Journal Home > Volume 2 , Issue 4

The effective management of oxygen transport resistance (OTR) within the cathode catalyst layer (CCL) is crucial for achieving a high catalyst performance at low platinum (Pt) loading. Over the past two decades, significant advancements have been made in the development of various high active platinum-based catalysts, aiming at enhancing oxygen mass transport and the oxygen reduction reaction (ORR). However, experimental investigations of transport processes in porous media are often computational costs and restrained by limitations in in-situ measurement capabilities, as well as spatial and temporal resolution. Fortunately, numerical simulation provides a valuable alternative for unveiling the intricate relationship between local transport properties and overall cell performance that remain unresolved or uncoupled through experimental approach. In this review, we elucidate the primary experimental and numerical efforts undertaken to improve OTR. We consolidate the available literature on OTR values and perform a quantitative comparison of the effectiveness of different strategies in mitigating OTR. Furthermore, we analyze the intrinsic limitations and challenges associated with current experimental and numerical methods. Finally, we outline future prospect for advancements in both experimental techniques and modelling methods.


menu
Abstract
Full text
Outline
About this article

Experimental and numerical efforts to improve oxygen mass transport in porous catalyst layer of proton exchange membrane fuel cells

Show Author's information Zhaojing Ni1Kai Han2Xianchun Chen1Lu Wang1( )Bo Wang1( )
Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Institute of Technology Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China

Abstract

The effective management of oxygen transport resistance (OTR) within the cathode catalyst layer (CCL) is crucial for achieving a high catalyst performance at low platinum (Pt) loading. Over the past two decades, significant advancements have been made in the development of various high active platinum-based catalysts, aiming at enhancing oxygen mass transport and the oxygen reduction reaction (ORR). However, experimental investigations of transport processes in porous media are often computational costs and restrained by limitations in in-situ measurement capabilities, as well as spatial and temporal resolution. Fortunately, numerical simulation provides a valuable alternative for unveiling the intricate relationship between local transport properties and overall cell performance that remain unresolved or uncoupled through experimental approach. In this review, we elucidate the primary experimental and numerical efforts undertaken to improve OTR. We consolidate the available literature on OTR values and perform a quantitative comparison of the effectiveness of different strategies in mitigating OTR. Furthermore, we analyze the intrinsic limitations and challenges associated with current experimental and numerical methods. Finally, we outline future prospect for advancements in both experimental techniques and modelling methods.

Keywords: mass transport, porous media, catalyst layer, high-performance fuel cells

References(109)

[1]
China Media Group Network. New era of word view—a big test: Carbon peak and carbon neutralization [Online]. 2022. https://news.cctv.com/2022/06/04/ARTISgacmdialuWCOYgIilRo220530.shtml (Access date: 30 May 2023)
[2]

Li, G. Q.; Kujawski, W.; Rynkowska, E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC). Rev. Chem. Eng. 2022, 38, 327–346.

[3]
Kongkanand, A.; Gu, W. B.; Mathias, M. F. Proton-exchange membrane fuel cells with low-Pt content. In Fuel Cells and Hydrogen Production. Lipman, T. E.; Weber, A. Z., Eds.; Springer: New York, 2019; pp 323–342.
DOI
[4]
James, J.; Huya-Kouadio, C.; Houchinsand, R.; Ahluwalia, M.; Ulsh, D.; Masten. Durability-adjusted fuel cell system cost, Tech. Rep, U.S. DOE, Washington DC, United States, 2021, pp 21001.
[5]

Kongkanand, A.; Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137.

[6]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[7]
Lee, C.; Kort-Kamp, W. J. M.; Yu, H. R.; Cullen, D. A.; Patterson, B. M.; Arman, T. A.; Komini Babu, S.; Mukundan, R.; Borup, R. L.; Spendelow, J. S. Grooved electrodes for high-power-density fuel cells. Nat. Energy, in press, DOI: 10.1038/s41560-023-01263-2.
DOI
[8]

Zhang, Q. N.; Dong, S. D.; Shao, P. P.; Zhu, Y. H.; Mu, Z. J.; Sheng, D. F.; Zhang, T.; Jiang, X.; Shao, R. W.; Ren, Z. X. et al. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 2022, 378, 181–186.

[9]

Islam, M. N.; Mansoor Basha, A. B.; Kollath, V. O.; Soleymani, A. P.; Jankovic, J.; Karan, K. Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance. Nat. Commun. 2022, 13, 6157.

[10]

Herden, S.; Riewald, F.; Hirschfeld, J. A.; Perchthaler, M. In-plane structuring of proton exchange membrane fuel cell cathodes: Effect of ionomer equivalent weight structuring on performance and current density distribution. J. Power Sources 2017, 355, 36–43.

[11]

Cheng, X. J.; Wei, G. H.; Wang, C.; Shen, S. Y.; Zhang, J. L. Experimental probing of effects of carbon support on bulk and local oxygen transport resistance in ultra-low Pt PEMFCs. Int. J. Heat Mass Transf. 2021, 164, 120549.

[12]

Suzuki, T.; Kudo, K.; Morimoto, Y. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. J. Power Sources 2013, 222, 379–389.

[13]

Cetinbas, F. C.; Ahluwalia, R. K.; Kariuki, N.; De Andrade, V.; Fongalland, D.; Smith, L.; Sharman, J.; Ferreira, P.; Rasouli, S.; Myers, D. J. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes. J. Power Sources 2017, 344, 62–73.

[14]

Barreiros Salvado, M.; Schott, P.; Guétaz, L.; Gerard, M.; David, T.; Bultel, Y. Towards the understanding of transport limitations in a proton-exchange membrane fuel cell catalyst layer: Performing agglomerate scale direct numerical simulations on electron-microscopy-based geometries. J. Power Sources 2021, 482, 228893.

[15]

Girod, R.; Lazaridis, T.; Gasteiger, H. A.; Tileli, V. Three-dimensional nanoimaging of fuel cell catalyst layers. Nat. Catal. 2023, 6, 383–391.

[16]

Berning, T.; Lu, D. M.; Djilali, N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sources 2002, 106, 284–294.

[17]

Wang, Q. P.; Eikerling, M.; Song, D. T.; Liu, Z. S.; Navessin, T.; Xie, Z.; Holdcroft, S. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: I. Theoretical modeling. J. Electrochem. Soc. 2004, 151, A950–A957.

[18]

Brack, H. P.; Slaski, M.; Gubler, L.; Scherer, G. G.; Alkan, S.; Wokaun, A. Characterisation of fuel cell membranes as a function of drying by means of contact angle measurements. Fuel Cells 2004, 4, 141–146.

[19]

Mu, Y. T.; Weber, A. Z.; Gu, Z. L.; Tao, W. Q. Mesoscopic modeling of transport resistances in a polymer-electrolyte fuel-cell catalyst layer: Analysis of hydrogen limiting currents. Appl. Energy 2019, 255, 113895.

[20]

Inoue, G.; Kawase, M. Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell. J. Power Sources 2016, 327, 1–10.

[21]

Kwon, S. H.; Kang, H. S.; Sohn, Y. J.; Lee, J.; Shim, S.; Lee, S. G. Molecular dynamics simulation study on the effect of perfluorosulfonic acid side chains on oxygen permeation in hydrated ionomers of PEMFCs. Sci. Rep. 2021, 11, 8702.

[22]

Lee, J. H.; Kang, H. S.; Yim, S. D.; Sohn, Y. J.; Lee, S. G. Revelation of transport properties of ultra-thin ionomer films in catalyst layer of polymer electrolyte membrane fuel cells using molecular dynamics. Appl. Surf. Sci. 2022, 598, 153815.

[23]

Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffat, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808–1825.

[24]

Nguyen, H.; Klose, C.; Metzler, L.; Vierrath, S.; Breitwieser, M. Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: An engineering perspective. Adv. Energy Mater. 2022, 12, 2103559.

[25]

Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; Xie, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

[26]

Fan, J. T.; Chen, M.; Zhao, Z. L.; Zhang, Z.; Ye, S. Y.; Xu, S. Y.; Wang, H. J.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486.

[27]

Li, H. Y.; Cheng, X. J.; Yan, X. H.; Shen, S. Y.; Zhang, J. L. A perspective on influences of cathode material degradation on oxygen transport resistance in low Pt PEMFC. Nano Res. 2023, 16, 377–390.

[28]

Chen, L.; He, A.; Zhao, J. L.; Kang, Q. J.; Li, Z. Y.; Carmeliet, J.; Shikazono, N.; Tao, W. Q. Pore-scale modeling of complex transport phenomena in porous media. Prog. Energy Combust. Sci. 2022, 88, 100968.

[29]

Hua, Z. G.; Zheng, Z. X.; Pahon, E.; Péra, M. C.; Gao, F. A review on lifetime prediction of proton exchange membrane fuel cells system. J. Power Sources 2022, 529, 231256.

[30]

Chen, Y. Y.; Liu, Y. K.; Xu, Y. J.; Guo, X. D.; Cao, Y.; Ming, W. Y. Review: Modeling and simulation of membrane electrode material structure for proton exchange membrane fuel cells. Coatings 2022, 12, 1145.

[31]

Bonifácio, R. N.; Paschoal, J. O. A.; Linardi, M.; Cuenca, R. Catalyst Layer optimization by surface tension control during ink formulation of membrane electrode assemblies in proton exchange membrane fuel cell. J. Power Sources 2011, 196, 4680–4685.

[32]

Marie, J.; Chenitz, R.; Chatenet, M.; Berthon-Fabry, S.; Cornet, N.; Achard, P. Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses. J. Power Sources 2009, 190, 423–434.

[33]

Chen, J. W.; Ou, Z. Q.; Chen, H. X.; Song, S. Q.; Wang, K.; Wang, Y. Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. Chin. J. Catal. 2021, 42, 1297–1326.

[34]

Wikander, K.; Ekström, H.; Palmqvist, A. E. C.; Lindbergh, G. On the influence of Pt particle size on the PEMFC cathode performance. Electrochim. Acta 2007, 52, 6848–6855.

[35]

Yakovlev, Y. V.; Lobko, Y. V.; Vorokhta, M.; Nováková, J.; Mazur, M.; Matolínová, I.; Matolín, V. Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. J. Power Sources 2021, 490, 229531.

[36]

Ramaswamy, N.; Gu, W. B.; Ziegelbauer, J. M.; Kumaraguru, S. Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. J. Electrochem. Soc. 2020, 167, 064515.

[37]

Cho, Y. H.; Park, H. S.; Cho, Y. H.; Jung, D. S.; Park, H. Y.; Sung, Y. E. Effect of platinum amount in carbon supported platinum catalyst on performance of polymer electrolyte membrane fuel cell. J. Power Sources 2007, 172, 89–93.

[38]

Ono, Y.; Mashio, T.; Takaichi, S.; Ohma, A.; Kanesaka, H.; Shinohara, K. The analysis of performance loss with low platinum loaded cathode catalyst layers. ECS Trans. 2010, 28, 69–78.

[39]

Owejan, J. P.; Owejan, J. E.; Gu, W. B. Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 2013, 160, F824–F833.

[40]

Orfanidi, A.; Madkikar, P.; El-Sayed, H. A.; Harzer, G. S.; Kratky, T.; Gasteiger, H. A. The key to high performance low Pt loaded electrodes. J. Electrochem. Soc. 2017, 164, F418–F426.

[41]

Taylor, A. D.; Kim, E. Y.; Humes, V. P.; Kizuka, J.; Thompson, L. T. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J. Power Sources 2007, 171, 101–106.

[42]

Antoine, O.; Bultel, Y.; Ozil, P.; Durand, R. Catalyst gradient for cathode active layer of proton exchange membrane fuel cell. Electrochim. Acta 2000, 45, 4493–4500.

[43]

Su, H. N.; Liang, H. G.; Bladergroen, B. J.; Linkov, V.; Pollet, B. G.; Pasupathi, S. Effect of platinum distribution in dual catalyst layer structured gas diffusion electrode on the performance of high temperature PEMFC. J. Electrochem. Soc. 2014, 161, F506–F512.

[44]

Kongstein, O. E.; Berning, T.; Børresen, B.; Seland, F.; Tunold, R. Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy 2007, 32, 418–422.

[45]

Xie, Z.; Navessin, T.; Shi, K.; Chow, R.; Wang, Q. P.; Song, D. T.; Andreaus, B.; Eikerling, M.; Liu, Z. S.; Holdcroft, S. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: II. Experimental study of the effect of Nafion distribution. J. Electrochem. Soc. 2005, 152, A1171–A1179.

[46]

Su, H. N.; Liao, S. J.; Wu, Y. N. Significant improvement in cathode performance for proton exchange membrane fuel cell by a novel double catalyst layer design. J. Power Sources 2010, 195, 3477–3480.

[47]

Song, W.; Yu, H. M.; Hao, L. X.; Miao, Z. L.; Yi, B. L.; Shao, Z. G. A new hydrophobic thin film catalyst layer for PEMFC. Solid State Ion. 2010, 181, 453–458.

[48]

Wang, S. Z.; Li, X. H.; Wan, Z. H.; Chen, Y. N.; Tan, J. T.; Pan, M. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells. J. Power Sources 2018, 379, 338–343.

[49]

Hutapea, Y. A.; Nishihara, M.; Gautama, Z. A. R.; Mufundirwa, A.; Lyth, S. M.; Sugiyama, T.; Nagayama, M.; Sasaki, K.; Hayashi, A. Reduction of oxygen transport resistance in PEFC cathode through blending a high oxygen permeable polymer. J. Power Sources 2023, 556, 232500.

[50]

Harzer, G. S.; Orfanidi, A.; El-Sayed, H.; Madkikar, P.; Gasteiger, H. A. Tailoring catalyst morphology towards high performance for low Pt loaded PEMFC cathodes. J. Electrochem. Soc. 2018, 165, F770–F779.

[51]

You, J. B.; Zheng, Z. F.; Cheng, X. J.; Li, H. Y.; Fu, C. H.; Luo, L. X.; Wei, G. H.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Insight into oxygen transport in solid and high-surface-area carbon supports of proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 2023, 15, 21457–21466.

[52]

Yarlagadda, V.; Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Koestner, R.; Gu, W. B.; Thompson, L.; Kongkanand, A. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 2018, 3, 618–621.

[53]

Ott, S.; Bauer, A.; Du, F. M.; Dao, T. A.; Klingenhof, M.; Orfanidi, A.; Strasser, P. Impact of carbon support meso-porosity on mass transport and performance of PEMFC cathode catalyst layers. ChemCatChem 2021, 13, 4759–4769.

[54]

Tang, X. J.; Zeng, Y. C.; Cao, L. S.; Yang, L. M.; Wang, Z. Q.; Fang, D. H.; Gao, Y. Y.; Shao, Z. G.; Yi, B. L. Anchoring ultrafine Pt nanoparticles on the 3D hierarchical self-assembly of graphene/functionalized carbon black as a highly efficient oxygen reduction catalyst for PEMFCs. J. Mater. Chem. A 2018, 6, 15074–15082.

[55]

Zhu, Q. L.; Xia, W.; Zheng, L. R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.

[56]

Zhao, Z. P.; Hossain, M. D.; Xu, C. C.; Lu, Z. J.; Liu, Y. S.; Hsieh, S. H.; Lee, I.; Gao, W. P.; Yang, J.; Merinov, B. V. et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 2020, 3, 1774–1790.

[57]

Ott, S.; Orfanidi, A.; Schmies, H.; Anke, B.; Nong, H. N.; Hübner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 2020, 19, 77–85.

[58]

Yang, C.; Jin, H. L.; Cui, C. X.; Li, J.; Wang, J. C.; Amine, K.; Lu, J.; Wang, S. Nitrogen and sulfur co-doped porous carbon sheets for energy storage and pH-universal oxygen reduction reaction. Nano Energy 2018, 54, 192–199.

[59]

Xia, W.; Hunter, M. A.; Wang, J. Y.; Zhu, G. X.; Warren, S. J.; Zhao, Y. J.; Bando, Y.; Searles, D. J.; Yamauchi, Y.; Tang, J. Highly ordered macroporous dual-element-doped carbon from metal-organic frameworks for catalyzing oxygen reduction. Chem. Sci. 2020, 11, 9584–9592.

[60]

Chokradjaroen, C.; Kato, S.; Fujiwara, K.; Watanabe, H.; Ishii, T.; Ishizaki, T. A Comparative study of undoped, boron-doped, and boron/fluorine dual-doped carbon nanoparticles obtained via solution plasma as catalysts for the oxygen reduction reaction. Sustainable Energy Fuels 2020, 4, 4570–4580.

[61]

Chaisubanan, N.; Chanlek, N.; Puarporn, Y.; Limphirat, W.; Piumsomboon, P.; Pruksathorn, K.; Hunsom, M. Insight into the alternative metal oxide modified carbon-supported PtCo for oxygen reduction reaction in proton exchange membrane fuel cell. Renewable Energy 2019, 139, 679–687.

[62]

Sun, F. M.; Liu, H. J.; Chen, M.; Wang, H. J. Boosting oxygen transport through mitigating the interaction between Pt and ionomer in proton exchange membrane fuel cell. J. Power Sources 2023, 553, 232240.

[63]

Salari, S.; Tam, M.; McCague, C.; Stumper, J.; Bahrami, M. The ex-situ and in-situ gas diffusivities of polymer electrolyte membrane fuel cell catalyst layer and contribution of primary pores, secondary pores, ionomer and water to the total oxygen diffusion resistance. J. Power Sources 2020, 449, 227479.

[64]

Rolfi, A.; Oldani, C.; Merlo, L.; Facchi, D.; Ruffo, R. New perfluorinated ionomer with improved oxygen permeability for application in cathode polymeric electrolyte membrane fuel cell. J. Power Sources 2018, 396, 95–101.

[65]

Ren, H.; Teng, Y.; Meng, X. C.; Fang, D. H.; Huang, H.; Geng, J. T.; Shao, Z. G. Ionomer network of catalyst layers for proton exchange membrane fuel cell. J. Power Sources 2021, 506, 230186.

[66]

Poojary, S.; Islam, M. N.; Shrivastava, U. N.; Roberts, E. P. L.; Karan, K. Transport and electrochemical interface properties of ionomers in low-pt loading catalyst layers: Effect of ionomer equivalent weight and relative humidity. Molecules 2020, 25, 3387.

[67]

Macauley, N.; Lousenberg, R. D.; Spinetta, M.; Zhong, S. C.; Yang, F.; Judge, W.; Nikitin, V.; Perego, A.; Qi, Y. Z.; Pedram, S. et al. Highly durable fluorinated high oxygen permeability ionomers for proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2201063.

[68]
Li, C. Z.; Yu, K.; Bird, A.; Guo, F.; Ilavsky, J.; Liu, Y. D.; Cullen, D. A.; Kusoglu, A.; Weber, A. Z.; Fereira, P. J. et al. Unraveling the core of fuel cell performance: Engineering the ionomer/catalyst interface. Energy Environ. Sci., in press, DOI: 10.1039/D2EE03553G.
DOI
[69]

Doo, G.; Yuk, S.; Lee, J. H.; Choi, S.; Lee, D. H.; Lee, D. W.; Hyun, J.; Kwon, S. H.; Lee, S. G.; Kim, H. T. Nano-scale control of the ionomer distribution by molecular masking of the Pt surface in PEMFCs. J. Mater. Chem. A 2020, 8, 13004–13013.

[70]

Borup, R. L.; Kusoglu, A.; Neyerlin, K. C.; Mukundan, R.; Ahluwalia, R. K.; Cullen, D. A.; More, K. L.; Weber, A. Z.; Myers, D. J. Recent developments in catalyst-related PEM fuel cell durability. Curr. Opin. Electrochem. 2020, 21, 192–200.

[71]

Kneer, A.; Jankovic, J.; Susac, D.; Putz, A.; Wagner, N.; Sabharwal, M.; Secanell, M. Correlation of changes in electrochemical and structural parameters due to voltage cycling induced degradation in PEM fuel cells. J. Electrochem. Soc. 2018, 165, F3241–F3250.

[72]

Weber, A. Z.; Newman, J. Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 2004, 104, 4679–4726.

[73]

Yoon, W.; Weber, A. Z. Modeling low-platinum-loading effects in fuel-cell catalyst layers. J. Electrochem. Soc. 2011, 158, B1007–B1018.

[74]

Nonoyama, N.; Okazaki, S.; Weber, A. Z.; Ikogi, Y.; Yoshida, T. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J. Electrochem. Soc. 2011, 158, B416–B423.

[75]

Ebrahimi, S.; Roshandel, R.; Vijayaraghavan, K. Power density optimization of PEMFC cathode with non-uniform catalyst layer by simplex method and numerical simulation. Int. J. Hydrogen Energy 2016, 41, 22260–22273.

[76]

Gwak, G.; Lee, J.; Ghasemi, M.; Choi, J.; Lee, S. W.; Jang, S. S.; Ju, H. Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells. Int. J. Hydrogen Energy 2020, 45, 13414–13427.

[77]

Song, D. T.; Wang, Q. P.; Liu, Z. S.; Navessin, T.; Holdcroft, S. Numerical study of PEM fuel cell cathode with non-uniform catalyst layer. Electrochim. Acta 2004, 50, 731–737.

[78]

Iczkowski, R. P.; Cutlip, M. B. Voltage losses in fuel cell cathodes. J. Electrochem. Soc. 1980, 127, 1433–1440.

[79]

Sun, W.; Peppley, B. A.; Karan, K. An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochim. Acta 2005, 50, 3359–3374.

[80]

Xing, L.; Mamlouk, M.; Scott, K. A two dimensional agglomerate model for a proton exchange membrane fuel cell. Energy 2013, 61, 196–210.

[81]

Mu, Y. T.; He, P.; Bai, F.; Chen, L.; Qu, Z. G.; Tao, W. Q. Numerical analyses on oxygen transport resistances in polymer electrolyte membrane fuel cells using a novel agglomerate model. Int. J. Hydrogen Energy 2023, 48, 3232–3251.

[82]

Meakin, P.; Tartakovsky, A. M. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 2009, 47, RG3002.

[83]

Yoon, H.; Kang, Q. J.; Valocchi, A. J. Lattice Boltzmann-based approaches for pore-scale reactive transport. Rev. Mineral. Geochem. 2015, 80, 393–431.

[84]

Zhang, D.; Bertei, A.; Tariq, F.; Brandon, N.; Cai, Q. Progress in 3D electrode microstructure modelling for fuel cells and batteries: Transport and electrochemical performance. Prog. Energy 2019, 1, 012003.

[85]

Wang, G. Q.; Mukherjee, P. P.; Wang, C. Y. Direct numerical simulation (DNS) modeling of PEFC electrodes: Part II. Random microstructure. Electrochim. Acta 2006, 51, 3151–3160.

[86]

Wang, C. Y.; Mukherjee, P. P. Modeling of catalyst layer surface coverage and volume blockage owing to liquid water in a PEFC. ECS Trans. 2006, 3, 1085–1094.

[87]

Wu, W.; Jiang, F. M. Microstructure reconstruction and characterization of PEMFC electrodes. Int. J. Hydrogen Energy 2014, 39, 15894–15906.

[88]

Hattori, T.; Suzuki, A.; Sahnoun, R.; Koyama, M.; Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takaba, H.; Kubo, M.; Del Carpio, C. A. et al. Development of the overpotential simulator for polymer electrolyte fuel cells and application for optimization of cathode structure. Appl. Surf. Sci. 2008, 254, 7929–7932.

[89]

Kim, S. H.; Pitsch, H. Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. J. Electrochem. Soc. 2009, 156, B673–B681.

[90]

Cetinbas, F. C.; Ahluwalia, R. K.; Kariuki, N. N.; Myers, D. J. Agglomerates in polymer electrolyte fuel cell electrodes: Part I. Structural characterization. J. Electrochem. Soc. 2018, 165, F1051–F1058.

[91]

Cetinbas, F. C.; Ahluwalia, R. K.; Kariuki, N. N.; De Andrade, V.; Myers, D. J. Effects of porous carbon morphology, agglomerate structure and relative humidity on local oxygen transport resistance. J. Electrochem. Soc. 2020, 167, 013508.

[92]

Mu, Y. T.; He, P.; Gu, Z. L.; Qu, Z. G.; Tao, W. Q. Modelling the reactive transport processes in different reconstructed agglomerates of a PEFC catalyst layer. Electrochim. Acta 2022, 404, 139721.

[93]

Chen, L.; Zhang, R. Y.; Kang, Q. J.; Tao, W. Q. Pore-scale study of pore-ionomer interfacial reactive transport processes in proton exchange membrane fuel cell catalyst layer. Chem. Eng. J. 2020, 391, 123590.

[94]

Chen, L.; Kang, Q. J.; Tao, W. Q. Pore-scale study of reactive transport processes in catalyst layer agglomerates of proton exchange membrane fuel cells. Electrochim. Acta 2019, 306, 454–465.

[95]

Fathi, H.; Raoof, A.; Mansouri, S. H. Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes. J. Power Sources 2017, 349, 57–67.

[96]

Chen, L.; Kang, Q. J.; Tao, W. Q. Pore-scale numerical study of multiphase reactive transport processes in cathode catalyst layers of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2021, 46, 13283–13297.

[97]

Zheng, W. B.; Kang, J. F.; Moriyama, K.; Kim, S. H. A multiscale decomposition method for pore-scale simulation of multiphase transport and reactions in cathode catalyst layers of proton exchange membrane fuel cells. J. Electrochem. Soc. 2020, 167, 013509.

[98]

Jinnouchi, R.; Kudo, K.; Kitano, N.; Morimoto, Y. Molecular dynamics simulations on O2 permeation through Nafion ionomer on platinum surface. Electrochim. Acta 2016, 188, 767–776.

[99]

Wang, W. K.; Qu, Z. G.; Wang, X. L.; Zhang, J. F. A Molecular model of PEMFC catalyst layer: Simulation on reactant transport and thermal conduction. Membranes 2021, 11, 148.

[100]

Kurihara, Y.; Mabuchi, T.; Tokumasu, T. Molecular analysis of structural effect of ionomer on oxygen permeation properties in PEFC. J. Electrochem. Soc. 2017, 164, F628–F637.

[101]

Kurihara, Y.; Mabuchi, T.; Tokumasu, T. Molecular dynamics study of oxygen transport resistance through ionomer thin film on Pt surface. J. Power Sources 2019, 414, 263–271.

[102]

Kang, H. S.; Kwon, S. H.; Lawler, R.; Lee, J. H.; Doo, G.; Kim, H. T.; Yim, S. D.; Jang, S. S.; Lee, S. G. Nanostructures of Nafion film at platinum/carbon surface in catalyst layer of PEMFC: Molecular dynamics simulation approach. J. Phys. Chem. C 2020, 124, 21386–21395.

[103]

Sakai, K.; Sato, K.; Mashio, T.; Ohma, A.; Yamaguchi, K.; Shinohara, K. Analysis of reactant gas transport in catalyst layers; effect of Pt-loadings. ECS Trans. 2009, 25, 1193–1201.

[104]

Ohma, A.; Mashio, T.; Sato, K.; Iden, H.; Ono, Y.; Sakai, K.; Akizuki, K.; Takaichi, S.; Shinohara, K. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan. Electrochim. Acta 2011, 56, 10832–10841.

[105]

Fan, L. H.; Wang, Y.; Jiao, K. Oxygen transport routes in ionomer film on polyhedral platinum nanoparticles. ACS Nano 2020, 14, 17487–17495.

[106]

Fan, L. H.; Wang, Y.; Jiao, K. Oxygen permeation resistances and routes in nanoscale ionomer thin film on platinum surface. J. Electrochem. Soc. 2021, 168, 014511.

[107]

Ouyang, H.; Xia, Z. H.; Zhe, J. Static and dynamic responses of polyelectrolyte brushes under external electric field. Nanotechnology 2009, 20, 195703.

[108]

Zhang, Y. W.; Fan, L. H.; Wang, J. Q.; Deng, H.; Shi, W. Y.; Du, Q.; Hou, Z. J.; Jiao, K. Enhanced oxygen transport in ionomer films on platinum electrodes via a local electric field. J. Mater. Chem. A 2022, 10, 21102–21111.

[109]

Lee, J.; Morin, A.; Escribano, S.; Micoud, F.; Gebel, G.; Lyonnard, S.; Porcar, L. Quantifying water in PEM fuel cell catalyst layer with small angle neutron scattering. ECS Meet. Abstr. 2019, MA2019–02, 1416–1416.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 31 May 2023
Revised: 21 June 2023
Accepted: 21 June 2023
Published: 18 July 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB1506300), the National Natural Science Foundation of China (No. 21901019), and the Beijing Institute of Technology Research and Innovation Promoting Project (No. 2022YCXY024). The authors acknowledge the financial support of Chongqing Natural Science Foundation (No. cstc2020jcyj-msxmX0759).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return