strategy. ACS Appl. Mater. Interfaces 2020, 12, 42217–42225.

[110]

Wang, Y. J.; Liu, Z. K.; Huo, N. J.; Li, F.; Gu, M. F.; Ling, X. F.; Zhang, Y. N.; Lu, K. Y.; Han, L.; Fang, H. H. et al. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 2019, 10, 5136.

[111]

Biondi, M.; Choi, M. J.; Lee, S.; Bertens, K.; Wei, M. Y.; Kirmani, A. R.; Lee, G.; Kung, H. T.; Richter, L. J.; Hoogland, S. et al. Control over ligand exchange reactivity in hole transport layer enables high-efficiency colloidal quantum dot solar cells. ACS Energy Lett. 2021, 6, 468–476.

[112]

Aqoma, H.; Jang, S. Y. Solid-state-ligand-exchange free quantum dot ink-based solar cells with an efficiency of 10.9%. Energy Environ. Sci. 2018, 11, 1603–1609.

[113]

Kramer, I. J.; Moreno-Bautista, G.; Minor, J. C.; Kopilovic, D.; Sargent, E. H. Colloidal quantum dot solar cells on curved and flexible substrates. Appl. Phys. Lett. 2014, 105, 163902.

[114]

Chen, W.; Tang, H. D.; Chen, Y. L.; Heger, J. E.; Li, N.; Kreuzer, L. P.; Xie, Y.; Li, D. P.; Anthony, C.; Pikramenou, Z. et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors. Nano Energy 2020, 78, 105254.

[115]

Kramer, I. J.; Minor, J. C.; Moreno-Bautista, G.; Rollny, L.; Kanjanaboos, P.; Kopilovic, D.; Thon, S. M.; Carey, G. H.; Chou, K. W.; Zhitomirsky, D. et al. Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 2015, 27, 116–121.

[116]

Choi, M. J.; Kim, Y. J.; Lim, H.; Alarousu, E.; Adhikari, A.; Shaheen, B. S.; Kim, Y. H.; Mohammed, O. F.; Sargent, E. H.; Kim, J. Y. et al. Tuning solute-redistribution dynamics for scalable fabrication of colloidal quantum-dot optoelectronics. Adv. Mater. 2019, 31, 1805886.

[117]

Kim, Y.; Bicanic, K.; Tan, H. R.; Ouellette, O.; Sutherland, B. R.; De Arquer, F. P. G.; Jo, J. W.; Liu, M. X.; Sun, B.; Liu, M. et al. Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Lett. 2017, 17, 2349–2353.

[118]

Adrian, A.; Rudolph, D.; Willenbacher, N.; Lossen, J. Finger metallization using pattern transfer printing technology for C-Si solar cell. IEEE J. Photovolt. 2020, 10, 1290–1298.

[119]

Labelle, A. J.; Thon, S. M.; Kim, J. Y.; Lan, X. Z.; Zhitomirsky, D.; Kemp, K. W.; Sargent, E. H. Conformal fabrication of colloidal quantum dot solids for optically enhanced photovoltaics. ACS Nano 2015, 9, 5447–5453.

[120]

Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M. Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508.

[121]

Beygi, H.; Sajjadi, S. A.; Babakhani, A.; Young, J. F.; van Veggel, F. C. J. M. Surface chemistry of as-synthesized and air-oxidized PbS quantum dots. Appl. Surf. Sci. 2018, 457, 1–10.

[122]

Xia, Y.; Chen, W.; Zhang, P.; Liu, S. S.; Wang, K.; Yang, X. K.; Tang, H. D.; Lian, L. Y.; He, J. G.; Liu, X. X. et al. Facet control for trap-state suppression in colloidal quantum dot solids. Adv. Funct. Mater. 2020, 30, 2000594.

[123]

Li, F.; Liu, Y.; Shi, G. Z.; Chen, W.; Guo, R. J.; Liu, D.; Zhang, Y. H.; Wang, Y. J.; Meng, X.; Zhang, X. L. et al. Matrix manipulation of directly-synthesized PbS quantum dot inks enabled by coordination engineering. Adv. Funct. Mater. 2021, 31, 2104457.

[124]

Zhang, X. L.; Cappel, U. B.; Jia, D. L.; Zhou, Q. S.; Du, J.; Sloboda, T.; Svanström, S.; Johansson, F. O. L.; Lindblad, A.; Giangrisostomi, E. et al. Probing and controlling surface passivation of PbS quantum dot solid for improved performance of infrared absorbing solar cells. Chem. Mater. 2019, 31, 4081–4091.

[125]

Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.

[126]

Kroupa, D. M.; Vörös, M.; Brawand, N. P.; McNichols, B. W.; Miller, E. M.; Gu, J.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat. Commun. 2017, 8, 15257.

[127]

Beygi, H.; Sajjadi, S. A.; Babakhani, A.; Young, J. F.; van Veggel, F. C. J. M. Solution phase surface functionalization of PbS nanoparticles with organic ligands for single-step deposition of P-type layer of quantum dot solar cells. Appl. Surf. Sci. 2018, 459, 562–571.

[128]

Liu, Y.; Wu, H.; Shi, G. Z.; Li, Y. S.; Gao, Y. Y.; Fang, S. W.; Tang, H. D.; Chen, W.; Ma, T. S.; Khan, I. et al. Merging passivation in synthesis enabling the lowest open-circuit voltage loss for PbS quantum dot solar cells. Adv. Mater. 2023, 35, 2207293.

[129]

Azmi, R.; Sinaga, S.; Aqoma, H.; Seo, G.; Ahn, T. K.; Park, M.; Ju, S. Y.; Lee, J. W.; Kim, T. W.; Oh, S. H. et al. Highly efficient air-stable colloidal quantum dot solar cells by improved surface trap passivation. Nano Energy 2017, 39, 86–94.

[130]

Hong, J.; Hou, B.; Lim, J.; Pak, S.; Kim, B. S.; Cho, Y.; Lee, J.; Lee, Y. W.; Giraud, P.; Lee, S. et al. Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation. J. Mater. Chem. A 2016, 4, 18769–18775.

[131]

Bi, Y.; Pradhan, S.; Gupta, S.; Akgul, M. Z.; Stavrinadis, A.; Konstantatos, G. Infrared solution-processed quantum dot solar cells reaching external quantum efficiency of 80% at 1.35 µm and Jsc in excess of 34 mA·cm–2. Adv. Mater. 2018, 30, 1704928.

[132]

Pradhan, S.; Stavrinadis, A.; Gupta, S.; Bi, Y.; Di Stasio, F. Gerasimos Konstantatos. Trap-state suppression and improved charge transport in PbS quantum dot solar cells with synergistic mixed-ligand treatments. Small 2017, 13, 1700598.

[133]

Hodes, G. Perovskite-based solar cells. Science 2013, 342, 317–318.

[134]

Heo, J. H.; Im, S. H. CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 2016, 28, 5121–5125.

[135]

Peng, J. J.; Chen, Y. N.; Zhang, X. F.; Dong, A. G.; Liang, Z. Q. Solid-state ligand-exchange fabrication of CH3NH3PbI3 capped PbS quantum dot solar cells. Adv. Sci. 2016, 3, 1500432.

[136]

Lu, K. Y.; Wang, Y. J.; Liu, Z. K.; Han, L.; Shi, G. Z.; Fang, H. H.; Chen, J.; Ye, X. C.; Chen, S.; Yang, Y. et al. High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via “solvent-curing”. Adv. Mater. 2018, 30, 1707572.

[137]

Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu, W. Y.; Spokoyny, B.; Talapin, D. V. Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 2011, 133, 10612–10620.

[138]

Kirmani, A. R.; Carey, G. H.; Abdelsamie, M.; Yan, B. Y.; Cha, D.; Rollny, L. R.; Cui, X. Y.; Sargent, E. H.; Amassian, A. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance. Adv. Mater. 2014, 26, 4717–4723.

[139]

Song, J. H.; Choi, H.; Kim, Y. H.; Jeong, S. High performance colloidal quantum dot photovoltaics by controlling protic solvents in ligand exchange. Adv. Energy Mater. 2017, 7, 1700301.

[140]

Lan, X. Z.; Voznyy, O.; Kiani, A.; De Arquer, F. P. G.; Abbas, A. S.; Kim, G. H.; Liu, M. X.; Yang, Z. Y.; Walters, G.; Xu, J. X. et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.

[141]

Lan, X. Z.; Voznyy, O.; de Arquer, F. P. G.; Liu, M. X.; Xu, J. X.; Proppe, A. H.; Walters, G.; Fan, F. J.; Tan, H. R.; Liu, M. et al. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett. 2016, 16, 4630–4634.

[142]

Stavrinadis, A.; Pradhan, S.; Papagiorgis, P.; Itskos, G.; Konstantatos, G. Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency > 10%. ACS Energy Lett. 2017, 2, 739–744.

[143]

Ip, A. H.; Kiani, A.; Kramer, I. J.; Voznyy, O.; Movahed, H. F.; Levina, L.; Adachi, M. M.; Hoogland, S.; Sargent, E. H. Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression. ACS Nano 2015, 9, 8833–8842.

[144]

Ko, D. K.; Maurano, A.; Suh, S. K.; Kim, D.; Hwang, G. W.; Grossman, J. C.; Bulović, V.; Bawendi, M. G. Photovoltaic performance of PbS quantum dots treated with metal salts. ACS Nano 2016, 10, 3382–3388.

[145]

Kirmani, A. R.; Kiani, A.; Said, M. M.; Voznyy, O.; Wehbe, N.; Walters, G.; Barlow, S.; Sargent, E. H.; Marder, S. R.; Amassian, A. Remote molecular doping of colloidal quantum dot photovoltaics. ACS Energy Lett. 2016, 1, 922–930.

[146]

Cao, Y. M.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 2016, 1, 16035.

[147]

Pradhan, S.; Stavrinadis, A.; Gupta, S.; Christodoulou, S.; Konstantatos, G. Breaking the open-circuit voltage deficit floor in PbS quantum dot solar cells through synergistic ligand and architecture engineering. ACS Energy Lett. 2017, 2, 1444–1449.

[148]

Baek, S. W.; Lee, S. H.; Song, J. H.; Kim, C.; Ha, Y. S.; Shin, H.; Kim, H.; Jeong, S.; Lee, J. Y. A hydro/oxo-phobic top hole-selective layer for efficient and stable colloidal quantum dot solar cells. Energy Environ. Sci. 2018, 11, 2078–2084.

[149]

Shi, G. Z.; Kaewprajak, A.; Ling, X. F.; Hayakawa, A.; Zhou, S. J.; Song, B.; Kang, Y. W.; Hayashi, T.; Altun, M. E.; Nakaya, M. et al. Finely interpenetrating bulk heterojunction structure for lead sulfide colloidal quantum dot solar cells by convective assembly. ACS Energy Lett. 2019, 4, 960–967.

[150]

Jin, Z. W.; Yuan, M. J.; Li, H.; Yang, H.; Zhou, Q.; Liu, H. B.; Lan, X. Z.; Liu, M. X.; Wang, J. Z.; Sargent, E. H. et al. Graphdiyne: An efficient hole transporter for stable high-performance colloidal quantum dot solar cells. Adv. Funct. Mater. 2016, 26, 5284–5289.

[151]

Yang, F.; Xu, Y. L.; Gu, M. F.; Zhou, S. J.; Wang, Y. J.; Lu, K. Y.; Liu, Z. K.; Ling, X. F.; Zhu, Z. J.; Chen, J. M. et al. Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells. J. Mater. Chem. A 2018, 6, 17688–17697.

[152]

Azmi, R.; Nam, S. Y.; Sinaga, S.; Oh, S. H.; Ahn, T. K.; Yoon, S. C.; Jung, I. H.; Jang, S. Y. Improved performance of colloidal quantum dot solar cells using high-electric-dipole self-assembled layers. Nano Energy 2017, 39, 355–362.

[153]

Zhang, X. L.; Johansson, E. M. J. Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. J. Mater. Chem. A 2017, 5, 303–310.

[154]

Khan, J.; Yang, X. K.; Qiao, K. K.; Deng, H.; Zhang, J.; Liu, Z. Y.; Ahmad, W.; Zhang, J. H.; Li, D. B.; Liu, H. et al. Low-temperature-processed SnO2-Cl for efficient PbS quantum-dot solar cells via defect passivation. J. Mater. Chem. A 2017, 5, 17240–17247.

[155]

Hu, L.; Patterson, R. J.; Hu, Y. C.; Chen, W. J.; Zhang, Z. L.; Yuan, L.; Chen, Z. H.; Conibeer, G. J.; Wang, G.; Huang, S. J. High performance PbS colloidal quantum dot solar cells by employing solution-processed CdS thin films from a single-source precursor as the electron transport layer. Adv. Funct. Mater. 2017, 27, 1703687.

[156]

Choi, M. J.; Kim, S.; Lim, H.; Choi, J.; Sim, D. M.; Yim, S.; Ahn, B. T.; Kim, J. Y.; Jung, Y. S. Highly asymmetric N+–P heterojunction quantum-dot solar cells with significantly improved charge-collection efficiencies. Adv. Mater. 2016, 28, 1780–1787.

[157]

Sharma, A.; Mahajan, C.; Rath, A. K. Reduction of trap and polydispersity in mutually passivated quantum dot solar cells. ACS Appl. Energy Mater. 2020, 3, 8903–8911.

[158]

Zheng, S. Y.; Chen, J. X.; Johansson, E. M. J.; Zhang, X. L. PbS colloidal quantum dot inks for infrared solar cells. iScience 2020, 23, 101753.

[159]

Mahajan, C.; Sharma, A.; Rath, A. K. Solution-phase hybrid passivation for efficient infrared-band gap quantum dot solar cells. ACS Appl. Mater. Interfaces 2020, 12, 49840–49848.

[160]

Xia, P.; Liang, Z. M.; Mahboub, M.; van Baren, J.; Lui, C. H.; Jiao, J. Y.; Graham, K. R.; Tang, M. L. Surface fluorination for controlling the PbS quantum dot bandgap and band offset. Chem. Mater. 2018, 30, 4943–4948.

[161]

Hu, L.; Lei, Q.; Guan, X. W.; Patterson, R.; Yuan, J. Y.; Lin, C. H.; Kim, J.; Geng, X.; Younis, A.; Wu, X. X. et al. Optimizing surface chemistry of PbS colloidal quantum dot for highly efficient and stable solar cells via chemical binding. Adv. Sci. 2021, 8, 2003138.

[162]

Lin, Q. L.; Yun, H. J.; Liu, W. Y.; Song, H. J.; Makarov, N. S.; Isaienko, O.; Nakotte, T.; Chen, G.; Luo, H. M.; Klimov, V. I. et al. Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films. J. Am. Chem. Soc. 2017, 139, 6644–6653.

[163]

Ning, Z. J.; Dong, H. P.; Zhang, Q.; Voznyy, O.; Sargent, E. H. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano 2014, 8, 10321–10327.

[164]

Aqoma, H.; Al Mubarok, M.; Hadmojo, W. T.; Lee, E. H.; Kim, T. W.; Ahn, T. K.; Oh, S. H.; Jang, S. Y. High-efficiency photovoltaic devices using trap-controlled quantum-dot ink prepared via phase-transfer exchange. Adv. Mater. 2017, 29, 1605756.

[165]

Sun, B.; Voznyy, O.; Tan, H. R.; Stadler, P.; Liu, M. X.; Walters, G.; Proppe, A. H.; Liu, M.; Fan, J.; Zhuang, T. T. et al. Pseudohalide-exchanged quantum dot solids achieve record quantum efficiency in infrared photovoltaics. Adv. Mater. 2017, 29, 1700749.

[166]

Fan, J. Z.; Andersen, N. T.; Biondi, M.; Todorovic, P.; Sun, B.; Ouellette, O.; Abed, J.; Sagar, L. K.; Choi, M. J.; Hoogland, S. et al. Mixed lead halide passivation of quantum dots. Adv. Mater. 2019, 31, 1904304.

[167]

Jia, D. L.; Chen, J. X.; Zheng, S. Y.; Phuyal, D.; Yu, M.; Tian, L.; Liu, J. H.; Karis, O.; Rensmo, H.; Johansson, E. M. J. et al. Highly stabilized quantum dot ink for efficient infrared light absorbing solar cells. Adv. Energy Mater. 2019, 9, 1902809.

[168]

Han, B. X. Near-infrared quantum dots: Small particle, big energy. Acta Phys.-Chim. Sin. 2020, 36, 1911025.

[169]

Sukharevska, N.; Bederak, D.; Goossens, V. M.; Momand, J.; Duim, H.; Dirin, D. N.; Kovalenko, M. V.; Kooi, B. J.; Loi, M. A. Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Appl. Mater. Interfaces 2021, 13, 5195–5207.

[170]

Ding, C.; Shen, Q. How to get high-efficiency lead chalcogenide quantum dot solar cells? Sci. China: Phys. Mech. Astron. 2022, 66, 217303.

[171]

Liu, M. X.; Che, F. L.; Sun, B.; Voznyy, O.; Proppe, A.; Munir, R.; Wei, M. Y.; Quintero-Bermudez, R.; Hu, L. L.; Hoogland, S. et al. Controlled steric hindrance enables efficient ligand exchange for stable, infrared-bandgap quantum dot inks. ACS Energy Lett. 2019, 4, 1225–1230.

[172]

Choi, J.; Jo, J. W.; de Arquer, F. P. G.; Zhao, Y. B.; Sun, B.; Kim, J.; Choi, M. J.; Baek, S. W.; Proppe, A. H.; Seifitokaldani, A. et al. Activated electron-transport layers for infrared quantum dot optoelectronics. Adv. Mater. 2018, 30, 1801720.

[173]

Jo, J. W.; Kim, Y.; Choi, J.; de Arquer, F. P. G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.; Proppe, A. H.; Quintero-Bermudez, R, et al. Enhanced open-circuit voltage in colloidal quantum dot photovoltaics via reactivity-controlled solution-phase ligand exchange. Adv. Mater. 2017, 29, 1703627.

[174]

Jo, J. W.; Choi, J.; de Arquer, F. P. G.; Seifitokaldani, A.; Sun, B.; Kim, Y.; Ahn, H.; Fan, J.; Quintero-Bermudez, R.; Kim, J. et al. Acid-assisted ligand exchange enhances coupling in colloidal quantum dot solids. Nano Lett. 2018, 18, 4417–4423.

[175]

Kim, Y.; Che, F. L.; Jo, J. W.; Choi, J.; de Arquer, F. P. G.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M. J.; Quintero-Bermudez, R. et al. A facet-specific quantum dot passivation strategy for colloid management and efficient infrared photovoltaics. Adv. Mater. 2019, 31, 1805580.

[176]

Yang, Z. Y.; Janmohamed, A.; Lan, X. Z.; de Arquer, F. P. G.; Voznyy, O.; Yassitepe, E.; Kim, G. H.; Ning, Z. J.; Gong, X. W.; Comin, R. et al. Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 2015, 15, 7539–7543.

[177]

Gong, X. W.; Yang, Z. Y.; Walters, G.; Comin, R.; Ning, Z. J.; Beauregard, E.; Adinolfi, V.; Voznyy, O.; Sargent, E. H. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 2016, 10, 253–257.

[178]

Sytnyk, M.; Yakunin, S.; Schofberger, W.; Lechner, R. T.; Burian, M.; Ludescher, L.; Killilea, N. A.; Yousefiamin, A. A.; Kriegner, D.; Stangl, J. et al. Quasi-epitaxial metal-halide perovskite ligand shells on PbS nanocrystals. ACS Nano 2017, 11, 1246–1256.

[179]

Zhang, X. L.; Zhang, J. D.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V. A.; Johansson, M. B.; Cappel, U. B.; Karis, O.; Liu, J. H. et al. Inorganic CsPbI3 perovskite coating on PbS quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 2018, 8, 1702049.

[180]

Liu, M. X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96–101.

[181]

Albaladejo-Siguan, M.; Becker-Koch, D.; Taylor, A. D.; Sun, Q.; Lami, V.; Oppenheimer, P. G.; Paulus, F.; Vaynzof, Y. Efficient and stable PbS quantum dot solar cells by triple-cation perovskite passivation. ACS Nano 2020, 14, 384–393.

[182]

Sun, B.; Johnston, A.; Xu, C.; Wei, M. Y.; Huang, Z. R.; Jiang, Z.; Zhou, H.; Gao, Y. J.; Dong, Y. T.; Ouellette, O. et al. Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule 2020, 4, 1542–1556.

[183]

Xu, J. X.; Voznyy, O.; Liu, M. X.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; De arquer, F. P. G. et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13, 456–462.

[184]

Kim, J.; Ouellette, O.; Voznyy, O.; Wei, M. Y.; Choi, J.; Choi, M. J.; Jo, J. W.; Baek, S. W.; Fan, J.; Saidaminov, M. I. et al. Butylamine-catalyzed synthesis of nanocrystal inks enables efficient infrared CQD solar cells. Adv. Mater. 2018, 30, 1803830.

[185]

Kiani, A.; Sutherland, B. R.; Kim, Y.; Ouellette, O.; Levina, L.; Walters, G.; Dinh, C. T.; Liu, M. X.; Voznyy, O.; Lan, X. Z. et al. Single-step colloidal quantum dot films for infrared solar harvesting. Appl. Phys. Lett. 2016, 109, 183105.

[186]

Sun, B.; Vafaie, M.; Levina, L.; Wei, M. Y.; Dong, Y. T.; Gao, Y. J.; Kung, H. T.; Biondi, M.; Proppe, A. H.; Chen, B. et al. Ligand-assisted reconstruction of colloidal quantum dots decreases trap state density. Nano Lett. 2020, 20, 3694–3702.

[187]

Song, J. H.; Kim, Y.; Park, T.; Jeong, S. Suppression of hydroxylation on the surface of colloidal quantum dots to enhance the open-circuit voltage of photovoltaics. J. Mater. Chem. A 2020, 8, 4844–4849.

[188]

Fan, J. Z.; Liu, M. X.; Voznyy, O.; Sun, B.; Levina, L. Quintero-Bermudez, R.; Liu, M.; Ouellette, O.; De arquer, F. P. G.; Hoogland, S. et al. Halide Re-shelled quantum dot inks for infrared photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 37536–37541.

[189]

Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.

[190]

Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138.

[191]

Thompson, B. C.; Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem., Int. Ed. 2007, 47, 58–77.

[192]

Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 2005, 15, 1617–1622.

[193]

Choi, M. J.; Baek, S. W.; Lee, S.; Biondi, M.; Zheng, C.; Todorovic, P.; Li, P. C.; Hoogland, S.; Lu, Z. H.; De Arquer, F. P. G. et al. Colloidal quantum dot bulk heterojunction solids with near-unity charge extraction efficiency. Adv. Sci. 2020, 7, 2000894.

[194]

Choi, M. J.; de Arquer, F. P. G.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M. X.; Sun, B.; Biondi, M. et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 2020, 11, 103.

[195]

Yang, Z. Y.; Fan, J. Z.; Proppe, A. H.; De Arquer, F. P. G.; Rossouw, D.; Voznyy, O.; Lan, X. Z.; Liu, M.; Walters, G.; Quintero-Bermudez, R. et al. Mixed-quantum-dot solar cells. Nat. Commun. 2017, 8, 1325.

[196]

Pradhan, S.; Di Stasio, F.; Bi, Y.; Gupta, S.; Christodoulou, S.; Stavrinadis, A.; Konstantatos, G. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 2019, 14, 72–79.

[197]

Choi, J.; Choi, M. J.; Kim, J.; Dinic, F.; Todorovic, P.; Sun, B.; Wei, M. Y.; Baek, S. W.; Hoogland, S.; De arquer, F. P. G. et al. Stabilizing surface passivation enables stable operation of colloidal quantum dot photovoltaic devices at maximum power point in an air ambient. Adv. Mater. 2020, 32, 1906497.

[198]

Gu, M. F.; Wang, Y. J.; Yang, F.; Lu, K. Y.; Xue, Y.; Wu, T.; Fang, H. H.; Zhou, S. J.; Zhang, Y. N.; Ling, X. F. et al. Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering. J. Mater. Chem. A 2019, 7, 15951–15959.

[199]

Jia, Y. W.; Wang, H. B.; Wang, Y. L.; Shibayama, N.; Kubo, T.; Liu, Y. C.; Zhang, X. T.; Segawa, H. High-performance electron-transport-layer-free quantum junction solar cells with improved efficiency exceeding 10%. ACS Energy Lett. 2021, 6, 493–500.

[200]

Zhang, Y. H.; Wu, G. H.; Ding, C.; Liu, F.; Liu, D.; Masuda, T.; Yoshino, K.; Hayase, S.; Wang, R. X.; Shen, Q. Surface-modified graphene oxide/lead sulfide hybrid film-forming ink for high-efficiency bulk nano-heterojunction colloidal quantum dot solar cells. Nano-Micro. Lett. 2020, 12, 111.

[201]

Al Mubarok, M.; Aqoma, H.; Wibowo, F. T. A.; Lee, W.; Kim, H. M.; Ryu, D. Y.; Jeon, J. W.; Jang, S. Y. Molecular engineering in hole transport π-conjugated polymers to enable high efficiency colloidal quantum dot solar cells. Adv. Energy Mater. 2020, 10, 1902933.

[202]

Biondi, M.; Choi, M. J.; Ouellette, O.; Baek, S. W.; Todorović, P.; Sun, B.; Lee, S.; Wei, M. Y.; Li, P. C.; Kirmani, A. R. et al. A chemically orthogonal hole transport layer for efficient colloidal quantum dot solar cells. Adv. Mater. 2020, 32, 1906199.

[203]

Xue, Y.; Yang, F.; Yuan, J. Y.; Zhang, Y. N.; Gu, M. F.; Xu, Y. L.; Ling, X. F.; Wang, Y.; Li, F. C.; Zhai, T. S. et al. Toward scalable PbS quantum dot solar cells using a tailored polymeric hole conductor. ACS Energy Lett. 2019, 4, 2850–2858.

[204]

Fan, J. Z.; La Croix, A. D.; Yang, Z. Y.; Howard, E.; Quintero-Bermudez, R.; Levina, L.; Jenkinson, N. M.; Spear, N. J.; Li, Y. Y.; Ouellette, O. et al. Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids. Nanoscale 2019, 11, 10774–10781.

[205]

Baek, S. W.; Molet, P.; Choi, M. J.; Biondi, M.; Ouellette, O.; Fan, J.; Hoogland, S.; De arquer, F. P. G.; Mihi, A.; Sargent, E. H. Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Adv. Mater. 2019, 31, 1901745.

[206]

Hu, L.; Zhang, Z. L.; Patterson, R. J.; Hu, Y. C.; Chen, W. J.; Chen, C.; Li, D. B.; Hu, C.; Ge, C.; Chen, Z. H. et al. Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy 2018, 46, 212–219.

[207]

Aqoma, H.; Al Mubarok, M.; Lee, W.; Hadmojo, W. T.; Park, C.; Ahn, T. K.; Ryu, D. Y.; Jang, S. Y. Improved processability and efficiency of colloidal quantum dot solar cells based on organic hole transport layers. Adv. Energy Mater. 2018, 8, 1800572.

[208]

Zhang, Y. N.; Kan, Y. Y.; Gao, K.; Gu, M. F.; Shi, Y.; Zhang, X. L.; Xue, Y.; Zhang, X. N.; Liu, Z. K.; Zhang, Y. et al. Hybrid quantum dot/organic heterojunction: A route to improve open-circuit voltage in PbS colloidal quantum dot solar cells. ACS Energy Lett. 2020, 5, 2335–2342.

[209]

Al Mubarok, M.; Wibowo, F. T. A.; Aqoma, H.; Krishna, N. V.; Lee, W.; Ryu, D. Y.; Cho, S.; Jung, I. H.; Jang, S. Y. PbS-based quantum dot solar cells with engineered π-conjugated polymers achieve 13% efficiency. ACS Energy Lett. 2020, 5, 3452–3460.

[210]

Chiu, A.; Rong, E.; Bambini, C.; Lin, Y. D.; Lu, C. C. F.; Thon, S. M. Sulfur-infused hole transport materials to overcome performance-limiting transport in colloidal quantum dot solar cells. ACS Energy Lett. 2020, 5, 2897–2904.

[211]

McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

[212]

Clifford, J. P.; Johnston, K. W.; Levina, L.; Sargent, E. H. Schottky barriers to colloidal quantum dot films. Appl. Phys. Lett. 2007, 91, 253117.

[213]

Klem, E. J. D.; MacNeil, D. D.; Cyr, P. W.; Levina, L.; Sargent, E. H. Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl. Phys. Lett. 2007, 90, 183113.

[214]

Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; MacNeil, D. D.; Levina, L.; Sargent, E. H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 2008, 92, 151115.

[215]

Koleilat, G. I.; Wang, X. H.; Labelle, A. J.; Ip, A. H.; Carey, G. H.; Fischer, A.; Levina, L.; Brzozowski, L.; Sargent, E. H. A donor-supply electrode (DSE) for colloidal quantum dot photovoltaics. Nano Lett. 2011, 11, 5173–5178.

[216]

Li, Y.; Yang, F.; Wang, Y. J.; Shi, G. Z.; Maung, Y. M.; Yuan, J. Y.; Huang, S. J. Magnetron sputtered SnO2 constituting double electron transport layers for efficient PbS quantum dot solar cells. Sol. RRL 2020, 4, 2000218.

[217]

Gao, J. B.; Zhang, J. B.; van de Lagemaat, J.; Johnson, J. C.; Beard, M. C. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence. ACS Nano 2014, 8, 12814–12825.

[218]

Brown, P. R.; Lunt, R. R.; Zhao, N.; Osedach, T. P.; Wanger, D. D.; Chang, L. Y.; Bawendi, M. G.; Bulović, V. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 2011, 11, 2955–2961.

[219]

Yang, J.; Oh, J. T.; Kim, M.; Song, H.; Boukhvalov, D. W.; Lee, S. H.; Choi, H.; Yi, W. Hybrid surface passivation for retrieving charge collection efficiency of colloidal quantum dot photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 43576–43585.

[220]

Choi, J. J.; Lim, Y.-F.; Santiago-Berrios, M. E. B.; Oh, M.; Hyun, B.-R.; Sun, L.; Bartnik, A. C.; Goedhart, A.; Malliaras, G. G.; Abruña, H. D. et al. PbSe nanocrystal excitonic solar cells. Nano Lett. 2009, 9, 3749–3755.

[221]

Jeong, Y. J.; Song, J. H.; Jeong, S.; Baik, S. J. PbS colloidal quantum dot solar cells with organic hole transport layers for enhanced carrier separation and ambient stability. IEEE J. Photovolt. 2018, 8, 493–498.

[222]

Aqoma, H.; Azmi, R.; Oh, S. H.; Jang, S. Y. Solution-processed colloidal quantum dot/organic hybrid tandem photovoltaic devices with 8.3% efficiency. Nano Energy 2017, 31, 403–409.

[223]

Guo, W. P.; Yuan, J. Y.; Yuan, H. C.; Jin, F.; Han, L.; Sheng, C. X.; Ma, W. L.; Zhao, H. B. Ultrafast electron transfer in low-band gap polymer/PbS nanocrystalline blend films. Adv. Funct. Mater. 2016, 26, 713–721.

[224]

Wei, H. Y.; Wang, G. S.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Progress in quantum dot-sensitized solar cells. Acta Phys.-Chim. Sin. 2016, 32, 201–213.

[225]

Zhang, X. L.; Liu, J. H.; Zhang, J. D.; Vlachopoulos, N.; Johansson, E. M. J. ZnO@Ag2S core–shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection. Phys. Chem. Chem. Phys. 2015, 17, 12786–12795.

[226]

Zhang, X. L.; Liu, J. H.; Li, S. M.; Tan, X. H.; Yu, M.; Du, J. Bioinspired synthesis of Ag@TiO2 plasmonic nanocomposites to enhance the light harvesting of dye-sensitized solar cells. RSC Adv. 2013, 3, 18587–18595.

[227]

Chen, J. J.; Shi, C. W.; Zhang, Z. G.; Xiao, G. N.; Shao, Z. P.; Li, N. N. 4.81%-efficiency solid-state quantum-dot sensitized solar cells based on compact PbS quantum-dot thin films and TiO2 nanorod arrays. Acta Phys.-Chim. Sin. 2017, 33, 2029–2034.

[228]

Zhao, K.; Pan, Z. X.; Zhong, X. H. Charge recombination control for high efficiency quantum dot sensitized solar cells. J. Phys. Chem. Lett. 2016, 7, 406–417.

[229]

Liu, M. X.; de Arquer, F. P. G.; Li, Y. Y.; Lan, X. Z.; Kim, G. H.; Voznyy, O.; Jagadamma, J. K.; Abbas, A. S.; Hoogland, S.; Lu, Z. H. et al. Double-sided junctions enable high-performance colloidal-quantum-dot photovoltaics. Adv. Mater. 2016, 28, 4142–4148.

[230]

Zhang, X. L.; Justo, Y.; Maes, J.; Walravens, W.; Zhang, J. D.; Liu, J. H. et al. Slow recombination in quantum dot solid solar cell using p–i–n architecture with organic p-type hole transport material. J. Mater. Chem. A 2015, 3, 20579–20585.

[231]

Zhang, Y. N.; Gu, M. F.; Li, N.; Xu, Y. L.; Ling, X. F.; Wang, Y. J.; Zhou, S. J.; Li, F. C.; Yang, F.; Ji, K. et al. Realizing solution-processed monolithic PbS QDs/perovskite tandem solar cells with high UV stability. J. Mater. Chem. A 2018, 6, 24693–24701.

[232]

Manekkathodi, A.; Chen, B.; Kim, J.; Baek, S. W.; Scheffel, B.; Hou, Y.; Ouellette, O.; Saidaminov, M. I.; Voznyy, O.; Madhavan, V. E. et al. Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm. J. Mater. Chem. A 2019, 7, 26020–26028.

[233]

Chen, B.; Baek, S. W.; Hou, Y.; Aydin, E.; De Bastiani, M.; Scheffel, B.; Proppe, A.; Huang, Z. R.; Wei, M. Y.; Wang, Y. K. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 2020, 11, 1257.

[234]

Bi, Y.; Pradhan, S.; Akgul, M. Z.; Gupta, S.; Stavrinadis, A.; Wang, J. J.; Konstantatos, G. Colloidal quantum dot tandem solar cells using chemical vapor deposited graphene as an atomically thin intermediate recombination layer. ACS Energy Lett. 2018, 3, 1753–1759.

[235]

Crisp, R. W.; Pach, G. F.; Kurley, J. M.; France, R. M.; Reese, M. O.; Nanayakkara, S. U.; Macleod, B. A.; Talapin, D. V.; Beard, M. C.; Luther, J. M. Tandem solar cells from solution-processed CdTe and PbS quantum dots using a ZnTe-ZnO tunnel junction. Nano Lett. 2017, 17, 1020–1027.

[236]

Shi, G. Z.; Wang, Y. J.; Liu, Z. K.; Han, L.; Liu, J.; Wang, Y. K.; Lu, K. Y.; Chen, S.; Ling, X. F.; Li, Y. et al. Stable and highly efficient PbS quantum dot tandem solar cells employing a rationally designed recombination layer. Adv. Energy Mater. 2017, 7, 1602667.

[237]

Baek, S. W.; Jun, S.; Kim, B.; Proppe, A. H.; Ouellette, O.; Voznyy, O.; Kim, C.; Kim, J.; Walters, G.; Song, J. H. et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 2019, 4, 969–976.

[238]

Kim, T.; Palmiano, E.; Liang, R. Z.; Hu, H. L.; Murali, B.; Kirmani, A. R.; Firdaus, Y.; Gao, Y. Q.; Sheikh, A.; Yuan, M. J. et al. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Appl. Phys. Lett. 2017, 110, 223903.

[239]

Zhang, X. L.; Welch, K.; Tian, L.; Johansson, M. B.; Häggman, L.; Liu, J. H.; Johansson, E. M. J. Enhanced charge carrier extraction by a highly ordered wrinkled MgZnO thin film for colloidal quantum dot solar cells. J. Mater. Chem. C 2017, 5, 11111–11120.

[240]

Choi, J.; Kim, Y.; Jo, J. W.; Kim, J.; Sun, B.; Walters, G.; De arquer, F. P. G.; Quintero-Bermudez, R.; Li, Y. Y.; Tan, C. S. et al. Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics. Adv. Mater. 2017, 29, 1702350.

[241]

Baek, S. W.; Cho, J.; Kim, J. S.; Kim, C.; Na, K.; Lee, S. H.; Jun, S.; Song, J. H.; Jeong, S.; Choi, J. W. et al. A colloidal-quantum-dot-based self-charging system via the near-infrared band. Adv. Mater. 2018, 30, 1707224.

[242]

Kim, G. H.; de Arquer, F. P. G.; Yoon, Y. J.; Lan, X. Z.; Liu, M. X.; Voznyy, O.; Yang, Z. Y.; Fan, F. J.; Ip, A. H.; Kanjanaboos, P. et al. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Lett. 2015, 15, 7691–7696.

[243]

Zhao, T. S.; Goodwin, E. D.; Guo, J. C.; Wang, H.; Diroll, B. T.; Murray, C. B.; Kagan, C. R. Advanced architecture for colloidal PbS quantum dot solar cells exploiting a cdse quantum dot buffer layer. ACS Nano 2016, 10, 9267–9273.

[244]

Kawawaki, T.; Wang, H. B.; Kubo, T.; Saito, K.; Nakazaki, J.; Segawa, H.; Tatsuma, T. Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano 2015, 9, 4165–4172.

[245]

Rekemeyer, P. H.; Chang, S.; Chuang, C. H. M.; Hwang, G. W.; Bawendi, M. G.; Gradečak, S. Enhanced photocurrent in PbS quantum dot photovoltaics via ZnO nanowires and band alignment engineering. Adv. Energy Mater. 2016, 6, 1600848.

[246]

Park, H.; Chang, S.; Jean, J.; Cheng, J. J.; Araujo, P. T.; Wang, M. S.; Bawendi, M. G.; Dresselhaus, M. S.; Bulović, V.; Kong, J. et al. Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett. 2013, 13, 233–239.

[247]

Hjerrild, N. E.; Neo, D. C. J.; Kasdi, A.; Assender, H. E.; Warner, J. H.; Watt, A. A. R. Transfer printed silver nanowire transparent conductors for PbS–ZnO heterojunction quantum dot solar cells. ACS Appl. Mater. Interfaces 2015, 7, 6417–6421.

[248]

Jean, J.; Chang, S.; Brown, P. R.; Cheng, J. J.; Rekemeyer, P. H.; Bawendi, M. G.; Gradečak, S.; Bulović, V. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv. Mater. 2013, 25, 2790–2796.

[249]

Wang, H. B.; Kubo, T.; Nakazaki, J.; Segawa, H. Solution-processed short-wave infrared PbS colloidal quantum dot/ZnO nanowire solar cells giving high open-circuit voltage. ACS Energy Lett. 2017, 2, 2110–2117.

[250]

Gonfa, B. A.; Kim, M. R.; Zheng, P.; Cushing, S.; Qiao, Q. Q.; Wu, N. Q.; El Khakani, M. A.; Ma, D. L. Investigation of the plasmonic effect in air-processed PbS/CdS core–shell quantum dot based solar cells. J. Mater. Chem. A 2016, 4, 13071–13080.

[251]

Baek, S. W.; Song, J. H.; Choi, W.; Song, H.; Jeong, S.; Lee, J. Y. A resonance-shifting hybrid n-type layer for boosting near-infrared response in highly efficient colloidal quantum dots solar cells. Adv. Mater. 2015, 27, 8102–8108.

[252]

Hong, J.; Kim, B. S.; Hou, B.; Cho, Y.; Lee, S. H.; Pak, S.; Morris, S. M.; Sohn, J. I.; Cha, S. N. Plasmonic effects of dual-metal nanoparticle layers for high-performance quantum dot solar cells. Plasmonics 2020, 15, 1007–1013.

[253]

Chen, S.; Wang, Y. J.; Liu, Q. P.; Shi, G. Z.; Liu, Z. K.; Lu, K. Y.; Han, L.; Ling, X. F.; Zhang, H.; Cheng, S. et al. Broadband enhancement of PbS quantum dot solar cells by the synergistic effect of plasmonic gold nanobipyramids and nanospheres. Adv. Energy Mater. 2018, 8, 1701194.

[254]

Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

[255]

Azmi, R.; Aqoma, H.; Hadmojo, W. T.; Yun, J.-M.; Yoon, S.; Kim, K.; Do, Y. R.; Oh, S.-H.; Jang, S.-Y. Low-temperature-processed 9% colloidal quantum dot photovoltaic devices through interfacial management of p–n heterojunction. Adv. Energy Mater. 2016, 6, 1502146.

[256]

Chen, J. X.; Zheng, S. Y.; Jia, D. L.; Liu, W. L.; Andruszkiewicz, A.; Qin, C. C. Yu, M.; Liu, J. H.; Johansson, E. M. J.; Zhang, X. L. Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. ACS Energy Lett. 2021, 6, 1970–1979.

[257]

Kirmani, A. R.; de Arquer, F. P. G.; Fan, J. Z.; Khan, J. I.; Walters, G.; Hoogland, S.; Wehbe, N.; Said, M. M.; Barlow, S.; Laquai, F. et al. Molecular doping of the hole-transporting layer for efficient, single-step-deposited colloidal quantum dot photovoltaics. ACS Energy Lett. 2017, 2, 1952–1959.

[258]

Kim, J. S.; Chung, W. S.; Kim, K.; Kim, D. Y.; Paeng, K. J.; Jo, S. M.; Jang, S. Y. Performance optimization of polymer solar cells using electrostatically sprayed photoactive layers. Adv. Funct. Mater. 2010, 20, 3538–3546.

[259]

Hoth, C. N.; Schilinsky, P.; Choulis, S. A.; Brabec, C. J. Printing highly efficient organic solar cells. Nano Lett. 2008, 8, 2806–2813.

[260]

Tan, L.; Li, P. D.; Sun, B. Q.; Chaker, M.; Ma, D. L. Development of photovoltaic devices based on near infrared quantum dots and conjugated polymers. ChemNanoMat 2016, 2, 601–615.

[261]

Müller-Buschbaum, P.; Thelakkat, M.; Fässler, T. F.; Stutzmann, M. Hybrid photovoltaics—From fundamentals towards application. Adv. Energy Mater. 2017, 7, 1700248.

[262]

Sun, Y. X.; Liu, Z. K.; Yuan, J. Y.; Chen, J. M.; Zhou, Y.; Huang, X. D.; Ma, W. L. Polymer selection toward efficient polymer/PbSe planar heterojunction hybrid solar cells. Org. Electron. 2015, 24, 263–271.

[263]

Chen, Z. L.; Du, X. H.; Zeng, Q. S.; Yang, B. Recent development and understanding of polymer-nanocrystal hybrid solar cells. Mater. Chem. Front. 2017, 1, 1502–1513.

[264]

Albero, J. ; Zhou, Y. F.; Eck, M.; Rauscher, F.; Niyamakom, P.; Dumsch, I.; Allard, S.; Scherf, U.; Krüger, M.; Palomares, E. Photo-induced charge recombination kinetics in low bandgap PCPDTBT polymer:CdSe quantum dot bulk heterojunction solar cells. Chem. Sci. 2011, 2, 2396–2401.

[265]

Kim, B.; Baek, S. W.; Kim, C.; Kim, J.; Lee, J. Y. Mediating colloidal quantum dot/organic semiconductor interfaces for efficient hybrid solar cells. Adv. Energy Mater. 2022, 12, 2102689.

[266]

Jung, Y.; Shin, H.; Baek, S. W.; Tai, T. B.; Scheffel, B.; Ouellette, O.; Biondi, M.; Hoogland, S.; de Arquer, F. P. G.; Sargent, E. H. Near-unity broadband quantum efficiency enabled by colloidal quantum dot/mixed-organic heterojunction. ACS Energy Lett. 2023, 8, 2331–2337.

[267]

Meng, X.; Chen, Y. F.; Yang, F.; Zhang, J. Q.; Shi, G. Z.; Zhang, Y. N.; Tang, H. D.; Chen, W.; Liu, Y.; Yuan, L. et al. Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells. Nano Res. 2022, 15, 6121–6127.

[268]

Jeong, J.; Kim, M.; Seo, J.; Lu, H. Z.; Ahlawat, P.; Mishra, A.; Yang, Y. G.; Hope, M. A.; Eickemeyer, F. T.; Kim, M. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385.

[269]

Li, H. M.; Dong, H.; Li, J. R.; Wu, Z. X. Recent advances in Tin-based perovskite solar cells. Acta Phys.-Chim. Sin. 2021, 37, 2007006.

[270]

Zhao, Y. X.; Han, H. W. Metal halide perovskite optoelectronic material and device. Acta Phys.-Chim. Sin. 2021, 37, 2012015.

[271]

Zou, G. R. X.; Chen, Z. M.; Li, Z. C.; Yip, H. L. Blue perovskite light-emitting diodes: Opportunities and challenges. Acta Phys.-Chim. Sin. 2021, 37, 2009002.

[272]

Hu, L.; Wang, Y. T.; Shivarudraiah, S. B.; Yuan, J. Y.; Guan, X. W.; Geng, X.; Younis, A.; Hu, Y. C.; Huang, S. J.; Wu, T. et al. Quantum-dot tandem solar cells based on a solution-processed nanoparticle intermediate layer. ACS Appl. Mater. Interfaces 2020, 12, 2313–2318.

[273]

Kim, T.; Firdaus, Y.; Kirmani, A. R.; Liang, R. Z.; Hu, H. L.; Liu, M. X.; El Labban, A.; Hoogland, S.; Beaujuge, P. M.; Sargent, E. H. et al. Hybrid tandem quantum dot/organic solar cells with enhanced photocurrent and efficiency via ink and interlayer engineering. ACS Energy Lett. 2018, 3, 1307–1314.

[274]

Li, Y. L.; Yeh, P. N.; Sharma, S.; Chen, S. A. Promotion of performances of quantum dot solar cell and its tandem solar cell with low bandgap polymer (PTB7-Th):PC71BM by water vapor treatment on quantum dot layer on its surface. J. Mater. Chem. A 2017, 5, 21528–21535.

[275]

Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

[276]

Zhang, X. L.; Santra, P. K.; Tian, L.; Johansson, B. M.; Rensmo, H.; Johansson, E. M. J. Highly efficient flexible quantum dot solar cells with improved electron extraction using MgZnO nanocrystals. ACS Nano 2017, 11, 8478–8487.

[277]

Wang, Z. H.; Zhang, X. L.; Zhou, S. Y.; Edström, K.; Strømme, M.; Nyholm, L. Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes. Adv. Funct. Mater. 2018, 28, 1804038.

[278]

Tavakoli, M. M.; Heydari, M.; Nicole, G.; Moody, N.; Bawendi, M. G.; Gleason, K. K.; Kong, J. Efficient, flexible, and ultra-lightweight inverted PbS quantum dots solar cells on all-CVD-growth of parylene/graphene/oCVD PEDOT substrate with high power-per-weight. Adv. Mater. Interfaces 2020, 7, 2000498.

[279]

Zhang, X. L.; Öberg, V. A.; Du, J.; Liu, J. H.; Johansson, E. M. J. Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 2018, 11, 354–364.

[280]

Xue, L.; Liu, Y.; Li, F. S.; Sun, K.; Chen, W.; Yang, K. Y.; Hu, H. L.; Lin, J. T.; Chen, H. P.; Yang, Z. X. et al. Highly flexible light emitting diodes based on a quantum dots-polymer composite emitting layer. Vacuum 2019, 163, 282–286.

[281]
Kim, C.; Kozakci, I.; Lee, S. Y.; Kim, B.; Kim, J.; Lee, J.; Ma, B. S.; Oh, E. S.; Kim, T. S.; Lee, J. Y. Quantum dot-siloxane anchoring on colloidal quantum dot film for flexible photovoltaic cell. Small, in press, DOI: 10.1002/smll.202302195.
DOI
[282]

Zhang, X. L.; Eperon, G. E.; Liu, J. H.; Johansson, E. M. J. Semitransparent quantum dot solar cell. Nano Energy 2016, 22, 70–78.

[283]

Zhang, X. L.; Hägglund, C.; Johansson, E. M. J. Highly efficient, transparent and stable semitransparent colloidal quantum dot solar cells: A combined numerical modeling and experimental approach. Energy Environ. Sci. 2017, 10, 216–224.

[284]

Zhang, X. L.; Hägglund, C.; Johansson, M. B.; Sveinbjörnsson, K.; Johansson, E. M. J. Fine tuned nanolayered metal/metal oxide electrode for semitransparent colloidal quantum dot solar cells. Adv. Funct. Mater. 2016, 26, 1921–1929.

[285]

Zhang, X. L.; Jia, D. L.; Hägglund, C.; Öberg, V. A.; Du, J.; Liu, J. H.; Johansson, E. M. J. Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange. Nano Energy 2018, 53, 373–382.

[286]

Labelle, A. J.; Bonifazi, M.; Tian, Y.; Wong, C.; Hoogland, S.; Favraud, G.; Walters, G.; Sutherland, B.; Liu, M.; Li, J. et al. Broadband epsilon-near-zero reflectors enhance the quantum efficiency of thin solar cells at visible and infrared wavelengths. ACS Appl. Mater. Interfaces 2017, 9, 5556–5565.

[287]

Ouellette, O.; Hossain, N.; Sutherland, B. R.; Kiani, A.; de Arquer, F. P. G.; Tan, H. R.; Chaker, M.; Hoogland, S.; Sargent, E. H. Optical resonance engineering for infrared colloidal quantum dot photovoltaics. ACS Energy Lett. 2016, 1, 852–857.

[288]

Zhang, X. L.; Johansson, E. M. J. Utilizing light trapping interference effects in microcavity structured colloidal quantum dot solar cells: A combined theoretical and experimental approach. Nano Energy 2016, 28, 71–77.

[289]

Chuang, C. H. M.; Maurano, A.; Brandt, R. E.; Hwang, G. W.; Jean, J.; Buonassisi, T.; Bulović, V.; Bawendi, M. G. Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells. Nano Lett. 2015, 15, 3286–3294.

[290]

Zheng, S. Y.; Wang, Y. F.; Jia, D. L.; Tian, L.; Chen, J. X.; Shan, L. W.; Dong, L. M.; Zhang, X. L. Strong coupling of colloidal quantum dots via self-assemble passivation for efficient infrared solar cells. Adv. Mater. Interfaces 2021, 8, 2100489.

[291]

Li, M. Y.; Zang, S. P.; Wang, Y. L.; Li, J. H.; Ma, J. G.; Zhang, X. T.; Liu, Y. C. Facile sputtering enables double-layered ZnO Electron transport layer for PbS quantum dot solar cells. Sol. Energy 2021, 214, 599–605.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 July 2023
Revised: 11 August 2023
Accepted: 14 August 2023
Published: 13 September 2023
Issue date: March 2024

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFB3807200), the National Natural Science Foundation of China (Nos. 52372169 and 51872014), and the Recruitment Program of Global Experts, and the “111” project (No. B17002).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return