Journal Home > Volume 3 , Issue 1

To date, extensively high demand for hydrogen peroxide (H2O2) has been predominantly supplied by the anthraquinone process for several worldwide applications, encompassing wastewater treatment, environmental remediation, and chemical synthesis. However, the compacted manufacturing, massive energy input and the release of tremendous wastes have restricted commercialization feasibility. Regards to mitigate such issues, the photocatalytic H2O2 production by utilizing g-C3N4 catalysts has endowed a greener, sustainable and promising alternative, considering that it involves water and oxygen as reactants in the present of sunlight as energy input. Herein, we have manifested a comprehensive overview of the research progress for g-C3N4-based semiconductors for photocatalytic H2O2 generation. This review has systematically elucidated state-of-the-art development of different modifications on g-C3N4 to unravel the fundamental mechanism of H2O2 evolution via oxygen reduction reaction (ORR) and water oxidation reaction (WOR). In addition, the contribution made by vacancy introduction, doping, heterogenization, and co-catalyst passivation with respect to photoefficiency enhancement have been clarified. Furthermore, the current challenges and perspective of future development directions on photocatalytic H2O2 production have also been highlighted. As such, g-C3N4 stands as the next step toward advancement in the configuration and modulation of high-efficiency photocatalysts.


menu
Abstract
Full text
Outline
About this article

Recent advances in structural modification on graphitic carbon nitride (g-C3N4)-based photocatalysts for high-efficiency photocatalytic H2O2 production

Show Author's information Feng Ming Yap1,2Grayson Zhi Sheng Ling1,2Brenden Jing Su1,2Jian Yiing Loh1,2Wee-Jun Ong1,2,3,4,5( )
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China

Abstract

To date, extensively high demand for hydrogen peroxide (H2O2) has been predominantly supplied by the anthraquinone process for several worldwide applications, encompassing wastewater treatment, environmental remediation, and chemical synthesis. However, the compacted manufacturing, massive energy input and the release of tremendous wastes have restricted commercialization feasibility. Regards to mitigate such issues, the photocatalytic H2O2 production by utilizing g-C3N4 catalysts has endowed a greener, sustainable and promising alternative, considering that it involves water and oxygen as reactants in the present of sunlight as energy input. Herein, we have manifested a comprehensive overview of the research progress for g-C3N4-based semiconductors for photocatalytic H2O2 generation. This review has systematically elucidated state-of-the-art development of different modifications on g-C3N4 to unravel the fundamental mechanism of H2O2 evolution via oxygen reduction reaction (ORR) and water oxidation reaction (WOR). In addition, the contribution made by vacancy introduction, doping, heterogenization, and co-catalyst passivation with respect to photoefficiency enhancement have been clarified. Furthermore, the current challenges and perspective of future development directions on photocatalytic H2O2 production have also been highlighted. As such, g-C3N4 stands as the next step toward advancement in the configuration and modulation of high-efficiency photocatalysts.

Keywords: g-C3N4, photocatalysis, H2O2 production, structural modification

References(298)

[1]

Zhao, H.; Jin, Q.; Khan, M. A.; Larter, S.; Siahrostami, S.; Kibria, M. G.; Hu, J. G. Rational design of carbon nitride for remarkable photocatalytic H2O2 production. Chem Catal. 2022, 2, 1720–1733.

[2]

Lu, H. J.; Li, X. L.; Monny, S. A.; Wang, Z. L.; Wang, L. Z. Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors. Chin. J. Catal. 2022, 43, 1204–1215.

[3]

Martinez-Huitle, C. A.; Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 2006, 35, 1324–1340.

[4]

Drogui, P.; Elmaleh, S.; Rumeau, M.; Bernard, C.; Rambaud, A. Hydrogen peroxide production by water electrolysis: Application to disinfection. J. Appl. Electrochem. 2001, 31, 877–882.

[5]

Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen peroxide: A key chemical for today's sustainable development. ChemSusChem 2016, 9, 3374–3381.

[6]

Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H. Q.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.

[7]

Yamanaka, I.; Murayama, T. Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. 2008, 120, 1926–1928.

[8]

Isaka, Y.; Kondo, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. Chem. Commun. 2018, 54, 9270–9273.

[9]

Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

[10]

Hu, X. Y.; Zeng, X. K.; Liu, Y.; Lu, J.; Zhang, X. W. Carbon-based materials for photo-and electrocatalytic synthesis of hydrogen peroxide. Nanoscale 2020, 12, 16008–16027.

[11]

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

[12]

Sato, K.; Aoki, M.; Noyori, R. A "green" route to adipic acid: Direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 1998, 281, 1646–1647.

[13]

Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

[14]

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

[15]

Edwards, J. K.; Ntainjua N, E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO2. Angew. Chem., Int. Ed. 2009, 48, 8512–8515.

[16]

Edwards, J. K.; Hutchings, G. J. Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angew. Chem., Int. Ed. 2008, 47, 9192–9198.

[17]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

[18]

Haider, Z.; Cho, H. I.; Moon, G. H.; Kim, H. I. Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts. Catal. Today 2019, 335, 55–64.

[19]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[20]
Ma, J.; Peng, X. X.; Zhou, Z. X.; Shen, Y. F.; Zhang, Y. J. Molecular engineering of carbon nitrides for overall photosynthesis of H2O2. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2023.108784.
DOI
[21]

Cheng, H.; Cheng, J.; Wang, L.; Xu, H. X. Reaction pathways toward sustainable photosynthesis of hydrogen peroxide by polymer photocatalysts. Chem. Mater. 2022, 34, 4259–4273.

[22]

Zhao, Z. W.; Sun, Y. J.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37.

[23]

Humayun, M.; Ullah, H.; Cao, J. H.; Pi, W. B.; Yuan, Y.; Ali, S.; Tahir, A. A.; Yue, P.; Khan, A.; Zheng, Z. P. et al. Experimental and DFT studies of Au deposition over WO3/g-C3N4 Z-scheme heterojunction. Nano-Micro Lett. 2020, 12, 7.

[24]

Ye, C.; Li, J. X.; Li, Z. J.; Li, X. B.; Fan, X. B.; Zhang, L. P.; Chen, B.; Tung, C. H.; Wu, L. Z. Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution. ACS Catal. 2015, 5, 6973–6979.

[25]

Maeda, K.; Wang, X. C.; Nishihara, Y.; Lu, D. L.; Antonietti, M.; Domen, K. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 2009, 113, 4940–4947.

[26]

Li, Z.; Wu, Y. Q.; Lu, G. X. Highly efficient hydrogen evolution over Co(OH)2 nanoparticles modified g-C3N4 co-sensitized by eosin Y and rose Bengal under visible light irradiation. Appl. Catal. B Environ. 2016, 188, 56–64.

[27]

Zhu, Q. H.; Xu, Z. H.; Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution. Small 2021, 17, 2101070.

[28]

Li, Y. R.; Kong, T. T.; Shen, S. H. Artificial photosynthesis with polymeric carbon nitride: When meeting metal nanoparticles, single atoms, and molecular complexes. Small 2019, 15, 1900772.

[29]

Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631.

[30]

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

[31]

Que, M. D.; Cai, W. H.; Chen, J.; Zhu, L. L.; Yang, Y. W. Recent advances in g-C3N4 composites within four types of heterojunctions for photocatalytic CO2 reduction. Nanoscale 2021, 13, 6692–6712.

[32]

Banerjee, T.; Podjaski, F.; Kröger, J.; Biswal, B. P.; Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 2021, 6, 168–190.

[33]

Xue, Z. H.; Luan, D. Y.; Zhang, H. B.; Lou, X. W. D. Single-atom catalysts for photocatalytic energy conversion. Joule 2022, 6, 92–133.

[34]

Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.

[35]

Kofuji, Y.; Ohkita, S.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Graphitic carbon nitride doped with biphenyl diimide: Efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal. 2016, 6, 7021–7029.

[36]

Li, S. N.; Dong, G. H.; Hailili, R.; Yang, L. P.; Li, Y. X.; Wang, F.; Zeng, Y. B.; Wang, C. Y. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 2016, 190, 26–35.

[37]

Luan, S. L.; Qu, D.; An, L.; Jiang, W. S.; Gao, X.; Hua, S. X.; Miao, X.; Wen, Y. J.; Sun, Z. C. Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment. Sci. Bull. 2018, 63, 683–690.

[38]

Xu, L. P.; Li, L. J.; Hu, Z. F.; Yu, J. C. EDTA-enhanced photocatalytic oxygen reduction on K-doped g-C3N4 with N-vacancies for efficient non-sacrificial H2O2 synthesis. J. Catal. 2023, 418, 300–311.

[39]

Chu, C. C.; Miao, W.; Li, Q. J.; Wang, D. D.; Liu, Y.; Mao, S. Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4. Chem. Eng. J. 2022, 428, 132531.

[40]

Wang, Y.; He, Y. X.; Chi, Y. J.; Yin, P. J.; Wei, L. S.; Liu, W. W.; Wang, X. Y.; Zhang, H.; Song, H. Y. Construction of S-scheme p-n heterojunction between protonated g-C3N4 and α-MnS nanosphere for photocatalytic H2O2 production and in situ degradation of oxytetracycline. J. Environ. Chem. Eng. 2023, 11, 109968.

[41]

Liu, B. W.; Bie, C. B.; Zhang, Y.; Wang, L. X.; Li, Y. J.; Yu, J. G. Hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalyst for efficient H2O2 production. Langmuir 2021, 37, 14114–14124.

[42]

Zan, Z. Q.; Li, X. B.; Gao, X. M.; Huang, J. T.; Luo, Y. D.; Han, L. 0D/2D carbon nitride quantum dots (CNQDs)/BiOBr S-Scheme heterojunction for robust photocatalytic degradation and H2O2 production. Acta Phys. Chim. Sin 2023, 39, 2209016.

[43]

Su, P. D.; Zhang, J. K.; Zhou, Y. H.; Wei, Z.; Zhao, S.; Yang, B.; Zhao, X.; Chen, J. Efficient photocatalytic production of hydrogen peroxide by Z-scheme resorcinol-formaldehyde resin/g-C3N4 heterostructure under visible light. Chem. Eng. J. 2023, 454, 140504.

[44]

Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.

[45]

Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

[46]

Fu, Y. J.; Liu, C. A.; Zhang, M. L.; Zhu, C.; Li, H.; Wang, H. B.; Song, Y. X.; Huang, H.; Liu, Y.; Kang, Z. H. Photocatalytic H2O2 and H2 generation from living Chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv. Energy Mater. 2018, 8, 1802525.

[47]

Teng, Z. Y.; Cai, W.; Liu, S. X.; Wang, C. Y.; Zhang, Q. T.; Chenliang, S.; Ohno, T. Bandgap engineering of polymetric carbon nitride copolymerized by 2, 5, 8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl. Catal. B Environ. 2020, 271, 118917.

[48]

Shan, Y. W.; Guo, Y.; Wang, Y.; Du, X. R.; Yu, J.; Luo, H.; Wu, H.; Boury, B.; Xiao, H.; Huang, L. L. et al. Nanocellulose-derived carbon/g-C3N4 heterojunction with a hybrid electron transfer pathway for highly photocatalytic hydrogen peroxide production. J. Colloid Interface Sci. 2021, 599, 507–518.

[49]

He, M.; Zhang, X.; Song, S. J.; Yao, J. S.; Fang, Z.; Wang, W. W.; Yuan, X. L.; Li, C. Y.; Li, H.; Li, P. G. et al. Tensile strain in tin oxide clusters stabilized by C3N4 for highly efficient visible light-driven H2O2 production. ACS Sustainable Chem. Eng. 2022, 10, 4494–4503.

[50]

Zhang, X. D.; Yu, J. G.; Macyk, W.; Wageh, S.; Al-Ghamdi, A. A.; Wang, L. X. C3N4/PDA S-scheme heterojunction with enhanced photocatalytic H2O2 production performance and its mechanism. Adv. Sustainable Syst. 2023, 7, 2200113.

[51]

Fukuzumi, S.; Lee, Y. M.; Nam, W. Solar-driven production of hydrogen peroxide from water and dioxygen. Chem. -Eur. J. 2018, 24, 5016–5031.

[52]

Yan, B.; Chen, Z. H.; Xu, Y. X. Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production. Chem. Asian J. 2020, 15, 2329–2340.

[53]

Mahvelati-Shamsabadi, T.; Fattahimoghaddam, H.; Lee, B. K.; Ryu, H.; Jang, J. I. Caesium sites coordinated in boron-doped porous and wrinkled graphitic carbon nitride nanosheets for efficient charge carrier separation and transfer: Photocatalytic H2 and H2O2 production. Chem. Eng. J. 2021, 423, 130067.

[54]

Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.

[55]

Wan, H.; Lv, M. H.; Liu, X. H.; Chen, G.; Zhang, N.; Cao, Y. J.; Wang, H. D.; Ma, R. Z.; Qiu, G. Z. Activating hematite nanoplates via partial reduction for electrocatalytic oxygen reduction reaction. ACS Sustainable Chem. Eng. 2019, 7, 11841–11849.

[56]

Kofuji, Y.; Ohkita, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production. ACS Sustainable Chem. Eng. 2017, 5, 6478–6485.

[57]

Teranishi, M.; Naya, S. I.; Tada, H. In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst. J. Am. Chem. Soc. 2010, 132, 7850–7851.

[58]

Yamanaka, I.; Onizawa, T.; Takenaka, S.; Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew. Chem., Int. Ed. 2003, 42, 3653–3655.

[59]

Zhang, P.; Tong, Y. W.; Liu, Y.; Vequizo, J. J. M.; Sun, H. W.; Yang, C.; Yamakata, A.; Fan, F. T.; Lin, W.; Wang, X. C. et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew. Chem., Int. Ed. 2020, 59, 16209–16217.

[60]

Chen, L.; Chen, C.; Yang, Z.; Li, S.; Chu, C. H.; Chen, B. L. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride. Adv. Funct. Mater. 2021, 31, 2105731.

[61]

Liu, L. L.; Chen, F.; Wu, J. H.; Chen, J. J.; Yu, H. Q. Synergy of crystallinity modulation and intercalation engineering in carbon nitride for boosted H2O2 photosynthesis. Proc. Natl. Acad. Sci. USA 2023, 120, e2215305120.

[62]

Torres-Pinto, A.; Sampaio, M. J.; Silva, C. G.; Faria, J. L.; Silva, A. M. T. Recent strategies for hydrogen peroxide production by metal-free carbon nitride photocatalysts. Catalysts 2019, 9, 990.

[63]

Cheng, H.; Lv, H. F.; Cheng, J.; Wang, L.; Wu, X. J.; Xu, H. X. Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production. Adv. Mater. 2022, 34, 2107480.

[64]

Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem., Int. Ed. 2014, 53, 13454–13459.

[65]

Yu, T.; Breslin, C. B. Review-2D graphene and graphene-like materials and their promising applications in the generation of hydrogen peroxide. J. Electrochem. Soc. 2020, 167, 126502.

[66]

Shi, L.; Yang, L. Q.; Zhou, W.; Liu, Y. Y.; Yin, L. S.; Hai, X.; Song, H.; Ye, J. H. Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 2018, 14, 1703142.

[67]

Li, Y. F.; Zhou, M. H.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17.

[68]

Zheng, Y. M.; Luo, Y.; Ruan, Q. S.; Wang, S. H.; Yu, J.; Guo, X. L.; Zhang, W. J.; Xie, H.; Zhang, Z.; Huang, Y. Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N2 C -Site vacancies for photocatalytic H2O2 production. Appl. Catal. B Environ. 2022, 311, 121372.

[69]

Klassen, N. V.; Marchington, D.; McGowan, H. C. E. H2O2 determination by the I3-method and by KMnO4 titration. Anal. Chem. 1994, 66, 2921–2925.

[70]

Tantawi, O.; Baalbaki, A.; El Asmar, R.; Ghauch, A. A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Sci. Total Environ. 2019, 654, 107–117.

[71]

Pick, E.; Keisari, Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 1980, 38, 161–170.

[72]

Bader, H.; Sturzenegger, V.; Hoigné, J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD). Water Res. 1988, 22, 1109–1115.

[73]

Hirakawa, H.; Shiota, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Au nanoparticles supported on BiVO4: Effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal. 2016, 6, 4976–4982.

[74]

Pavithra, K.; Vadivukkarasi, S. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Sci. Hum. Wellness 2015, 4, 42–46.

[75]

Behera, A.; Babu, P.; Parida, K. Growth of macroporous TiO2 on B-doped g-C3N4 nanosheets: A Z-scheme photocatalyst for H2O2 production and phenol oxidation under visible light. Inorg. Chem. Front. 2021, 8, 1489–1499.

[76]

O'Sullivan, D. W.; Neale, P. J.; Coffin, R. B.; Boyd, T. J.; Osburn, C. L. Photochemical production of hydrogen peroxide and methylhydroperoxide in coastal waters. Mar. Chem. 2005, 97, 14–33.

[77]

Hou, W. S.; Li, Y. X.; Ouyang, S. X.; Chen, H. Y.; Ye, J. H.; Han, X. P.; Deng, Y. D. Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H2O2 production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chem. Commun. 2019, 55, 13279–13282.

[78]

Wang, W. J.; Gu, W. Q.; Li, G. Y.; Xie, H. J.; Wong, P. K.; An, T. C. Few-layered tungsten selenide as a co-catalyst for visible-light-driven photocatalytic production of hydrogen peroxide for bacterial inactivation. Environ. Sci. Nano 2020, 7, 3877–3887.

[79]

Kim, S.; Kim, K. H.; Oh, C.; Zhang, K.; Park, J. H. Artificial photosynthesis for high-value-added chemicals: Old material, new opportunity. Carbon Energy 2022, 4, 21–44.

[80]

Cao, S. W.; Low, J.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

[81]

Cao, Q.; Kumru, B.; Antonietti, M.; Schmidt, B. V. K. J. Graphitic carbon nitride and polymers: A mutual combination for advanced properties. Mater. Horiz. 2020, 7, 762–786.

[82]

Zhang, S.; Gu, P. C.; Ma, R.; Luo, C. T.; Wen, T.; Zhao, G. X.; Cheng, W. C.; Wang, X. K. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today 2019, 335, 65–77.

[83]

Rono, N.; Kibet, J. K.; Martincigh, B. S.; Nyamori, V. O. A review of the current status of graphitic carbon nitride. Crit. Rev. Solid State Mater. Sci. 2021, 46, 189–217.

[84]

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

[85]

Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68–89.

[86]

Piao, H.; Choi, G.; Jin, X. Y.; Hwang, S. J.; Song, Y. J.; Cho, S. P.; Choy, J. H. Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 2022, 14, 55.

[87]

Zou, J. P.; Wang, L. C.; Luo, J. M.; Nie, Y. C.; Xing, Q. J.; Luo, X. B.; Du, H. M.; Luo, S. L.; Suib, S. L. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Appl. Catal. B Environ. 2016, 193, 103–109.

[88]

Hu, J. D.; Zhang, P. Y.; Yang, T. Y.; Cai, Y. H.; Qu, J. F.; Yang, X. G. Screen superior ultra-thin g-C3N4 material for photocatalytic in-situ H2O2 production to remove tetracycline. Appl. Surf. Sci. 2022, 576, 151841.

[89]

Zeng, W. G.; Dong, Y. C.; Ye, X. Y.; Guan, X. J.; Zhang, T.; Guo, L. J. Ultrathin porous carbon nitride with molecular structure regulation for excellent photocatalytic water splitting. Chem. Eng. J. 2023, 468, 143604.

[90]

Wang, W. J.; Zhou, C. Y.; Yang, Y.; Zeng, G. M.; Zhang, C.; Zhou, Y.; Yang, J. N.; Huang, D. L.; Wang, H.; Xiong, W. P. et al. Carbon nitride based photocatalysts for solar photocatalytic disinfection, can we go further? Chem. Eng. J. 2021, 404, 126540.

[91]

Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149, 693–721.

[92]

Akhundi, A.; Habibi-Yangjeh, A.; Abitorabi, M.; Pouran, S. R. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal. Rev. 2019, 61, 595–628.

[93]

Chen, Y. X.; Cheng, M.; Lai, C.; Wei, Z.; Zhang, G. X.; Li, L.; Tang, C. S.; Du, L.; Wang, G. F.; Liu, H. D. The collision between g-C3N4 and QDs in the fields of energy and environment: Synergistic effects for efficient photocatalysis. Small 2023, 19, 2205902.

[94]

Hayat, A.; Sohail, M.; Anwar, U.; Taha, T. A.; Qazi, H. I. A.; Amina; Ajmal, Z.; Al-Sehemi, A. G.; Algarni, H.; Al-Ghamdi, A. A. et al. A targeted review of current progress, challenges and future perspective of g-C3N4 based hybrid photocatalyst toward multidimensional applications. Chem. Rec. 2023, 23, e202200143.

[95]

Xu, X. J.; Xu, Y. S.; Liang, Y. H.; Long, H. Y.; Chen, D. C.; Hu, H. W.; Ou, J. Z. Vacancy-modified g-C3N4 and its photocatalytic applications. Mater. Chem. Front. 2022, 6, 3143–3173.

[96]

Wang, N.; Cheng, L.; Liao, Y. L.; Xiang, Q. J. Effect of functional group modifications on the photocatalytic performance of g-C3N4. Small 2023, 19, 2300109.

[97]

Xue, Y. J.; Ma, C. Q.; Yang, Q. F.; Wang, X. Y.; An, S. N.; Zhang, X. L.; Tian, J. Construction of g-C3N4 with three coordinated nitrogen (N3C) vacancies for excellent photocatalytic activities of N2 fixation and H2O2 production. Chem. Eng. J. 2023, 457, 141146.

[98]

Wudil, Y. S.; Ahmad, U. F.; Gondal, M. A.; Al-Osta, M. A.; Almohammedi, A.; Sa’id, R. S.; Hrahsheh, F.; Haruna, K.; Mohamed, M. J. S. Tuning of graphitic carbon nitride (g-C3N4) for photocatalysis: A critical review. Arab. J. Chem. 2023, 16, 104542.

[99]

Vuong, H. T.; Bui, D. P.; Nguyen, D. V.; Pho Phuong, L.; Duc Minh, P. P.; Do Dat, T.; Hieu, N. H. Graphitic carbon nitride based materials towards photoproduction of H2O2. ChemPhotoChem 2023, 7, e202200299.

[100]
Xie, L. X.; Wang, X. Y.; Zhang, Z. Y.; Ma, Y. Y.; Du, T.; Wang, R.; Wang, J. L. Photosynthesis of hydrogen peroxide based on g-C3N4: The road of a cost-effective clean fuel production. Small, in press, DOI: 10.1002/smll.202301007.
DOI
[101]

Akhoondi, A.; Mirzaei, M.; Nassar, M. Y.; Sabaghian, Z.; Hatami, F.; Yusuf, M. New strategies in the preparation of binary g-C3N4/MXene composites for visible-light-driven photocatalytic applications. Synth. Sintering 2022, 2, 151–169.

[102]

Huang, H. M.; Jiang, L. B.; Yang, J. J.; Zhou, S. Y.; Yuan, X. Z.; Liang, J.; Wang, H.; Wang, H.; Bu, Y. Q.; Li, H. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renew. Sustainable Energy Rev. 2023, 173, 113110.

[103]

Rajeshwari, M. R.; Kokilavani, S.; Khan, S. S. Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment. Chemosphere 2022, 291, 132735.

[104]

Kumar, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V. K.; Nguyen, V. H.; Singh, P, C-. N-vacancy defect engineered polymeric carbon nitride towards photocatalysis: Viewpoints and challenges. J. Mater. Chem. A 2021, 9, 111–153.

[105]

Wang, B.; Liu, J. W.; Yao, S.; Liu, F. Y.; Li, Y. K.; He, J. Q.; Lin, Z.; Huang, F.; Liu, C.; Wang, M. Y. Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 2021, 9, 17143–17172.

[106]

Hao, L.; Huang, H. W.; Zhang, Y. H.; Ma, T. Y. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919.

[107]

Meng, A. Y.; Teng, Z. Y.; Zhang, Q. T.; Su, C. L. Intrinsic defects in polymeric carbon nitride for photocatalysis applications. Chem. Asian J. 2020, 15, 3405–3415.

[108]

Niu, P.; Liu, G.; Cheng, H. M. Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 2012, 116, 11013–11018.

[109]

Yu, X. N.; Ng, S. F.; Putri, L. K.; Tan, L. L.; Mohamed, A. R.; Ong, W. J. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis. Small 2021, 17, 2006851.

[110]

Li, X. H.; Zhang, J.; Zhou, F.; Zhang, H. L.; Bai, J.; Wang, Y. J.; Wang, H. Y. Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment. Chin. J. Catal. 2018, 39, 1090–1098.

[111]

Qu, X. Y.; Hu, S. Z.; Li, P.; Li, Z.; Wang, H.; Ma, H. F.; Li, W. The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment. Diam. Relat. Mater. 2018, 86, 159–166.

[112]

Wei, Z.; Liu, M. L.; Zhang, Z. J.; Yao, W. Q.; Tan, H. W.; Zhu, Y. F. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 2018, 11, 2581–2589.

[113]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[114]

Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M. et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 2018, 4, 106–123.

[115]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[116]

Ma, J.; Peng, X. X.; Zhou, Z. X.; Yang, H.; Wu, K. Q.; Fang, Z. Z.; Han, D.; Fang, Y. F.; Liu, S. Q.; Shen, Y. F. et al. Extended conjugation tuning carbon nitride for non-sacrificial H2O2 photosynthesis and hypoxic tumor therapy. Angew. Chem., Int. Ed. 2022, 61, e202210856.

[117]

Xie, Y.; Li, Y. X.; Huang, Z. H.; Zhang, J. Y.; Jia, X. F.; Wang, X. S.; Ye, J. H. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Appl. Catal. B Environ. 2020, 265, 118581.

[118]

Fattahimoghaddam, H.; Mahvelati-Shamsabadi, T.; Lee, B. K. Enhancement in photocatalytic H2O2 production over g-C3N4 nanostructures: A collaborative approach of nitrogen deficiency and supramolecular precursors. ACS Sustainable Chem. Eng. 2021, 9, 4520–4530.

[119]

Wang, Y. B.; Meng, D.; Zhao, X. Visible-light-driven H2O2 production from O2 reduction with nitrogen vacancy-rich and porous graphitic carbon nitride. Appl. Catal. B Environ. 2020, 273, 119064.

[120]

Luo, J.; Liu, Y. N.; Fan, C. Z.; Tang, L.; Yang, S. J.; Liu, M. L.; Wang, M. E.; Feng, C. Y.; Ouyang, X. L.; Wang, L. L. et al. Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal. 2021, 11, 11440–11450.

[121]

Zhao, C.; Shi, C. J.; Li, Q.; Wang, X. Y.; Zeng, G.; Ye, S.; Jiang, B. J.; Liu, J. Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. Mater. Today Energy 2022, 24, 100926.

[122]

Zhang, X.; Ma, P. J.; Wang, C.; Gan, L. Y.; Chen, X. J.; Zhang, P.; Wang, Y.; Li, H.; Wang, L. H.; Zhou, X. Y. et al. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution. Energy Environ. Sci. 2022, 15, 830–842.

[123]

Wang, H.; Fang, L.; Hu, S. Z.; Pei, Y. B.; Ma, W. T. A green and facile method to prepare graphitic carbon nitride nanosheets with outstanding photocatalytic H2O2 production ability via NaClO hydrothermal treatment. New J. Chem. 2018, 42, 18335–18341.

[124]

Lei, J. Y.; Chen, B.; Lv, W. J.; Zhou, L.; Wang, L. Z.; Liu, Y. D.; Zhang, J. L. Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustainable Chem. Eng. 2019, 7, 16467–16473.

[125]

Yablonovitch, E.; Gmitter, T. J.; Leung, K. M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 1991, 67, 2295–2298.

[126]

John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489.

[127]

Lin, S. F.; Zhang, N.; Wang, F. C.; Lei, J. Y.; Zhou, L.; Liu, Y. D.; Zhang, J. L. Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production. ACS Sustainable Chem. Eng. 2021, 9, 481–488.

[128]

Hu, C.; Chen, F.; Wang, Y. G.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong in-plane polarization. Adv. Mater. 2021, 33, 2101751.

[129]

Khan, A.; Zia-Ur-Rehman; Rehman, M. U.; Khan, R.; Zulfiqar; Waseem, A.; Iqbal, A.; Shah, Z. H. CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye. Inorg. Chem. Commun. 2016, 72, 33–41.

[130]

Wang, Q.; Gao, Q. Y.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300–339.

[131]

Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: A class of large molecules. ACC Chem. Res. 1990, 23, 183–188.

[132]

Shao, W.; Wang, H.; Zhang, X. D. Elemental doping for optimizing photocatalysis in semiconductors. Dalton Trans. 2018, 47, 12642–12646.

[133]

Wang, S. J.; Zhang, J. Q.; Li, B.; Sun, H. Q.; Wang, S. B. Engineered graphitic carbon nitride-based photocatalysts for visible-light-driven water splitting: A review. Energy Fuels 2021, 35, 6504–6526.

[134]

Zhu, Y. X.; Feng, Y.; Chen, S. L.; Ding, M. L.; Yao, J. F. Carbon nitride nanotube-based materials for energy and environmental applications: A review of recent progresses. J. Mater. Chem. A 2020, 8, 25626–25648.

[135]

Bai, Y. H.; Zheng, Y. J.; Wang, Z.; Hong, Q.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. Metal-doped carbon nitrides: Synthesis, structure and applications. New J. Chem. 2021, 45, 11876–11892.

[136]

Zhang, W. J.; Xu, D. T.; Wang, F. J.; Chen, M. Element-doped graphitic carbon nitride: Confirmation of doped elements and applications. Nanoscale Adv. 2021, 3, 4370–4387.

[137]

Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B Environ. 2017, 217, 388–406.

[138]

Starukh, H.; Praus, P. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis. Catalysts 2020, 10, 1119.

[139]

Zafar, Z.; Yi, S. S.; Li, J. P.; Li, C. Q.; Zhu, Y. F.; Zada, A.; Yao, W. J.; Liu, Z. Y.; Yue, X. Z. Recent development in defects engineered photocatalysts: An overview of the experimental and theoretical strategies. Energy Environ. Mater. 2022, 5, 68–114.

[140]

Qu, X. Y.; Hu, S. Z.; Bai, J.; Li, P.; Lu, G.; Kang, X. X. Synthesis of band gap-tunable alkali metal modified graphitic carbon nitride with outstanding photocatalytic H2O2 production ability via molten salt method. J. Mater. Sci. Technol. 2018, 34, 1932–1938.

[141]

Wu, S.; Yu, H. T.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380–14389.

[142]

He, Q.; Viengkeo, B.; Zhao, X.; Qin, Z. Y.; Zhang, J.; Yu, X. H.; Hu, Y. P.; Huang, W.; Li, Y. G. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res. 2023, 16, 4524–4530.

[143]

Chu, Y. Y.; Zheng, X. L.; Fan, J. R. Preparation of sodium and boron co-doped graphitic carbon nitride for the enhanced production of H2O2 via two-electron oxygen reduction and the degradation of 2, 4-DCP via photocatalytic oxidation coupled with Fenton oxidation. Chem. Eng. J. 2022, 431, 134020.

[144]

Zhang, H.; Jia, L. H.; Wu, P.; Xu, R. J.; He, J.; Jiang, W. Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification. Appl. Surf. Sci. 2020, 527, 146584.

[145]

Yang, H. H.; Qian, X. R.; Zhang, N.; Zhang, L.; Zhou, M. J. KNO3-assisted incorporation of K dopants and N defects into g-C3N4 with enhanced visible light driven photocatalytic H2O2 production. New J. Chem. 2021, 45, 22591–22601.

[146]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[147]

Hu, S. Z.; Qu, X. Y.; Li, P.; Wang, F.; Li, Q.; Song, L. J.; Zhao, Y. F.; Kang, X. X. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites. Chem. Eng. J. 2018, 334, 410–418.

[148]

Iwase, K.; Yoshioka, T.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 11068–11072.

[149]

Wang, R. C.; Yin, T. L.; Wei, P. J.; Liu, J. G. A copper complex covalently grafted on carbon nanotubes and reduced graphene oxide promotes oxygen reduction reaction activity and catalyst stability. RSC Adv. 2015, 5, 66487–66493.

[150]

Wu, G.; Hu, S. Z.; Han, Z.; Liu, C. T.; Li, Q. The effect of Ni(I)-N active sites on the photocatalytic H2O2 production ability over nickel doped graphitic carbon nitride nanofibers. New J. Chem. 2017, 41, 15289–15297.

[151]

Zhang, C. L.; Bai, J.; Ma, L.; Lv, Y.; Wang, F.; Zhang, X. X.; Yuan, X. Z.; Hu, S. Z. Synthesis of halogen doped graphite carbon nitride nanorods with outstanding photocatalytic H2O2 production ability via saturated NH4X (X= Cl, Br) solution-hydrothermal post-treatment. Diam. Relat. Mater. 2018, 87, 215–222.

[152]

Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem., Int. Ed. 2021, 60, 25546–25550.

[153]

Krivtsov, I.; Mitoraj, D.; Adler, C.; Ilkaeva, M.; Sardo, M.; Mafra, L.; Neumann, C.; Turchanin, A.; Li, C. Y.; Dietzek, B. et al. Water-soluble polymeric carbon nitride colloidal nanoparticles for highly selective quasi-homogeneous photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 487–495.

[154]

Dang, X. M.; Yang, R. Y.; Wang, Z.; Wu, S. Y.; Zhao, H. M. Efficient visible-light activation of molecular oxygen to produce hydrogen peroxide using P doped g-C3N4 hollow spheres. J. Mater. Chem. A 2020, 8, 22720–22727.

[155]

Tian, J.; Wu, T. J.; Wang, D.; Pei, Y.; Qiao, M. H.; Zong, B. N. One-pot synthesis of potassium and phosphorus-doped carbon nitride catalyst derived from urea for highly efficient visible light-driven hydrogen peroxide production. Catal. Today 2019, 330, 171–178.

[156]

Shi, J. H.; Luo, Y. F.; Yang, T. T.; Wang, H.; Ju, C. K.; Pu, K. K.; Shi, J. T.; Zhao, T.; Xue, J. B.; Li, Y. Z. et al. Enhanced nonsacrificial photocatalytic generation of hydrogen peroxide under visible light using modified graphitic carbon nitride with doped phosphorus and loaded carbon quantum dots: Constructing electron transfer channel. J. Colloid Interface Sci. 2022, 628, 259–272.

[157]

Moon, G. H.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X. C.; Choi, W. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal. 2017, 7, 2886–2895.

[158]

Kim, S.; Moon, G. H.; Kim, H.; Mun, Y.; Zhang, P.; Lee, J.; Choi, W. Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. J. Catal. 2018, 357, 51–58.

[159]

Liu, W.; Wang, P. F.; Chen, J.; Gao, X.; Che, H.; Liu, B.; Ao, Y. H. Unraveling the mechanism on ultrahigh efficiency photocatalytic H2O2 generation for dual-heteroatom incorporated polymeric carbon nitride. Adv. Funct. Mater. 2022, 32, 2205119.

[160]

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl. Catal. B Environ. 2021, 281, 119539.

[161]

Wang, H.; Guan, Y. H.; Hu, S. Z.; Pei, Y. B.; Ma, W. T.; Fan, Z. P. Hydrothermal synthesis of band gap-tunable oxygen-doped g-C3N4 with outstanding “two-channel” photocatalytic H2O2 production ability assisted by dissolution-precipitation process. Nano 2019, 14, 1950023.

[162]

Xie, H.; Zheng, Y. M.; Guo, X. L.; Liu, Y. Y.; Zhang, Z.; Zhao, J. J.; Zhang, W. J.; Wang, Y. X.; Huang, Y. Rapid microwave synthesis of mesoporous oxygen-doped g-C3N4 with carbon vacancies for efficient photocatalytic H2O2 production. ACS Sustainable Chem. Eng. 2021, 9, 6788–6798.

[163]

Samanta, S.; Yadav, R.; Kumar, A.; Sinha, A.; Srivastava, R. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Appl. Catal. B Environ. 2019, 259, 118054.

[164]

Wang, W. K.; Zhang, W.; Cai, Y. J.; Wang, Q.; Deng, J.; Chen, J. S.; Jiang, Z. F.; Zhang, Y. Z.; Yu, C. Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets. Nano Res. 2023, 16, 2177–2184.

[165]

Li, T.; Zhang, X. H.; Hu, C.; Li, X. Y.; Zhang, P.; Chen, Z. H. Porous carbon-doped g-C3N4 with tunable band structure for boosting photocatalytic H2O2 production with simultaneous pollutants removal. J. Environ. Chem. Eng. 2022, 10, 107116.

[166]

Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Hydrogen peroxide production on a carbon nitride-boron nitride-reduced graphene oxide hybrid photocatalyst under visible light. ChemCatChem 2018, 10, 2070–2077.

[167]

Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 2015, 5, 3058–3066.

[168]

Hu, J. D.; Chen, C.; Yang, H. B.; Yang, F. Y.; Qu, J. F.; Yang, X. G.; Sun, W.; Dai, L. M.; Li, C. M. Tailoring well-ordered, highly crystalline carbon nitride nanoarrays via molecular engineering for efficient photosynthesis of H2O2. Appl. Catal. B Environ. 2022, 317, 121723.

[169]

Chen, J. W.; Gao, W.; Lu, Y. C.; Ye, F. S.; Huang, S. W.; Peng, Y. Y.; Yang, X. G.; Cai, Y. H.; Qu, J. F.; Hu, J. D. Anti-defect engineering of crystalline g-C3N4 nanostructures for efficient photocatalytic in situ H2O2 production. ACS Appl. Nano Mater. 2023, 6, 3927–3935.

[170]

Yang, H.-D.;Huang, J.-H.;Shibata, K.;Lu, D.;Maeda, K.; Hu, C. Boosting photocatalytic H2O2 production by coupling of sulfuric acid and 5-sulfosalicylic acid incorporated polyaniline with g-C3N4. Sustain. Energy Fuels 2020, 4, 4186–4195.

[171]

Yu, G. Y.; Gong, K.; Xing, C. W.; Hu, L.; Huang, H. B.; Gao, L. J.; Wang, D. B.; Li, X. Y. Dual P-doped-site modified porous g-C3N4 achieves high dissociation and mobility efficiency for photocatalytic H2O2 production. Chem. Eng. J. 2023, 461, 142140.

[172]

Kou, J. H.; Lu, C. H.; Wang, J.; Chen, Y. K.; Xu, Z. Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445–1514.

[173]

Chu, L.; Zhai, S. B.; Ahmad, W.; Zhang, J.; Zang, Y.; Yan, W. S.; Li, Y. F. High-performance large-area perovskite photovoltaic modules. Nano Res. Energy 2022, 1, e9120024.

[174]

Dai, Y. T.; Xiong, Y. J. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Res. Energy 2022, 1, e9120006.

[175]

Wang, Z. P.; Lin, Z. P.; Shen, S. J.; Zhong, W. W.; Cao, S. W. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730.

[176]

Bai, L. Q.; Huang, H. W.; Yu, S. X.; Zhang, D. Y.; Huang, H. T.; Zhang, Y. H. Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. J. Energy Chem. 2022, 64, 214–235.

[177]

Zheng, Y.; Chen, Y. L.; Gao, B. F.; Lin, B. Z.; Wang, X. C. Black phosphorus and carbon nitride hybrid photocatalysts for photoredox reactions. Adv. Funct. Mater. 2020, 30, 2002021.

[178]

Liu, R. L.; Chen, Z. X.; Yao, Y.; Li, Y.; Cheema, W. A.; Wang, D. W.; Zhu, S. M. Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: A mini review. RSC Adv. 2020, 10, 29408–29418.

[179]

Ren, Y. J.; Zeng, D. Q.; Ong, W. J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal. 2019, 40, 289–319.

[180]

Zhong, J. P.; Huang, J. X.; Liu, Y.; Li, D. G.; Tan, C. W.; Chen, P.; Liu, H. J.; Zheng, X. S.; Wen, C. H.; Lv, W. Y. et al. Construction of double-functionalized g-C3N4 heterojunction structure via optimized charge transfer for the synergistically enhanced photocatalytic degradation of sulfonamides and H2O2 production. J. Hazard. Mater. 2022, 422, 126868.

[181]

Zhao, X. S.; You, Y. Y.; Huang, S. B.; Wu, Y. X.; Ma, Y. Y.; Zhang, G.; Zhang, Z. H. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B Environ. 2020, 278, 119251.

[182]

Li, X. B.; Liu, J. Y.; Huang, J. T.; He, C. Z.; Feng, Z. J.; Chen, Z.; Wan, L. Y.; Deng, F. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys. Chim.Sin. 2021, 37, 2010030.

[183]

Miao, H.; Yang, J.; Peng, G. L.; Li, H. Q.; Zhu, Y. F. Enhancement of the degradation ability for organic pollutants via the synergistic effect of photoelectrocatalysis on a self-assembled perylene diimide (SA-PDI) thin film. Sci. Bull. 2019, 64, 896–903.

[184]

Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.

[185]

Wei, K. Q.; Nie, H. D.; Li, Y.; Wang, X.; Liu, Y.; Zhao, Y. J.; Shi, H.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon dots with different energy levels regulate the activity of metal-free catalyst for hydrogen peroxide photoproduction. J. Colloid Interface Sci. 2022, 616, 769–780.

[186]

Wang, X. W.; Han, Z.; Yu, L. H.; Liu, C. T.; Liu, Y. F.; Wu, G. Synthesis of full-spectrum-response Cu2(OH)PO4/g-C3N4 photocatalyst with outstanding photocatalytic H2O2 production performance via a “two channel route”. ACS Sustainable Chem. Eng. 2018, 6, 14542–14553.

[187]

Li, Z.; Xiong, N. N.; Gu, G. Z. Fabrication of a full-spectrum-response Cu2(OH)2CO3/g-C3N4 heterojunction catalyst with outstanding photocatalytic H2O2 production performance via a self-sacrificial method. Dalton Trans. 2019, 48, 182–189.

[188]

Bai, J.; Sun, Y. Z.; Li, M. Y.; Yang, L. N.; Li, J.; Hu, S. Z. “Two channel” photocatalytic hydrogen peroxide production using g-C3N4 coated CuO nanorod heterojunction catalysts prepared via a novel molten salt-assisted microwave process. New J. Chem. 2018, 42, 13529–13535.

[189]

Chen, X.; Hu, S. Z.; Li, P.; Li, W.; Ma, H. F.; Lu, G. Photocatalytic production of hydrogen peroxide using g-C3N4 coated MgO-Al2O3-Fe2O3 heterojunction catalysts prepared by a novel molten salt-assisted microwave process. Acta Phys. Chim. Sin. 2017, 33, 2532–2541.

[190]

Wang, L.; Cao, M. H.; Ai, Z. H.; Zhang, L. Z. Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core-shell nanowires by tetrapolyphosphate. Environ. Sci. Technol. 2014, 48, 3354–3362.

[191]

He, L. M.; Jing, L. Q.; Luan, Y. B.; Wang, L.; Fu, H. G. Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight. ACS Catal. 2014, 4, 990–998.

[192]

Lan, H. C.; Wang, A. M.; Liu, R. P.; Liu, H. J.; Qu, J. H. Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. J. Hazard. Mater. 2015, 285, 167–172.

[193]

Jian, Y. F.; Yu, T. T.; Jiang, Z. Y.; Yu, Y. K.; Douthwaite, M.; Liu, J. Y.; Albilali, R.; He, C. In-depth understanding of the morphology effect of α-Fe2O3 on catalytic ethane destruction. ACS Appl. Mater. Interfaces 2019, 11, 11369–11383.

[194]

Zheng, Y. H.; Cheng, Y.; Wang, Y. S.; Bao, F.; Zhou, L. H.; Wei, X. F.; Zhang, Y. Y.; Zheng, Q. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B 2006, 110, 3093–3097.

[195]

Wang, Y. J.; Song, H. M.; Chen, J.; Chai, S. N.; Shi, L. M.; Chen, C. W.; Wang, Y. B.; He, C. A novel solar photo-Fenton system with self-synthesizing H2O2: Enhanced photo-induced catalytic performances and mechanism insights. Appl. Surf. Sci. 2020, 512, 145650.

[196]

Chen, X.; Zhang, W. W.; Zhang, L. X.; Feng, L. P.; Zhang, C. X.; Jiang, J.; Yan, T. J.; Wang, H. Sacrificial agent-free photocatalytic H2O2 evolution via two-electron oxygen reduction using a ternary α-Fe2O3/CQD@g-C3N4 photocatalyst with broad-spectrum response. J. Mater. Chem. A 2020, 8, 18816–18825.

[197]

Zhang, X. Y.; Wei, W. F.; Zhang, S.; Wen, B. Y.; Su, Z. Q. Advanced 3D nanohybrid foam based on graphene oxide: Facile fabrication strategy, interfacial synergetic mechanism, and excellent photocatalytic performance. Sci. China Mater. 2019, 62, 1888–1897.

[198]

Wei, X. Y.; Wang, Y. W.; Huang, Y.; Fan, C. M. Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO. J. Alloys Compd. 2019, 802, 467–476.

[199]

Geng, X. L.; Wang, L.; Zhang, L.; Wang, H.; Peng, Y. Y.; Bian, Z. Y. H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst. Chem. Eng. J. 2021, 420, 129722.

[200]

Kang, M. J.; Yu, H.; Lee, W.; Cha, H. G. Efficient Fe2O3/Cg-C3N4 Z-scheme heterojunction photocatalyst prepared by facile one-step carbonizing process. J. Phys. Chem. Solids 2019, 130, 93–99.

[201]

Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.

[202]

Shi, J. H.; Liu, Z. C.; Luo, Y. F.; Guo, C. L.; Li, Y. Z.; Yang, T. T.; Ju, C. K.; Wang, H.; Li, X. T.; Fan, Z. Enhanced photocatalytic production of hydrogen peroxide via two-channel pathway using modified graphitic carbon nitride photocatalyst: Doping K+ and combining WO3. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126758.

[203]

Zhang, M.; Bai, X. J.; Liu, D.; Wang, J.; Zhu, Y. F. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B Environ. 2015, 164, 77–81.

[204]

Jourshabani, M.; Yun, S. H.; Asrami, M. R.; Lee, B. K. Superior photodegradation of organic compounds and H2O2 production over tungsten oxide/carbon nitride heterojunction with sizable heptazine units: Dual polycondensation and interface engineering. Chem. Eng. J. 2022, 427, 131710.

[205]

Yang, L. P.; Dong, G. H.; Jacobs, D. L.; Wang, Y. H.; Zang, L.; Wang, C. Y. Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J. Catal. 2017, 352, 274–281.

[206]

Yang, L. P.; Wang, P. Y.; Yin, J.; Wang, C. Y.; Dong, G. H.; Wang, Y. H.; Ho, W. Engineering of reduced graphene oxide on nanosheet-g-C3N4/perylene imide heterojunction for enhanced photocatalytic redox performance. Appl. Catal. B Environ. 2019, 250, 42–51.

[207]

Chen, H. B.; Xing, Y. J.; Liu, S. C.; Liang, Y. J.; Fu, J. L.; Wang, L. J.; Wang, W. Z. Mechanistic insights into efficient photocatalytic H2O2 production of 2D/2D g-C3N4/In2S3 photocatalyst by tracking charge flow direction. Chem. Eng. J. 2023, 462, 142038.

[208]

Wang, A. H.; Liang, H. G.; Chen, F.; Tian, X. L.; Yin, S. B.; Jing, S. Y.; Tsiakaras, P. Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance. Appl. Catal. B Environ. 2022, 310, 121336.

[209]

Zhang, H.; Bai, X. F. Protonated g-C3N4 coated Co9S8 heterojunction for photocatalytic H2O2 production. J. Colloid Interface Sci. 2022, 627, 541–553.

[210]

Wang, J. X.; Guo, C. L.; Jiang, Y.; Wan, J. F.; Zheng, B.; Li, Y. X.; Jiang, B. J. Highly efficient photocatalytic H2O2 production by tubular g-C3N4/ZnIn2S4 nanosheet heterojunctions via improved charge separation. Sci. China Mater. 2023, 66, 1053–1061.

[211]

Gan, W.; Guo, J.; Fu, X. C.; Jin, J. C.; Zhang, M.; Chen, R. X.; Ding, C. S.; Lu, Y. Q.; Li, J. R.; Sun, Z. Q. Introducing oxygen-doped g-C3N4 onto g-C3N4/TiO2 heterojunction for efficient catalytic gatifloxacin degradation and H2O2 production. Sep. Purif. Technol 2023, 317, 123791.

[212]

Humayun, M.; Ullah, H.; Tahir, A. A.; Bin Mohd Yusoff, A. R.; Mat Teridi, M. A.; Nazeeruddin, M. K.; Luo, W. An overview of the recent progress in polymeric carbon nitride based photocatalysis. Chem. Rec. 2021, 21, 1811–1844.

[213]

Rhimi, B.; Wang, C. Y.; Bahnemann, D. W. Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: A mini review. J. Phys. Energy 2020, 2, 042003.

[214]

Ling, G. Z. S.; Ng, S. F.; Ong, W. J. Tailor-engineered 2D cocatalysts: Harnessing electron-hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv. Funct. Mater. 2022, 32, 2111875.

[215]

Hu, S. Z.; Sun, X. L.; Zhao, Y. F.; Li, W.; Wang, H.; Wu, G. The effective photocatalytic water splitting to simultaneously produce H2 and H2O2 over Pt loaded K-g-C3N4 catalyst. J. Taiwan Inst. Chem. Eng. 2020, 107, 129–138.

[216]

Zuo, G. F.; Zhang, Y. Q.; Liu, S. S.; Guo, Z. L.; Zhao, Q. N.; Saianand, G.; Feng, L. W.; Li, L. J.; Li, W. Z.; Zhang, N. et al. A β-cyclodextrin modified graphitic carbon nitride with Au Co-catalyst for efficient photocatalytic hydrogen peroxide productionv. Nanomaterials 2020, 10, 1969.

[217]

Chang, X. Y.; Yang, J. J.; Han, D. D.; Zhang, B.; Xiang, X.; He, J. Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C3N4 catalysts. Catalysts 2018, 8, 147.

[218]

Zuo, G. F.; Liu, S. S.; Wang, L.; Song, H.; Zong, P. X.; Hou, W. S.; Li, B. D.; Guo, Z. L.; Meng, X. G.; Du, Y. et al. Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catal. Commun. 2019, 123, 69–72.

[219]

Jones, W.; Martin, D. J.; Caravaca, A.; Beale, A. M.; Bowker, M.; Maschmeyer, T.; Hartley, G.; Masters, A. A comparison of photocatalytic reforming reactions of methanol and triethanolamine with Pd supported on titania and graphitic carbon nitride. Appl. Catal. B Environ. 2019, 240, 373–379.

[220]

Peng, Y. L.; Wang, L. Z.; Liu, Y. D.; Chen, H. J.; Lei, J. Y.; Zhang, J. L. Visible-light-driven photocatalytic H2O2 production on g-C3N4 loaded with CoP as a noble metal free cocatalyst. Eur. J. Inorg. Chem. 2017, 2017, 4797–4802.

[221]

Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. 2014, 126, 9731–9735.

[222]

Qiu, B. C.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. A robust and efficient catalyst of Cd x Zn1- x Se motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation. Chem. Commun. 2017, 53, 897–900.

[223]

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

[224]

Peng, Y. L.; Zhou, L.; Wang, L. Z.; Lei, J. Y.; Liu, Y. D.; Daniele, S.; Zhang, J. L. Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production. Res. Chem. Intermed. 2019, 45, 5907–5917.

[225]

Ji, Q. J.; Pan, L. H.; Xu, J. X.; Wang, C.; Wang, L. Zeolitic imidazolate framework-67-derived CoP/Co@ N, P-doped carbon nanoparticle composites with graphitic carbon nitride for enhanced photocatalytic production of H2 and H2O2. ACS Appl. Nano Mater. 2020, 3, 3558–3567.

[226]

Chen, L.; Yang, Z.; Chen, B. L. Uniformly dispersed metal sulfide nanodots on g-C3N4 as bifunctional catalysts for high-efficiency photocatalytic H2 and H2O2 production under visible-light irradiation. Energy Fuels 2021, 35, 10746–10755.

[227]

Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B Environ. 2019, 258, 117956.

[228]

He, K. L.; Xie, J.; Liu, Z. Q.; Li, N.; Chen, X. B.; Hu, J.; Li, X. Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J. Mater. Chem. A 2018, 6, 13110–13122.

[229]

Dong, J.; Shi, Y.; Huang, C. P.; Wu, Q.; Zeng, T.; Yao, W. F. A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Appl. Catal. B Environ. 2019, 243, 27–35.

[230]

Yang, Q.; Li, R. J.; Wei, S. Q.; Yang, R. Schottky functionalized Z-scheme heterojunction photocatalyst Ti2C3/g-C3N4/BiOCl: Efficient photocatalytic H2O2 production via two-channel pathway. Appl. Surf. Sci. 2022, 572, 151525.

[231]

Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Carbon nitride-aromatic diimide-graphene nanohybrids: Metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 2016, 138, 10019–10025.

[232]

Zhao, S.; Guo, T.; Li, X.; Xu, T. G.; Yang, B.; Zhao, X. Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl. Catal. B Environ. 2018, 224, 725–732.

[233]

Sakugawa, H.; Kaplan, I. R.; Tsai, W.; Cohen, Y. Atmospheric hydrogen peroxide. Environ. Sci. Technol. 1990, 24, 1452–1462.

[234]

Zuo, Y. G.; Hoigné, J. Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog water. Science 1993, 260, 71–73.

[235]

Patterson, C. O. P.; Myers, J. Photosynthetic production of hydrogen peroxide by Anacystis nidulans. Plant Physiol. 1973, 51, 104–109.

[236]

Collén, J.; Del Rio, M. J.; García-Reina, G.; Pedersén, M. Photosynthetic production of hydrogen peroxide by Ulva rigida C. Ag. (Chlorophyta). Planta 1995, 196, 225–230.

[237]

Kim, H. I.; Choi, Y.; Hu, S.; Choi, W.; Kim, J. H. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl. Catal. B Environ. 2018, 229, 121–129.

[238]

Chu, C. H.; Zhu, Q. H.; Pan, Z. H.; Gupta, S.; Huang, D. H.; Du, Y. H.; Weon, S.; Wu, Y. S.; Muhich, C.; Stavitski, E. et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl. Acad. Sci. USA 2020, 117, 6376–6382.

[239]

Zhu, Y. Q.; Wang, T.; Xu, T.; Li, Y. X.; Wang, C. Y. Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution. Appl. Surf. Sci. 2019, 464, 36–42.

[240]

Zuo, Y.; Liu, Y. P.; Li, J. S.; Du, R. F.; Yu, X. T.; Xing, C. C.; Zhang, T.; Yao, L.; Arbiol, J.; Llorca, J. et al. Solution-processed ultrathin SnS2-Pt nanoplates for photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2019, 11, 6918–6926.

[241]

Zhang, H. B.; Zhang, P.; Qiu, M.; Dong, J. C.; Zhang, Y. F.; Lou, X. W. Ultrasmall MoO x clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv. Mater. 2019, 31, 1804883.

[242]

Zhao, Y. B.; Gao, J. Y.; Yang, Z. C.; Li, L. N.; Cui, J. H.; Zhang, P.; Hu, C.; Diao, C. Z.; Choi, W. Efficient exciton dissociation in ionically interacted methyl viologen and polymeric carbon nitride for superior H2O2 photoproduction. ACS Catal. 2023, 13, 2790–2801.

[243]

Ma, P. J.; Zhang, X.; Wang, C.; Wang, Z. W.; Wang, K. W.; Feng, Y. B.; Wang, J. X.; Zhai, Y. D.; Deng, J. G.; Wang, L. H. et al. Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution. Appl. Catal. B Environ. 2022, 300, 120736.

[244]

Chen, Q. C.; Lu, C. J.; Ping, B. Y.; Li, G. Y.; Chen, J. Y.; Sun, Z. M.; Zhang, Y. J.; Ruan, Q. S.; Tao, L. A hydroxyl-induced carbon nitride homojunction with functional surface for efficient photocatalytic production of H2O2. Appl. Catal. B Environ. 2023, 324, 122216.

[245]

Yao, S.; Tang, T.; Shen, Y. L.; Yang, F.; An, C. H. Atomically dispersed scandium Lewis acid sites on carbon nitride for efficient photocatalytic hydrogen peroxide production. Sci. China Mater. 2023, 66, 672–678.

[246]

Tang, R. D.; Gong, D. X.; Zhou, Y. Y.; Deng, Y. C.; Feng, C. Y.; Xiong, S.; Huang, Y.; Peng, G. W.; Li, L. et al. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Appl. Catal. B Environ. 2022, 303, 120929.

[247]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009.

[248]

Wei, Z. C.; Wang, J.; Guo, S.; Tan, S. C. Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management. Nano Res. Energy 2022, 1, e9120014.

[249]

Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085.

[250]

Yang, Y.; Zeng, G. M.; Huang, D. L.; Zhang, C.; He, D. H.; Zhou, C. Y.; Wang, W. J.; Xiong, W. P.; Li, X. P.; Li, B. S. et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl. Catal. B Environ. 2020, 272, 118970.

[251]

Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 2016, 116, 10276–10341.

[252]

Di Filippo, M.; Bracken, C.; Baumann, M. Continuous flow photochemistry for the preparation of bioactive molecules. Molecules 2020, 25, 356.

[253]

Rehm, T. H. Reactor technology concepts for flow photochemistry. ChemPhotoChem 2020, 4, 235–254.

[254]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

[255]

Han, Z. Y.; Liang, H. L.; Huo, W. X.; Zhu, X. S.; Du, X. L.; Mei, Z. X. Boosted UV photodetection performance in chemically etched amorphous Ga2O3 thin-film transistors. Adv. Opt. Mater. 2020, 8, 1901833.

[256]

Liu, Z. Y.; Qiu, H. X.; Wang, C.; Chen, Z. P.; Zyska, B.; Narita, A.; Ciesielski, A.; Hecht, S.; Chi, L. F.; Müllen, K. et al. Charge transport: Photomodulation of charge transport in all-semiconducting 2D-1D van der Waals heterostructures with suppressed persistent photoconductivity effect). Adv. Mater. 2020, 32, 2070200.

[257]

Kim, M. S.; Jung, J.; Kim, H. T.; Choi, D. H.; Jung, S.; Kim, H. J. A facile method based on oxide semiconductor reduction for controlling the photoresponse characteristic of flexible and transparent optoelectronic devices. Adv. Opt. Mater. 2021, 9, 2100725.

[258]

Seo, S.; Lee, J. J.; Lee, R. G.; Kim, T. H.; Park, S.; Jung, S.; Lee, H. K.; Andreev, M.; Lee, K. B.; Jung, K. S. et al. An optogenetics-inspired flexible van der Waals optoelectronic synapse and its application to a convolutional neural network. Adv. Mater. 2021, 33, 2102980.

[259]

Liu, Z. Y.; Qiu, H. X.; Wang, C.; Chen, Z. P.; Zyska, B.; Narita, A.; Ciesielski, A.; Hecht, S.; Chi, L. F.; Müllen, K. et al. Photomodulation of charge transport in all-semiconducting 2D-1D van der Waals heterostructures with suppressed persistent photoconductivity effect. Adv. Mater. 2020, 32, 2001268.

[260]

Loh, J. Y. Y.; Sharma, G.; Kherani, N. P.; Ozin, G. A. Post-illumination photoconductivity enables extension of photo-catalysis after sunset. Adv. Energy Mater. 2021, 11, 2101566.

[261]

Kuspanov, Z.; Bakbolat, B.; Baimenov, A.; Issadykov, A.; Yeleuov, M.; Daulbayev, C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. Sci. Total Environ. 2023, 885, 163914.

[262]

Jimenéz-Calvo, P.; Muñoz-Batista, M. J.; Isaacs, M.; Ramnarain, V.; Ihiawakrim, D.; Li, X. Y.; Muñoz-Márquez, M. Á.; Teobaldi, G.; Kociak, M.; Paineau, E. A compact photoreactor for automated H2 photoproduction: Revisiting the (Pd, Pt, Au)/TiO2 (P25) Schottky junctions. Chem. Eng. J. 2023, 459, 141514.

[263]

Deng, S. J.; Liu, C. S.; Zhang, Y.; Ji, Y. X.; Mei, B. B.; Yao, Z. D.; Lin, S. W. Large-scale preparation of ultrathin bimetallic nickel iron sulfides branch nanoflake arrays for enhanced hydrogen evolution reaction. Catalysts 2023, 13, 174.

[264]

Zhang, N.; Yang, M. Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y. J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 2015, 115, 10307–10377.

[265]

Gilmore, K.; Seeberger, P. H. Continuous flow photochemistry. Chem. Rec. 2014, 14, 410–418.

[266]

Loubière, K.; Oelgemöller, M.; Aillet, T.; Dechy-Cabaret, O.; Prat, L. Continuous-flow photochemistry: A need for chemical engineering. Chem. Eng. Process. 2016, 104, 120–132.

[267]

Cambié, D.; Zhao, F.; Hessel, V.; Debije, M. G.; Noël, T. A leaf-inspired luminescent solar concentrator for energy-efficient continuous-flow photochemistry. Angew. Chem. 2017, 129, 1070–1074.

[268]

Blanco-Ania, D.; Gawade, S. A.; Zwinkels, L. J. L.; Maartense, L.; Bolster, M. G.; Benningshof, J. C. J.; Rutjes, F. P. J. T. Rapid and scalable access into strained scaffolds through continuous flow photochemistry. Org. Process Res. Dev. 2016, 20, 409–413.

[269]

Zhang, M. X.; Roth, P. Flow photochemistry-from microreactors to large-scale processing. Curr. Opin. Chem. Eng. 2023, 39, 100897.

[270]

Baumann, M.; Moody, T. S.; Smyth, M.; Wharry, S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org. Process Res. Dev. 2020, 24, 1802–1813.

[271]

Horáková, P.; Kočí, K. Continuous-flow chemistry and photochemistry for manufacturing of active pharmaceutical ingredients. Molecules 2022, 27, 8536.

[272]

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

[273]

Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

[274]

Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173.

[275]

Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

[276]

Wang, Q.; Pan, Z. H. Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Res. 2022, 15, 10090–10109.

[277]

Meng, L. X.; Li, L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res. Energy 2022, 1, e9120020.

[278]

Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

[279]

Xia, Y.; Sayed, M.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Single-atom heterogeneous photocatalysts. Chem Catal. 2021, 1, 1173–1214.

[280]

Li, J. H.; Zhang, Y. M.; Huang, Y. L.; Luo, B.; Jing, L.; Jing, D. W. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications-a review. Nano Res. 2022, 15, 10268–10291.

[281]

Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.

[282]

Azam, S.; Vu, T. V.; Mirza, D. H.; Irfan, M.; Goumri-Said, S. Effect of Coulomb interactions on optoelectronic properties of Eu doped lanthanide stannates pyrochlore: DFT + U investigations. J. Solid State Chem. 2020, 290, 121522.

[283]

Ivády, V.; Armiento, R.; Szász, K.; Janzén, E.; Gali, A.; Abrikosov, I. A. Theoretical unification of hybrid-DFT and DFT + U methods for the treatment of localized orbitals. Phys. Rev. B 2014, 90, 035146.

[284]

Feng, C. Y.; Wu, Z. P.; Huang, K. W.; Ye, J. H.; Zhang, H. B. Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2200180.

[285]

Guo, Y.; Tong, X. L.; Yang, N. J. Photocatalytic and electrocatalytic generation of hydrogen peroxide: Principles, catalyst design and performance. Nano-Micro Lett. 2023, 15, 77.

[286]

Singh, A. K.; Gorelik, R.; Biswas, T. Data-driven discovery of robust materials for photocatalytic energy conversion. Annu. Rev. Condens. Matter Phys. 2023, 14, 237–259.

[287]
Shawky, A.; Mohamed, R. M. S-scheme heterojunctions: Emerging designed photocatalysts toward green energy and environmental remediation redox reactions. J. Environ. Chem. Eng. 2022 , 10, 108249.
DOI
[288]

Chakraborty, I.; Guo, Z. H.; Bandyopadhyay, A.; Sahoo, P. Physical modifications and algorithmic predictions behind further advancing 2D water splitting photocatalyst: An overview. Eng. Sci. 2022, 20, 34–46.

[289]

Tan, X. Q.; Ng, S. F.; Mohamed, A. R.; Ong, W. J. Point-to-face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications. Carbon Energy 2022, 4, 665–730.

[290]

Li, N. N.; Tong, K.; Yang, L. J.; Du, X. Z. Review of 3D printing in photocatalytic substrates and catalysts. Mater. Today Energy 2022, 29, 101100.

[291]

Mai, H.; Le, T. C.; Chen, D. H.; Winkler, D. A.; Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 2022, 122, 13478–13515.

[292]
Kang, S. L.; Sun, T.; Ma, Y. X.; Du, M. M.; Gong, M. F.; Zhou, C. Y.; Chai, Y.; Qiu, B. C. Artificial photosynthesis bringing new vigor into plastic wastes. SmartMat, in press, DOI: 10.1002/smm2.1202.
DOI
[293]

Leong, W. S.; Arrabito, G.; Prestopino, G. Artificial intelligence algorithm enabled industrial-scale graphene characterization. Crystals 2020, 10, 308.

[294]

Zhang, L.; Liu, T.; Xie, Y. H.; Zeng, Z.; Chen, J. Y. A new classification method of nanotechnology for design integration in biomaterials. Nanotechnol. Rev. 2020, 9, 820–832.

[295]

Chen, L. H.; Lan, C. W.; Xu, B.; Bi, K. Progress on material characterization methods under big data environment. Adv. Compos. Hybrid. Mater. 2021, 4, 235–247.

[296]

Tariq, W.; Ali, F.; Arslan, C.; Nasir, A.; Gillani, S. H.; Rehman, A. Synthesis and applications of graphene and graphene-based nanocomposites: Conventional to artificial intelligence approaches. Front. Environ. Chem. 2022, 3, 890408.

[297]

Kim, J.; Jang, H. W. Can artificial intelligence boost developing electrocatalysts for efficient water splitting to produce green hydrogen? Korean J. Mater. Res. 2023, 33, 175–188.

[298]

Ge, L. Y.; Ke, Y. Z.; Li, X. B. Machine learning integrated photocatalysis: Progress and challenges. Chem. Commun. 2023, 59, 5795–5806.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 June 2023
Revised: 26 July 2023
Accepted: 30 July 2023
Published: 08 September 2023
Issue date: March 2024

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors would like to acknowledge the financial support provided by the Ministry of Higher Education (MOHE) Malaysia under the Fundamental Research Grant Scheme (FRGS) (Ref no: FRGS/1/2020/TK0/XMU/02/1). We would also like to thank the Ministry of Science, Technology and Innovation (MOSTI) Malaysia under the Strategic Research Fund (SRF-APP) (S.22015). The authors would also like to acknowledge the financial support provided by the National Natural Science Foundation of China (Ref no: 22202168) and Guangdong Basic and Applied Basic Research Foundation (Ref no: 2021A1515111019). This work is also funded by Xiamen University Malaysia Investigatorship Grant (Grant no: IENG/0038), Xiamen University Malaysia Research Fund (ICOE/0001, XMUMRF/2021-C8/IENG/0041 and XMUMRF/2019-C3/IENG/0013), and Hengyuan International Sdn. Bhd. (Grant no: EENG/0003).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return