Journal Home > Volume 3 , Issue 1

Zinc-air batteries (ZABs) are widely studied because of their high theoretical energy density, high battery voltage, environmental protection, and low price. However, the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the air electrode limits the further application of ZABs, so that how to develop a cheap, efficient, and stable catalyst with bifunctional catalytic activity is the key to solving the development of ZABs. Transition metal compounds are widely used as cathode materials for ZABs due to their low cost, high electrocatalytic activity, and stable structure. This review summarizes the research progress of transition metal compounds as bifunctional catalysts for ZABs. The development history, operation principle, and mechanism of ORR and OER reactions are introduced first. The application and development of transition metal compounds as bifunctional catalysts for ZABs in recent years are systematically introduced, including transition metal oxides (TMOs), transition metal nitrides (TMNs), transition metal sulfides (TMSs), transition metal carbides (TMCs), transition metal phosphates (TMPs), and others. In addition, the shortcomings of transition metal compounds as bifunctional catalysts for ZABs were summarized and reasonable design strategies and improvement measures were put forward, aiming at providing a reference for the design and construction of high-performance ZABs cathode materials. Finally, the challenges and future in this field are discussed and prospected.


menu
Abstract
Full text
Outline
About this article

Research progress of transition metal compounds as bifunctional catalysts for zinc-air batteries

Show Author's information Yan Ran1Changfan Xu1Deyang Ji2Huaping Zhao1Liqiang Li2Yong Lei1( )
Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China

Abstract

Zinc-air batteries (ZABs) are widely studied because of their high theoretical energy density, high battery voltage, environmental protection, and low price. However, the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the air electrode limits the further application of ZABs, so that how to develop a cheap, efficient, and stable catalyst with bifunctional catalytic activity is the key to solving the development of ZABs. Transition metal compounds are widely used as cathode materials for ZABs due to their low cost, high electrocatalytic activity, and stable structure. This review summarizes the research progress of transition metal compounds as bifunctional catalysts for ZABs. The development history, operation principle, and mechanism of ORR and OER reactions are introduced first. The application and development of transition metal compounds as bifunctional catalysts for ZABs in recent years are systematically introduced, including transition metal oxides (TMOs), transition metal nitrides (TMNs), transition metal sulfides (TMSs), transition metal carbides (TMCs), transition metal phosphates (TMPs), and others. In addition, the shortcomings of transition metal compounds as bifunctional catalysts for ZABs were summarized and reasonable design strategies and improvement measures were put forward, aiming at providing a reference for the design and construction of high-performance ZABs cathode materials. Finally, the challenges and future in this field are discussed and prospected.

Keywords: zinc-air batteries, bifunctional catalysts, electrochemical, transition metal compounds, air electrode

References(177)

[1]

Zhang, D.; Zhang, K. Y.; Yao, Y. C.; Liang, F.; Qu, T.; Ma, W. H.; Yang, B.; Dai, Y. N.; Lei, Y. Intercalation and exfoliation syntheses of high specific surface area graphene and FeC2O4/graphene composite for anode material of lithium ion battery. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 746–754.

[2]

Cai, X. Y.; Lai, L. F.; Lin, J. Y.; Shen, Z. X. Recent advances in air electrodes for Zn-air batteries: Electrocatalysis and structural design. Mater. Horiz. 2017, 4, 945–976.

[3]

Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

[4]

Selvakumaran, D.; Pan, A. Q.; Liang, S. Q.; Cao, G. Z. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 2019, 7, 18209–18236.

[5]

Cheng, M.; Qu, T.; Zi, J.; Yao, Y. C.; Liang, F.; Ma, W. H.; Yang, B.; Dai, Y. N.; Lei, Y. A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology 2020, 31, 425401.

[6]

Xu, Y.; Bahmani, F.; Zhou, M.; Li, Y. L.; Zhang, C. L.; Liang, F.; Kazemi, S. H.; Kaiser, U.; Meng, G. W.; Lei, Y. Enhancing potassium-ion battery performance by defect and interlayer engineering. Nanoscale Horiz. 2019, 4, 202–207.

[7]

Davari, E.; Ivey, D. G. Synthesis and electrochemical performance of manganese nitride as an oxygen reduction and oxygen evolution catalyst for zinc-air secondary batteries. J. Appl. Electrochem. 2017, 47, 815–827.

[8]

Chao, X.; Yan, C. Z.; Zhao, H. P.; Wang, Z. J.; Lei, Y. Micro-nano structural electrode architecture for high power energy storage. J. Semicond. 2023, 44, 050201.

[9]

Chan, C. K.; Peng, H. L.; Twesten, R. D.; Jarausch, K.; Zhang, X. F.; Cui, Y. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490–495.

[10]

Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

[11]

Xu, C. F.; Dong, Y. L.; Shen, Y. L.; Zhao, H. P.; Li, L. Q.; Shao, G. S.; Lei, Y. Fundamental understanding of nonaqueous and hybrid Na-CO2 batteries: Challenges and perspectives. Small 2023, 19, 2206445.

[12]

Zhao, C.; Wang, Z. J.; Shu, D. J.; Lei, Y. Preface to the special issue on challenges and possibilities of energy storage. J. Semicond. 2020, 41, 090101.

[13]

Li, B. W.; Zeng, H. C. Architecture and preparation of hollow catalytic devices. Adv. Mater. 2019, 31, 1801104.

[14]

Wang, L. P.; Jiang, C.; Niu, X. B. Li/C composites as anodes for high energy density rechargeable Li batteries. J. Semicond. 2019, 40, 040401.

[15]

Niu, Q. J.; Chen, B. L.; Guo, J. X.; Nie, J.; Guo, X. D.; Ma, G. P. Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn-air battery. Nano-Micro Lett. 2019, 11, 8.

[16]

Dong, Y. L.; Xu, C. F.; Li, Y. L.; Zhang, C. L.; Zhao, H. P.; Kaiser, U.; Lei, Y. Ultrahigh-rate and ultralong-duration sodium storage enabled by sodiation-driven reconfiguration. Adv. Energy Mater. 2023, 13, 2204324.

[17]

He, S. J.; Wang, Z. D.; Wang, Z. J.; Lei, Y. Recent progress and future prospect of novel multi-ion storage devices. J. Semicond. 2023, 44, 040201.

[18]

Zhang, D.; Zhao, H. P.; Liang, F.; Ma, W. H.; Lei, Y. Nanostructured arrays for metal-ion battery and metal-air battery applications. J. Power Sources 2021, 493, 229722.

[19]

Wu, M. J.; Zhang, G. X.; Wu, M. H.; Prakash, J.; Sun, S. H. Rational design of multifunctional air electrodes for rechargeable Zn-air batteries: Recent progress and future perspectives. Energy Storage Mater. 2019, 21, 253–286.

[20]

Wu, X. L.; Han, G. S.; Wen, H.; Liu, Y. Y.; Han, L.; Cui, X. Y.; Kou, J. J.; Li, B. J.; Jiang, J. C. Co2N nanoparticles anchored on N-doped active carbon as catalyst for oxygen reduction reaction in zinc-air battery. Energy Environ. Mater. 2022, 5, 935–943.

[21]

Lyu, Y. H.; Zheng, J. Y.; Xiao, Z. H.; Zhao, S. Y.; Jiang, S. P.; Wang, S. Y. Identifying the intrinsic relationship between the restructured oxide layer and oxygen evolution reaction performance on the cobalt pnictide catalyst. Small 2020, 16, 1906867.

[22]

Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

[23]

He, W. X.; Zuo, S. Y.; Xu, X. J.; Zeng, L. Y.; Liu, L.; Zhao, W. M.; Liu, J. Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Mater. Chem. Front. 2021, 5, 2201–2217.

[24]

Ran, Y.; Ren, J.; Kong, Y. L.; Wang, B. S.; Xiao, X. C.; Wang, Y. D. Electrochemical zinc and hydrogen co-intercalation in Li3(V6O16): A high-capacity aqueous zinc-ion battery cathode. Electrochim. Acta 2022, 412, 140120.

[25]

Wang, X. X.; Sunarso, J.; Lu, Q.; Zhou, Z. L.; Dai, J.; Guan, D. Q.; Zhou, W.; Shao, Z. P. High-performance platinum-perovskite composite bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Adv. Energy Mater. 2020, 10, 1903271.

[26]

Ren, J.; Hong, P.; Ran, Y.; Chen, Y. H.; Xiao, X. C.; Wang, Y. D. Binder-free three-dimensional interconnected CuV2O5· nH2O nests as cathodes for high-loading aqueous zinc-ion batteries. Inorg. Chem. Front. 2022, 9, 792–804.

[27]

Cao, X. J.; Zheng, S. Y.; Wang, T. Z.; Lin, F.; Li, J. H.; Jiao, L. F. N-doped ZrO2 nanoparticles embedded in a N-doped carbon matrix as a highly active and durable electrocatalyst for oxygen reduction. Fundam. Res. 2022, 2, 604–610.

[28]

Yan, N. F.; Gao, X. P. Photo-assisted rechargeable metal batteries for energy conversion and storage. Energy Environ. Mater. 2022, 5, 439–451.

[29]

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

[30]

Davari, E.; Ivey, D. G. Bifunctional electrocatalysts for Zn-air batteries. Sustain. Energ. Fuels 2018, 2, 39–67.

[31]

Hu, Q.; Li, G. M.; Li, G. D.; Liu, X. F.; Zhu, B.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Trifunctional electrocatalysis on dual-doped graphene nanorings-integrated boxes for efficient water splitting and Zn-air batteries. Adv. Energy Mater. 2019, 9, 1803867.

[32]

Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.

[33]

Zhao, L. W.; Gu, T. T.; Liang, Z. W.; Liu, J. Recent advances in bifunctional catalysts for zinc-air batteries: Synthesis and potential mechanisms. Sci. China Technol. Sci. 2022, 65, 2221–2245.

[34]

Chen, L. L.; Zhang, Y. L.; Dong, L. L.; Liu, X. J.; Long, L.; Wang, S. Y.; Liu, C. Y.; Dong, S. J.; Jia, J. B. Honeycomb-like 3D N-,P-codoped porous carbon anchored with ultrasmall Fe2P nanocrystals for efficient Zn-air battery. Carbon 2020, 158, 885–892.

[35]

Cheng, H.; Li, M. L.; Su, C. Y.; Li, N.; Liu, Z. Q. Cu-Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: A high-efficiency bifunctional oxygen electrode for Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1701833.

[36]

Gao, J. C.; Wang, J. M.; Zhou, L. J.; Cai, X. Y.; Zhan, D.; Hou, M. Z.; Lai, L. F. Co2P@N,P-codoped carbon nanofiber as a free-standing air electrode for Zn-air batteries: Synergy effects of CoN x satellite shells. ACS Appl. Mater. Interfaces 2019, 11, 10364–10372.

[37]

Huang, Q. K.; Zhong, X. W.; Zhang, Q.; Wu, X.; Jiao, M. L.; Chen, B.; Sheng, J. Z.; Zhou, G. M. Co3O4/Mn3O4 hybrid catalysts with heterointerfaces as bifunctional catalysts for Zn-air batteries. J. Energy Chem. 2022, 68, 679–687.

[38]

Yu, X. B.; Zhang, S.; Li, C. Y.; Zhu, C. L.; Chen, Y. J.; Gao, P.; Qi, L. H.; Zhang, X. T. Hollow CoP nanopaticle/N-doped graphene hybrids as highly active and stable bifunctional catalysts for full water splitting. Nanoscale 2016, 8, 10902–10907.

[39]

Xu, L.; Tian, Y. H.; Deng, D. J.; Li, H. P.; Zhang, D.; Qian, J. C.; Wang, S. A.; Zhang, J. M.; Li, H. N.; Sun, S. H. Cu nanoclusters/FeN4 amorphous composites with dual active sites in N-doped graphene for high-performance Zn-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 31340–31350.

[40]

Wu, Z. X.; Wang, J.; Song, M.; Zhao, G. M.; Zhu, Y.; Fu, G. T.; Liu, X. E. Boosting oxygen reduction catalysis with N-doped carbon coated Co9S8 microtubes. ACS Appl. Mater. Interfaces 2018, 10, 25415–25421.

[41]

Chen, C.; Su, H.; Lu, L. N.; Hong, Y. S.; Chen, Y. Z.; Xiao, K.; Ouyang, T.; Qin, Y. L.; Liu, Z. Q. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem. Eng. J. 2021, 408, 127814.

[42]

Chen, X. C.; Zhou, Z.; Karahan, H. E.; Shao, Q.; Wei, L.; Chen, Y. Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 2018, 14, 1801929.

[43]

Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.

[44]

Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Kvasha, A.; de Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z. C.; Blazquez, J. A. An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J. Energy Storage 2018, 15, 304–328.

[45]

Fabbri, E.; Mohamed, R.; Levecque, P.; Conrad, O.; Kotz, R.; Schmidt, T. J. Ba0.5Sr0.5Co0.8Fe0.2O3– δ perovskite activity towards the oxygen reduction reaction in alkaline media. ChemElectroChem 2014, 1, 338–342.

[46]

Béjar, J.; Álvarez-Contreras, L.; Ledesma-García, J.; Arjona, N.; Arriaga, L. G. An advanced three-dimensionally ordered macroporous NiCo2O4 spinel as a bifunctional electrocatalyst for rechargeable Zn-air batteries. J. Mater. Chem. A 2020, 8, 8554–8565.

[47]

Abdelkareem, M. A.; Wilberforce, T.; Elsaid, K.; Sayed, E. T.; Abdelghani, E. A. M.; Olabi, A. G. Transition metal carbides and nitrides as oxygen reduction reaction catalyst or catalyst support in proton exchange membrane fuel cells (PEMFCs). Int. J. Hydrogen Energy 2021, 46, 23529–23547.

[48]

Jin, J.; Yin, J.; Liu, H. B.; Lu, M.; Li, J. Y.; Tian, M.; Xi, P. X. Transition metal (Fe, Co and Ni)-carbide-nitride (M-C-N) nanocatalysts: Structure and electrocatalytic applications. ChemCatChem 2019, 11, 2780–2792.

[49]

Wang, Z. L.; Yang, J. H.; Tang, Y. T.; Chen, Z. P.; Lu, Q. Z.; Shen, G. R.; Wen, Y. W.; Liu, X.; Liu, F.; Chen, R. et al. Fe3O4/Co3O4 binary oxides as bifunctional electrocatalysts for rechargeable Zn-air batteries by one-pot pyrolysis of zeolitic imidazolate frameworks. Sustain. Energ. Fuels 2021, 5, 2985–2993.

[50]

Zhang, Z. M.; Liang, X. L.; Li, J. F.; Qian, J. M.; Liu, Y. G.; Yang, S. L.; Wang, Y.; Gao, D.; Xue, D. Interfacial engineering of NiO/NiCo2O4 porous nanofibers as efficient bifunctional catalysts for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 21661–21669.

[51]

Chen, L. L.; Zhang, Y. L.; Liu, X. J.; Long, L.; Wang, S. Y.; Xu, X. L.; Liu, M. C.; Yang, W. X.; Jia, J. B. Bifunctional oxygen electrodes of homogeneous Co4N nanocrystals@N-doped carbon hybrids for rechargeable Zn-air batteries. Carbon 2019, 151, 10–17.

[52]

Ding, J. T.; Ji, S.; Wang, H.; Pollet, B. G.; Wang, R. F. Mesoporous CoS/N-doped carbon as HER and ORR bifunctional electrocatalyst for water electrolyzers and zinc-air batteries. ChemCatChem 2019, 11, 1026–1032.

[53]

Fang, W. G.; Dai, P.; Hu, H. B.; Jiang, T. T.; Dong, H. Z.; Wu, M. Z. Fe0.96S/Co8FeS8 nanoparticles co-embedded in porous N,S codoped carbon with enhanced bifunctional electrocatalystic activities for all-solid-state Zn-air batteries. Appl. Surf. Sci. 2020, 505, 144212.

[54]

Chen, J. P.; Ni, B. Q.; Hu, J. G.; Wu, Z. X.; Jin, W. Defective graphene aerogel-supported Bi-CoP nanoparticles as a high-potential air cathode for rechargeable Zn-air batteries. J. Mater. Chem. A 2019, 7, 22507–22513.

[55]

Wang, H. P.; Zhu, S.; Deng, J. W.; Zhang, W. C.; Feng, Y. Z.; Ma, J. M. Transition metal carbides in electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 291–298.

[56]

Liu, D. L.; Tong, Y. Y.; Yan, X.; Liang, J.; Dou, S. X. Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batter. Supercaps. 2019, 2, 743–765.

[57]

Zhu, Y. T.; Yue, K. H.; Xia, C. F.; Zaman, S.; Yang, H.; Wang, X. Y.; Yan, Y.; Xia, B. Y. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nanomicro Lett. 2021, 13, 137.

[58]

Liu, J. N.; Zhao, C. X.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. A brief history of zinc-air batteries: 140 years of epic adventures. Energy Environ. Sci. 2022, 15, 4542–4553.

[59]
Xu, C. F.; Qiu, J. J.; Dong, Y. L.; Li, Y. L.; Shen, Y. L.; Zhao, H. P.; Kaiser, U.; Shao, G. S.; Lei, Y. Dual-functional electrode promoting dendrite-free and CO2 utilization enabled high-reversible symmetric Na-CO2 batteries. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12626.
DOI
[60]

Ren, S. S.; Duan, X. D.; Liang, S.; Zhang, M. D.; Zheng, H. G. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182.

[61]

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

[62]

Sapkota, P.; Kim, H. Zinc-air fuel cell, a potential candidate for alternative energy. J. Ind. Eng. Chem. 2009, 15, 445–450.

[63]

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

[64]

Yin, Z.; Hu, M.; Liu, J.; Fu, H.; Wang, Z. J.; Tang, A. W. Tunable crystal structure of Cu-Zn-Sn-S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation. J. Semicond. 2022, 43, 032701.

[65]

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

[66]

Wang, S. Y.; Chen, S. M.; Ma, L. T.; Zapien, J. A. Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Mater. Today Energy 2021, 20, 100659.

[67]

Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2015, 5, 5207–5234.

[68]

Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

[69]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[70]

Yan, S. S.; Xue, Y. J.; Li, S. H.; Shao, G. J.; Liu, Z. P. Enhanced bifunctional catalytic activity of manganese oxide/perovskite hierarchical core–shell materials by adjusting the interface for metal-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 25870–25881.

[71]

Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure–property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464.

[72]

Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.

[73]

Cao, Y. L.; Yang, H. X.; Ai, X. P.; Xiao, L. F. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J. Electroanal. Chem. 2003, 557, 127–134.

[74]

Lima, F. H. B.; Calegaro, M. L.; Ticianelli, E. A. Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J. Electroanal. Chem. 2006, 590, 152–160.

[75]

Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

[76]

Kuo, C. H.; Mosa, I. M.; Thanneeru, S.; Sharma, V.; Zhang, L. C.; Biswas, S.; Aindow, M.; Alpay, S. P.; Rusling, J. F.; Suib, S. L. et al. Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem. Commun. 2015, 51, 5951–5954.

[77]

Li, G.; Wang, X. L.; Fu, J.; Li, J. D.; Park, M. G.; Zhang, Y. N.; Lui, G.; Chen, Z. W. Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries. Angew. Chem., Int. Ed. 2016, 55, 4977–4982.

[78]

Song, Z. S.; Han, X. P.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B.; Zhong, C. Clarifying the controversial catalytic performance of Co(OH)2 and Co3O4 for oxygen reduction/evolution reactions toward efficient Zn-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 22694–22703.

[79]

Han, X. P.; He, G. W.; He, Y.; Zhang, J. F.; Zheng, X. R.; Li, L. L.; Zhong, C.; Hu, W. B.; Deng, Y. D.; Ma, T. Y. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1702222.

[80]

He, X. B.; Yin, F. X.; Li, G. R. A co/metal-organic-framework bifunctional electrocatalyst: The effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte. Int. J. Hydrogen Energy 2015, 40, 9713–9722.

[81]

Xiao, J. W.; Kuang, Q.; Yang, S. H.; Xiao, F.; Wang, S.; Guo, L. Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction. Sci. Rep. 2013, 3, 2300.

[82]

Sa, Y. J.; Kwon, K.; Cheon, J. Y.; Kleitz, F.; Joo, S. H. Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. J. Mater. Chem. A 2013, 1, 9992–10001.

[83]

Park, M. G.; Lee, D. U.; Seo, M. H.; Cano, Z. P.; Chen, Z. W. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries. Small 2016, 12, 2707–2714.

[84]

Kim, J. H.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochim. Acta 2007, 52, 2492–2497.

[85]

Seo, J.; Zhao, L.; Cha, D.; Takanabe, K.; Katayama, M.; Kubota, J.; Domen, K. Highly dispersed TaO x nanoparticles prepared by electrodeposition as oxygen reduction electrocatalysts for polymer electrolyte fuel cells. J. Phys. Chem. C 2013, 117, 11635–11646.

[86]

Liu, Y.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Transition metal oxides as DMFC cathodes without platinum. J. Electrochem. Soc. 2007, 154, B664–B669.

[87]

Lee, Y. C.; Peng, P. Y.; Chang, W. S.; Huang, C. M. Hierarchical meso-macroporous LaMnO3 electrode material for rechargeable zinc-air batteries. J. Taiwan Inst. Chem. Eng. 2014, 45, 2334–2339.

[88]

Chen, Z.; Yu, A. P.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Highly active and durable core–corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett. 2012, 12, 1946–1952.

[89]

Yin, J.; Shen, L.; Li, Y. X.; Lu, M.; Sun, K.; Xi, P. X. CoFe2O4 nanoparticles as efficient bifunctional catalysts applied in Zn-air battery. J. Mater. Res. 2018, 33, 590–600.

[90]

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Erratum: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 647.

[91]

Jung, J. I.; Jeong, H. Y.; Kim, M. G.; Nam, G.; Park, J.; Cho, J. Fabrication of Ba0.5Sr0.5Co0.8Fe0.2O3− δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer. Adv. Mater. 2015, 27, 266–271.

[92]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[93]

Lopez, K.; Park, G.; Sun, H. J.; An, J. C.; Eom, S.; Shim, J. Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNi x M1– x O3 ( x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution. J. Appl. Electrochem. 2015, 45, 313–323.

[94]

Bu, Y. F.; Gwon, O.; Nam, G.; Jang, H.; Kim, S.; Zhong, Q.; Cho, J.; Kim, G. A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 2017, 11, 11594–11601.

[95]

Lee, C. K.; Striebel, K. A.; McLarnon, F. R.; Cairns, E. J. Thermal treatment of La0.6Ca0.4CoO3 perovskites for bifunctional air electrodes. J. Electrochem. Soc. 1997, 144, 3801–3806.

[96]

Liu, P.; He, H. P.; Wei, G. L.; Liang, X. L.; Qi, F. H.; Tan, F. D.; Tan, W.; Zhu, J. X.; Zhu, R. L. Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst characterization, performance and reaction mechanism. Appl. Catal. B: Environ. 2016, 182, 476–484.

[97]

Gao, X. H.; Zhang, H. X.; Li, Q. G.; Yu, X. G.; Hong, Z. L.; Zhang, X. W.; Liang, C. D.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290–6294.

[98]

Sakai, N.; Fukuda, K.; Ma, R. Z.; Sasaki, T. Synthesis and substitution chemistry of redox-active manganese/cobalt oxide nanosheets. Chem. Mater. 2018, 30, 1517–1523.

[99]

Zhou, Y.; Sun, S. N.; Xi, S. B.; Duan, Y.; Sritharan, T.; Du, Y. H.; Xu, Z. J. Superexchange effects on oxygen reduction activity of edge-sharing [Co x Mn1− x O6] octahedra in spinel oxide. Adv. Mater. 2018, 30, 1705407.

[100]

Lai, F. L.; Feng, J. R.; Ye, X. B.; Zong, W.; He, G. J.; Yang, C.; Wang, W.; Miao, Y. E.; Pan, B. C.; Yan, W. S. et al. Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2020, 8, 1652–1659.

[101]

Li, J. T.; Chu, D.; Dong, H.; Baker, D. R.; Jiang, R. Z. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 2020, 142, 50–54.

[102]

Wang, J. J.; Zheng, X. R.; Cao, Y. H.; Li, L. L.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Developing indium-based ternary spinel selenides for efficient solid flexible Zn-air batteries and water splitting. ACS Appl. Mater. Interfaces 2020, 12, 8115–8123.

[103]

Lee, D. U.; Park, H. W.; Park, M. G.; Ismayilov, V.; Chen, Z. W. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications. ACS Appl. Mater. Interfaces 2015, 7, 902–910.

[104]

Li, S. J.; Xia, Z. W.; Zhao, W. Y.; Wu, K.; Suo, L. L.; Huo, Y. H.; Li, L. Dandelion-type Mn-promoted Co3O4/CNTs composite as an efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Ionics 2021, 27, 1619–1632.

[105]

Zhang, Y. C.; Ullah, S.; Zhang, R. R.; Pan, L.; Zhang, X. W.; Zou, J. J. Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction. Appl. Catal. B: Environ. 2020, 277, 119247.

[106]

Wang, W.; Chen, J. Q.; Tao, Y. R.; Zhu, S. N.; Zhang, Y. X.; Wu, X. C. Flowerlike Ag-supported Ce-doped Mn3O4 nanosheet heterostructure for a highly efficient oxygen reduction reaction: Roles of metal oxides in Ag surface states. ACS Catal. 2019, 9, 3498–3510.

[107]

Mazza, F.; Trassatti, S. Tungsten, titanium, and tantalum carbides and titanium nitrides as electrodes in redox systems. J. Electrochem. Soc. 1963, 110, 847–849.

[108]

Neburchilov, V.; Wang, H. J.; Martin, J. J.; Qu, W. A review on air cathodes for zinc-air fuel cells. J. Power Sources 2010, 195, 1271–1291.

[109]

Qi, J.; Jiang, L. H.; Jiang, Q.; Wang, S. L.; Sun, G. Q. Theoretical and experimental studies on the relationship between the structures of molybdenum nitrides and their catalytic activities toward the oxygen reduction reaction. J. Phys. Chem. C 2010, 114, 18159–18166.

[110]

Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Xu, L.; Tang, Y. W.; Goodenough, J. B. Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy 2017, 39, 77–85.

[111]

Tian, X. L.; Wang, L. J.; Chi, B.; Xu, Y. Y.; Zaman, S.; Qi, K.; Liu, H. F.; Liao, S. J.; Xia, B. Y. Formation of a tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells. ACS Catal. 2018, 8, 8970–8975.

[112]

Tang, H. B.; Luo, J. M.; Tian, X. L.; Dong, Y. Y.; Li, J.; Liu, M. R.; Liu, L. N.; Song, H. Y.; Liao, S. J. Template-free preparation of 3D porous co-doped VN nanosheet-assembled microflowers with enhanced oxygen reduction activity. ACS Appl. Mater. Interfaces 2018, 10, 11604–11612.

[113]

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. 3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries’ cathodes. Nano Energy 2017, 40, 382–389.

[114]

Fan, Y. C.; Ida, S.; Staykov, A.; Akbay, T.; Hagiwara, H.; Matsuda, J.; Kaneko, K.; Ishihara, T. Ni-Fe nitride nanoplates on nitrogen-doped graphene as a synergistic catalyst for reversible oxygen evolution reaction and rechargeable Zn-air battery. Small 2017, 13, 1700099.

[115]

Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

[116]

Huang, L.; Zuo, L. Z.; Yu, T.; Wang, H. Q.; He, Z. Y.; Zhou, H.; Su, S. C.; Bian, T. Two-dimensional Co/Co9S8 nanoparticles decorated N, S dual-doped carbon composite as an efficient electrocatalyst for zinc-air battery. J. Alloy. Compd. 2022, 897, 163108.

[117]

Lu, S.; Jiang, J.; Yang, H.; Zhang, Y. J.; Pei, D. N.; Chen, J. J.; Yu, Y. Phase engineering of iron-cobalt sulfides for Zn-air and Na-ion batteries. ACS Nano 2020, 14, 10438–10451.

[118]

Shi, X. J.; He, B. B.; Zhao, L.; Gong, Y. S.; Wang, R.; Wang, H. W. FeS2-CoS2 incorporated into nitrogen-doped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn-air batteries. J. Power Sources 2021, 482, 228955.

[119]

Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681.

[120]

Lee, D. U.; Xu, P.; Cano, Z. P.; Kashkooli, A. G.; Park, M. G.; Chen, Z. W. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J. Mater. Chem. A 2016, 4, 7107–7134.

[121]

Zhu, S. S.; Lei, J. L.; Zhang, L. N.; Lu, L. J. Efficient electrocatalytic oxygen evolution by Fe3C nanosheets perpendicularly grown on 3D Ni foams. Int. J. Hydrogen Energy 2019, 44, 16507–16515.

[122]

Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem., Int. Ed. 2014, 53, 3675–3679.

[123]

Qin, Q.; Hao, J.; Zheng, W. J. Ni/Ni3C core/shell hierarchical nanospheres with enhanced electrocatalytic activity for water oxidation. ACS Appl. Mater. Interfaces 2018, 10, 17827–17834.

[124]

Zu, M. Y.; Wang, C. W.; Zhang, L.; Zheng, L. R.; Yang, H. G. Reconstructing bimetallic carbide Mo6Ni6C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Mater. Horiz. 2019, 6, 115–121.

[125]

Jia, X. X.; Wang, M. H.; Liu, G.; Wang, Y.; Yang, J. F.; Li, J. P. Mixed-metal MOF-derived co-doped Ni3C/Ni NPs embedded in carbon matrix as an efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 24572–24579.

[126]

Kiran, V.; Srinivasu, K.; Sampath, S. Morphology dependent oxygen reduction activity of titanium carbide: Bulk vs. Nanowires. Phys. Chem. Chem. Phys. 2013, 15, 8744–8751.

[127]

Deng, B. L.; Zhou, L. S.; Jiang, Z. Q.; Jiang, Z. J. High catalytic performance of nickel foam supported Co2P-Ni2P for overall water splitting and its structural evolutions during hydrogen/oxygen evolution reactions in alkaline solutions. J. Catal. 2019, 373, 81–92.

[128]

Zhang, X.; Wang, L. Research progress of carbon nanofiber-based precious-metal-free oxygen reaction catalysts synthesized by electrospinning for Zn-air batteries. J. Power Sources 2021, 507, 230280.

[129]

Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 2019, 31, 1806682.

[130]

Shi Q.; Liu Q.; Zheng Y. P.; Dong Y. Q.; Wang L.; Liu H. T.; Yang W. Y. Controllable construction of bifunctional Co x P@N, P-doped carbon electrocatalysts for rechargeable zinc-air batteries. Energy Environ. Mater. 2022, 5, 515–523.

[131]

Diao, L. C.; Yang, T.; Chen, B.; Zhang, B.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Ma, L. Y.; He, C. N. Electronic reconfiguration of Co2P induced by Cu doping enhancing oxygen reduction reaction activity in zinc-air batteries. J. Mater. Chem. A 2019, 7, 21232–21243.

[132]

Qin, X.; Wang, Z.; Han, J. R.; Luo, Y. L.; Xie, F. Y.; Cui, G. W.; Guo, X. D.; Sun, X. P. Fe-doped CoP nanosheet arrays: An efficient bifunctional catalyst for zinc-air batteries. Chem. Commun. 2018, 54, 7693–7696.

[133]

Jiang, D. L.; Xu, S. J.; Quan, B.; Liu, C. C.; Lu, Y. K.; Zhu, J. J.; Tian, D.; Li, D. Synergistically coupling of Fe-doped CoP nanocubes with CoP nanosheet arrays towards enhanced and robust oxygen evolution electrocatalysis. J. Colloid Interface Sci. 2021, 591, 67–75.

[134]

Gu, T. T.; Zhang, D. T.; Yang, Y.; Peng, C.; Xue, D. F.; Zhi, C. Y.; Zhu, M.; Liu, J. Dual-sites coordination engineering of single atom catalysts for full-temperature adaptive flexible ultralong-life solid-state Zn-air batteries. Adv. Funct. Mater. 2023, 33, 2212299.

[135]

Jasinski. R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.

[136]

Qian, Y. H.; An, T.; Sarnello, E.; Liu, Z. L.; Li, T.; Zhao, D. Janus electrocatalysts containing MOF-derived carbon networks and NiFe-LDH nanoplates for rechargeable zinc-air batteries. ACS Appl. Energy Mater. 2019, 2, 1784–1792.

[137]

Matter, P. H.; Wang, E.; Millet, J. M. M.; Ozkan, U. S. Characterization of the iron phase in CN x -based oxygen reduction reaction catalysts. J. Phys. Chem. C 2007, 111, 1444–1450.

[138]

van Veen, J. A. R.; Colijn, H. A.; van Baar, J. F. On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim. Acta 1988, 33, 801–804.

[139]

Song, P.; Wang, Y.; Pan, J.; Xu, W. L.; Zhuang, L. Structure–activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction. J. Power Sources 2015, 300, 279–284.

[140]

Li, Y. R.; Guo, C. Z.; Li, J. Q.; Liao, W. L.; Li, Z. B.; Zhang, J.; Chen, C. G. Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core–shell electrocatalyst for oxygen reduction reaction. Carbon 2017, 119, 201–210.

[141]

Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.

[142]

Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

[143]

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

[144]

Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

[145]

Li, S. S.; Chen, W. H.; Pan, H. Z.; Cao, Y. W.; Jiang, Z. Q.; Tian, X. N.; Hao, X. G.; Maiyalagan, T.; Jiang, Z. J. FeCo alloy nanoparticles coated by an ultrathin N-doped carbon layer and encapsulated in carbon nanotubes as a highly efficient bifunctional air electrode for rechargeable Zn-air batteries. ACS Sustainable Chem. Eng. 2019, 7, 8530–8541.

[146]

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

[147]

Chen, D.; Zhu, J. W.; Mu, X. Q.; Cheng, R. L.; Li, W. Q.; Liu, S. L.; Pu, Z. H.; Lin, C.; Mu, S. C. Nitrogen-doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and Zn-air batteries. Appl. Catal. B: Environ. 2020, 268, 118729.

[148]

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co,N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

[149]

Sumboja, A.; Chen, J. W.; Zong, Y.; Lee, P. S.; Liu, Z. L. NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn-air batteries. Nanoscale 2017, 9, 774–780.

[150]

Wang, H. F.; Tang, C.; Wang, B.; Li, B. Q.; Zhang, Q. Bifunctional transition metal hydroxysulfides: Room-temperature sulfurization and their applications in Zn-air batteries. Adv. Mater. 2017, 29, 1702327.

[151]

Li, Y.; Zhou, Z. H.; Cheng, G.; Han, S. B.; Zhou, J. L.; Yuan, J. K.; Sun, M.; Yu, L. Flower-like NiCo2O4-CN as efficient bifunctional electrocatalyst for Zn-air battery. Electrochim. Acta 2020, 341, 135997.

[152]

Tian, Y. H.; Xu, L.; Bao, J.; Qian, J. C.; Su, H. N.; Li, H. M.; Gu, H. D.; Yan, C.; Li, H. N. Hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets as an efficient bifunctional catalyst for Zn-air battery. J. Energy Chem. 2019, 33, 59–66.

[153]

Zhang, Z. M.; Li, J. F.; Qian, J. M.; Li, Z. W.; Jia, L.; Gao, D. Q.; Xue, D. S. Significant change of metal cations in geometric sites by magnetic-field annealing FeCo2O4 for enhanced oxygen catalytic activity. Small 2022, 18, 2104248.

[154]

Tian, W. L.; Li, H. Y.; Qin, B. C.; Xu, Y. Q.; Hao, Y. C.; Li, Y. P.; Zhang, G. X.; Liu, J. F.; Sun, X. M.; Duan, X. Tuning the wettability of carbon nanotube arrays for efficient bifunctional catalysts and Zn-air batteries. J. Mater. Chem. A 2017, 5, 7103–7110.

[155]

Wang, Q.; Miao, H.; Sun, S. S.; Xue, Y. J.; Liu, Z. P. One-pot synthesis of Co3O4/Ag nanoparticles supported on N-doped graphene as efficient bifunctional oxygen catalysts for flexible rechargeable zinc-air batteries. Chem.—Eur. J. 2018, 24, 14816–14823.

[156]

Wang, Q.; Xue, Y. J.; Sun, S. S.; Li, S. H.; Miao, H.; Liu, Z. P. La0.8Sr0.2Co1– x Mn x O3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. Electrochim. Acta 2017, 254, 14–24.

[157]

Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.

[158]

Su, D. C.; Xiao, Y. H.; Liu, Y. L.; Xu, S. G.; Fang, S. M.; Cao, S. K.; Wang, X. Z. Surface-confined polymerization to construct binary Fe3N/Co-N-C encapsulated MXene composites for high-performance zinc-air battery. Carbon 2023, 201, 269–277.

[159]

Liu, Y. P.; Li, Z. F.; Wang, L. K.; Zhang, L.; Niu, X. L. Tunable Fe/N co-doped 3D porous graphene with high density Fe-N x sites as the efficient bifunctional oxygen electrocatalyst for Zn-air batteries. Int. J. Hydrogen Energy 2021, 46, 36811–36823.

[160]

Tan, M. Y.; Xiao, Y. Y.; Xi, W. H.; Lin, X. F.; Gao, B. F.; Chen, Y. L.; Zheng, Y.; Lin, B. Z. Cobalt-nanoparticle impregnated nitrogen-doped porous carbon derived from schiff-base polymer as excellent bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Power Sources 2021, 490, 229570.

[161]

Zhang, Y. Q.; Ouyang, B.; Long, G. K.; Tan, H.; Wang, Z.; Zhang, Z.; Gao, W. B.; Rawat, R. S.; Fan, H. J. Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Sci. China Chem. 2020, 63, 890–896.

[162]

Niu, W. J.; He, J. Z.; Wang, Y. P.; Sun, Q. Q.; Liu, W. W.; Zhang, L. Y.; Liu, M. C.; Liu, M. J.; Chueh, Y. L. A hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheet system as a superior oxygen electrocatalyst for rechargeable Zn-air batteries. Nanoscale 2020, 12, 19644–19654.

[163]

Shinde, S. S.; Lee, C. H.; Sami, A.; Kim, D. H.; Lee, S. U.; Lee, J. H. Scalable 3D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. ACS Nano 2017, 11, 347–357.

[164]

Yin, J.; Li, Y. X.; Lv, F.; Fan, Q. H.; Zhao, Y. Q.; Zhang, Q. L.; Wang, W.; Cheng, F. Y.; Xi, P. X.; Guo, S. J. NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries. ACS Nano 2017, 11, 2275–2283.

[165]

Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 2019, 31, 1902339.

[166]

Zhang, J. Y.; Wang, T. T.; Xue, D. S.; Guan, C.; Xi, P. X.; Gao, D. Q.; Huang, W. Energy-level engineered hollow N-doped NiS1.03 for Zn-air batteries. Energy Storage Mater. 2020, 25, 202–209.

[167]

Sun, L. X.; Huang, S. H.; Zhao, X. Y.; Li, L.; Zhao, X. H.; Zhang, W. M. Synergistic effect of Co9S8 and FeS2 inlaid on N-doped carbon nanofibers toward a bifunctional catalyst for Zn-air batteries. Langmuir 2022, 38, 11753–11763.

[168]

Fu, J.; Hassan, F. M.; Zhong, C.; Lu, J.; Liu, H.; Yu, A. P.; Chen, Z. W. Defect engineering of chalcogen-tailored oxygen electrocatalysts for rechargeable quasi-solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1702526.

[169]

Tan, J. B.; Li, R. R.; Raheem, S. A.; Pan, L. H.; Shen, H. J.; Liu, J.; Gao, M. L.; Yang, M. H. Facile construction of carbon encapsulated of earth-abundant metal sulfides for oxygen electrocatalysis. ChemElectroChem 2021, 8, 3533–3537.

[170]

Shi, X. K.; Ling, X. F.; Li, L. L.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Nanosheets assembled into nickel sulfide nanospheres with enriched Ni3+ active sites for efficient water-splitting and zinc-air batteries. J. Mater. Chem. A 2019, 7, 23787–23793.

[171]

Sun, Y. Q.; Guan, Y.; Wu, X. C.; Li, W. Q.; Li, Y. L.; Sun, L. N.; Mi, H. W.; Zhang, Q. L.; He, C. X.; Ren, X. Z. ZIF-derived “senbei”-like Co9S8/CeO2/Co heterostructural nitrogen-doped carbon nanosheets as bifunctional oxygen electrocatalysts for Zn-air batteries. Nanoscale 2021, 13, 3227–3236.

[172]

Xu, Q. Q.; Peng, X. M.; Zhu, Z. G.; Luo, K. F.; Liu, Y. Y.; Yuan, D. S. Co2P nanoparticles supported on cobalt-embedded N-doped carbon materials as a bifunctional electrocatalyst for rechargeable Zn-air batteries. Int. J. Hydrogen Energy 2022, 47, 16518–16527.

[173]

Li, Y. P.; Liu, Y.; Qian, Q. Z.; Wang, G. R.; Zhang, G. Q. Supramolecular assisted one-pot synthesis of donut-shaped CoP@PNC hybrid nanostructures as multifunctional electrocatalysts for rechargeable Zn-air batteries and self-powered hydrogen production. Energy Storage Mater. 2020, 28, 27–36.

[174]

Long, J. L.; Chen, C.; Gou, X. L. Metal-organic frameworks/hydrotalcite/graphene oxide sandwich composites derived Fe-Ce@GSL hierarchical materials as highly efficient catalysts for rechargeable Zn-air batteries. J. Colloid Interface Sci. 2022, 625, 555–564.

[175]

Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G. Z.; Shi, Z. C.; Jeong, C.; Kang, J.; Li, O. L. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. J. Colloid Interface Sci. 2021, 582, 977–990.

[176]

Huang, H. M.; Luo, Y. J.; Zhang, L.; Zhang, H. J.; Wang, Y. Cobalt-nickel alloys supported on Ti4O7 and embedded in N, S doped carbon nanofibers as an efficient and stable bifunctional catalyst for Zn-air batteries. J Colloid Interface Sci. 2023, 630, 763–771.

[177]

Li, Y.; Talib, S. H.; Liu, D. Q.; Zong, K.; Saad, A.; Song, Z. Q.; Zhao, J.; Liu, W.; Liu, F. D.; Ji, Q. Q. et al. Improved oxygen evolution reaction performance in Co0.4Mn0.6O2 nanosheets through triple-doping (Cu, P, N) strategy and its application to Zn-air battery. Appl. Catal. B Environ. 2023, 320, 122023.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 June 2023
Revised: 02 August 2023
Accepted: 03 August 2023
Published: 19 September 2023
Issue date: March 2024

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors acknowledge support from the German Research Foundation (DFG: LE 2249/15-1) and the Sino-German Center for Research Promotion (GZ1579). Y. R. and C. F. X. would like to appreciate the support from the China Scholarship Council (Nos. 202207030010 and 20210637004).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return