Journal Home > Volume 2 , Issue 4

High entropy alloys (HEAs) based on five or more elements have caught worldwide attention due to the excellent properties endowed by their unique structures. Compared with traditional alloys, HEAs have high strength, thermal stability, oxidation resistance, and corrosion resistance. In recent years, the rapid development of HEAs shed light on the designing of new alloy systems. Their mixed multi-metallic sites give rise to a great potential for catalytic applications. In this review, we briefly introduce the phase structures of HEAs and their four core effects. In addition, the latest advances regarding HEAs are systematically summarized, with emphasis on the synthesis methods and catalytic applications, such as thermal-driven catalysis and electrocatalysis. To sum up, the current progress, challenges and future prospects of HEAs are discussed, hoping to provide a valuable route to understand this research field.


menu
Abstract
Full text
Outline
About this article

Recent progress on the synthesis and applications of high-entropy alloy catalysts

Show Author's information Xiaoxiao Han1,2Lingling Zhang1,2( )Xiao Wang1,2Shuyan Song1,2( )Hongjie Zhang1,2,3( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

High entropy alloys (HEAs) based on five or more elements have caught worldwide attention due to the excellent properties endowed by their unique structures. Compared with traditional alloys, HEAs have high strength, thermal stability, oxidation resistance, and corrosion resistance. In recent years, the rapid development of HEAs shed light on the designing of new alloy systems. Their mixed multi-metallic sites give rise to a great potential for catalytic applications. In this review, we briefly introduce the phase structures of HEAs and their four core effects. In addition, the latest advances regarding HEAs are systematically summarized, with emphasis on the synthesis methods and catalytic applications, such as thermal-driven catalysis and electrocatalysis. To sum up, the current progress, challenges and future prospects of HEAs are discussed, hoping to provide a valuable route to understand this research field.

Keywords: catalysis, synthesis, high entropy alloys, core effects, thermal-driven catalysis

References(78)

[1]

Tomboc, G. M.; Kwon, T.; Joo, J.; Lee, K. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J. Mater. Chem. A 2020, 8, 14844–14862.

[2]

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

[3]

Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater. Sci. 2021, 120, 100754.

[4]

Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648.

[5]

Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306.

[6]

Tracy, C. L.; Park, S.; Rittman, D. R.; Zinkle, S. J.; Bei, H. B.; Lang, M.; Ewing, R. C.; Mao, W. L. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2017, 8, 15634.

[7]

Liu, W. H.; Wu, Y.; He, J. Y.; Nieh, T. G.; Lu, Z. P. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 2013, 68, 526–529.

[8]

Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci. Rep. 2016, 6, 34213.

[9]

Egami, T. Atomic level stresses. Prog. Mater. Sci. 2011, 56, 637–653.

[10]

Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003, 85, 1404–1406.

[11]

Zhang, Z. J.; Mao, M. M.; Wang, J. W.; Gludovatz, B.; Zhang, Z.; Mao, S. X.; George, E. P.; Yu, Q.; Ritchie, R. O. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2015, 6, 10143.

[12]

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

[13]

Sauthoff, G. Multiphase intermetallic alloys for structural applications. Intermetallics 2000, 8, 1101–1109.

[14]

Cantor, B. Multicomponent and high entropy alloys. Entropy (Basel) 2014, 16, 4749–4768.

[15]

Otto, F.; Yang, Y.; Bei, H.; George, E. P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638.

[16]

Chang, X. J.; Zeng, M. Q.; Liu, K. L.; Fu, L. Phase engineering of high-entropy alloys. Adv. Mater. 2020, 32, 1907226.

[17]

Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.

[18]

Jo, Y. H.; Jung, S.; Choi, W. M.; Sohn, S. S.; Kim, H. S.; Lee, B. J.; Kim, N. J.; Lee, S. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. 2017, 8, 15719.

[19]

Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218.

[20]

Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E. P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755.

[21]

Zhang, J. Y.; He, Q. F.; Li, J.; Yang, Y. Chemical fluctuation enabling strength-plasticity synergy in metastable single-phase high entropy alloy film with gigapascal yield strength. Int. J. Plast. 2021, 139, 102951.

[22]

Lei, Y.; Hashimoto, N.; Isobe, S. Cu-containing high entropy alloys for nuclear fusion application. Mater. Trans. 2020, 61, 1247–1251.

[23]

Sohn, S.; Liu, Y. H.; Liu, J. B.; Gong, P.; Prades-Rodel, S.; Blatter, A.; Scanley, B. E.; Broadbridge, C. C.; Schroers, J. Noble metal high entropy alloys. Scr. Mater. 2017, 126, 29–32.

[24]

Qin, G.; Chen, R. R.; Zheng, H. T.; Fang, H. Z.; Wang, L.; Su, Y. Q.; Guo, J. J.; Fu, H. Z. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. J. Mater. Sci. Technol. 2019, 35, 578–583.

[25]

Naeem, M.; He, H. Y.; Zhang, F.; Huang, H. L.; Harjo, S.; Kawasaki, T.; Wang, B.; Lan, S.; Wu, Z. D.; Wang, F. et al. Cooperative deformation in high-entropy alloys at ultralow temperatures. Sci. Adv. 2020, 6, eaax4002.

[26]

Ding, Q. Q.; Zhang, Y.; Chen, X.; Fu, X. Q.; Chen, D. K.; Chen, S. J.; Gu, L.; Wei, F.; Bei, H. B.; Gao, Y. F. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227.

[27]

Feng, R.; Feng, B. J.; Gao, M. C.; Zhang, C.; Neuefeind, J. C.; Poplawsky, J. D.; Ren, Y.; An, K.; Widom, M.; Liaw, P. K. Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv. Mater. 2021, 33, 2102401.

[28]

Li, R. X.; Qiao, J. W.; Liaw, P. K.; Zhang, Y. Preternatural hexagonal high-entropy alloys: A review. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 1033–1045.

[29]

Takeuchi, A.; Amiya, K.; Wada, T.; Yubuta, K.; Zhang, W. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 2014, 66, 1984–1992.

[30]

Feuerbacher, M.; Heidelmann, M.; Thomas, C. Hexagonal high-entropy alloys. Mater. Res. Lett. 2015, 3, 1–6.

[31]

Yusenko, K. V.; Bykova, E.; Bykov, M.; Riva, S.; Crichton, W. A.; Yusenko, M. V.; Sukhikh, A. S.; Arnaboldi, S.; Hanfland, M.; Dubrovinsky, L. S. et al. Ir-Re binary alloys under extreme conditions and their electrocatalytic activity in methanol oxidation. Acta Mater. 2017, 139, 236–243.

[32]

Gao, M. C.; Zhang, B.; Guo, S. M.; Qiao, J. W.; Hawk, J. A. High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 2016, 47, 3322–3332.

[33]

Rogal, L.; Ikeda, Y.; Lai, M. J.; Körmann, F.; Kalinowska, A.; Grabowski, B. Design of a dual-phase hcp-bcc high entropy alloy strengthened by ω nanoprecipitates in the Sc-Ti-Zr-Hf-Re system. Mater. Des. 2020, 192, 108716.

[34]

Agrawal, P.; Shukla, S.; Gupta, S.; Agrawal, P.; Mishra, R. S. Friction stir gradient alloying: A high-throughput method to explore the influence of V in enabling HCP to BCC transformation in a γ-FCC dominated high entropy alloy. Appl. Mater. Today 2020, 21, 100853.

[35]

Niu, C. N.; LaRosa, C. R.; Miao, J. S.; Mills, M. J.; Ghazisaeidi, M. Magnetically-driven phase transformation strengthening in high entropy alloys. Nat. Commun. 2018, 9, 1363.

[36]

Zhang, F.; Wu, Y.; Lou, H. B.; Zeng, Z. D.; Prakapenka, V. B.; Greenberg, E.; Ren, Y.; Yan, J. Y.; Okasinski, J. S.; Liu, X. J. et al. Polymorphism in a high-entropy alloy. Nat. Commun. 2017, 8, 15687.

[37]

Zhang, Y. Y.; Wu, H. B.; Yu, X. P.; Tang, D.; Yuan, R.; Sun, H. Microstructural evolution and strengthening mechanisms in CrxMnFeNi high-entropy alloy. J. Mater. Res. Technol. 2021, 12, 2114–2127.

[38]

Zhao, S. T.; Li, Z. Z.; Zhu, C. Y.; Yang, W.; Zhang, Z. R.; Armstrong, D. E. J.; Grant, P. S.; Ritchie, R. O.; Meyers, M. A. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci. Adv. 2021, 7, eabb3108.

[39]

Jiang, L.; Hu, Y. J.; Sun, K.; Xiu, P.; Song, M.; Zhang, Y. W.; Boldman, W. L.; Crespillo, M. L.; Rack, P. D.; Qi, L. et al. Irradiation-induced extremes create hierarchical face-/body-centered-cubic phases in nanostructured high entropy alloys. Adv. Mater. 2020, 32, 2002652.

[40]

Zhang, T.; Zhao, R. D.; Wu, F. F.; Lin, S. B.; Jiang, S. S.; Huang, Y. J.; Chen, S. H.; Eckert, J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Mater. Sci. Eng. A 2020, 780, 139182.

[41]

Park, J. M.; Moon, J.; Bae, J. W.; Kim, D. H.; Jo, Y. H.; Lee, S.; Kim, H. S. Role of BCC phase on tensile behavior of dual-phase Al0.5CoCrFeMnNi high-entropy alloy at cryogenic temperature. Mater. Sci. Eng. A 2019, 746, 443–447.

[42]

Liu, M.; Zuo, L.; Li, X.; Li, R.; Zhang, T. Microstructure and mechanical properties of Al25-xCr25+0.5xFe25Ni25+0.5x (x=19, 17, 15 at.%) multi-component alloys. Adv. Eng. Mater. 2018, 20, 1701057.

[43]

Zhang, Y.; Zhou, Y. J.; Lin, J. P.; Chen, G. L.; Liaw, P. K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538.

[44]

Fang, S. S.; Xiao, X. S.; Xia, L.; Li, W. H.; Dong, Y. D. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 2003, 321, 120–125.

[45]

Guo, S.; Ng, C.; Lu, J.; Liu, C. T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505.

[46]

Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238.

[47]

Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897.

[48]

Ji, W.; Fu, Z. Y.; Wang, W. M.; Wang, H.; Zhang, J. Y.; Wang, Y. C.; Zhang, F. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd. 2014, 589, 61–66.

[49]

Zhang, H.; Pan, Y.; He, Y. Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2011, 32, 1910–1915.

[50]

Yue, T. M.; Xie, H.; Lin, X.; Yang, H. O.; Meng, G. H. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J. Alloys Compd. 2014, 587, 588–593.

[51]

Wang, X. Z.; Dong, Q.; Qiao, H. Y.; Huang, Z. N.; Saray, M. T.; Zhong, G.; Lin, Z. W.; Cui, M. J.; Brozena, A.; Hong, M. et al. Continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications. Adv. Mater. 2020, 32, 2002853.

[52]

Qiao, H. Y.; Saray, M. T.; Wang, X. Z.; Xu, S. M.; Chen, G.; Huang, Z. N.; Chen, C. J.; Zhong, G.; Dong, Q.; Hong, M. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 2021, 15, 14928–14937.

[53]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

[54]

Gao, S. J.; Hao, S. Y.; Huang, Z. N.; Yuan, Y. F.; Han, S.; Lei, L. C.; Zhang, X. W.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016.

[55]

Joo, S. H.; Bae, J. W.; Park, W. Y.; Shimada, Y.; Wada, T.; Kim, H. S.; Takeuchi, A.; Konno, T. J.; Kato, H.; Okulov, I. V. Beating thermal coarsening in nanoporous materials via high-entropy design. Adv. Mater. 2020, 32, 1906160.

[56]

Cai, Z. X.; Goou, H.; Ito, Y.; Tokunaga, T.; Miyauchi, M.; Abe, H.; Fujita, T. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem. Sci. 2021, 12, 11306–11315.

[57]

Broge, N. L. N.; Bondesgaard, M.; Søndergaard-Pedersen, F.; Roelsgaard, M.; Iversen, B. B. Autocatalytic formation of high-entropy alloy nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 21920–21924.

[58]

Liu, M. M.; Zhang, Z. H.; Okejiri, F.; Yang, S. Z.; Zhou, S. H.; Dai, S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 2019, 6, 1900015.

[59]

Okejiri, F.; Yang, Z. Z.; Chen, H.; Do-Thanh, C. L.; Wang, T.; Yang, S. Z.; Dai, S. Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids. Nano Res. 2022, 15, 4792–4798.

[60]

Wang, Y.; Mi, J. X.; Wu, Z. S. Recent status and challenging perspective of high entropy oxides for chemical catalysis. Chem Catal. 2022, 2, 1624–1656.

[61]

Mateti, S.; Saranya, L.; Sathikumar, G.; Cai, Q. R.; Yao, Y. G.; Chen, Y. Nanomaterials enhancing the solid-state storage and decomposition of ammonia. Nanotechnology 2022, 33, 222001.

[62]

Xie, P. F.; Yao, Y. G.; Huang, Z. N.; Liu, Z. Y.; Zhang, J. L.; Li, T. Y.; Wang, G. F.; Shahbazian-Yassar, R.; Hu, L. B.; Wang, C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 2019, 10, 4011.

[63]

Qiu, H. J.; Fang, G.; Wen, Y. R.; Liu, P.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 2019, 7, 6499–6506.

[64]

Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat. Commun. 2021, 12, 3884.

[65]

Ipadeola, A. K.; Lebechi, A. K.; Gaolatlhe, L.; Haruna, A. B.; Chitt, M.; Eid, K.; Abdullah, A. M.; Ozoemena, K. I. Porous high-entropy alloys as efficient electrocatalysts for water-splitting reactions. Electrochem. Commun. 2022, 136, 107207.

[66]

Zhang, D.; Zhao, H.; Huang, B. L.; Li, B.; Li, H. D.; Han, Y.; Wang, Z. C.; Wu, X. K.; Pan, Y.; Sun, Y. J. et al. Advanced ultrathin RuPdM (M = Ni, Co, Fe) nanosheets electrocatalyst boosts hydrogen evolution. ACS Cent. Sci. 2019, 5, 1991–1997.

[67]

Zhang, D.; Shi, Y.; Zhao, H.; Qi, W. J.; Chen, X. L.; Zhan, T. R.; Li, S. X.; Yang, B.; Sun, M. Z.; Lai, J. P. et al. The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 889–893.

[68]

Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.

[69]

Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022, 15, 4799–4806.

[70]

Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 2019, 1, 526–533.

[71]

Wang, A. L.; Wan, H. C.; Xu, H.; Tong, Y. X.; Li, G. R. Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation. Electrochim. Acta 2014, 127, 448–453.

[72]

Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

[73]

Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 2020, 142, 13833–13838.

[74]

Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization. ACS Catal. 2020, 10, 3658–3663.

[75]

Araujo, R. B.; Pehlivan, I. B.; Edvinsson, T. High-entropy alloy catalysts: Fundamental aspects, promises towards electrochemical NH3 production, and lessons to learn from deep neural networks. Nano Energy 2023, 105, 108027.

[76]

Zhang, D.; Zhao, H.; Wu, X. K.; Deng, Y.; Wang, Z. C.; Han, Y.; Li, H. D.; Shi, Y.; Chen, X. L.; Li, S. X. et al. Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys. Adv. Funct. Mater. 2021, 31, 2006939.

[77]

Li, R. X.; Xie, L.; Wang, W. Y.; Liaw, P. K.; Zhang, Y. High-throughput calculations for high-entropy alloys: A brief review. Front. Mater. 2020, 7, 575852.

[78]

Feng, R.; Zhang, C.; Gao, M. C.; Pei, Z. R.; Zhang, F.; Chen, Y.; Ma, D.; An, K.; Poplawsky, J. D.; Ouyang, L. Z. et al. High-throughput design of high-performance lightweight high-entropy alloys. Nat. Commun. 2021, 12, 4329.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 February 2023
Revised: 10 June 2023
Accepted: 21 June 2023
Published: 12 July 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the financial aid from the National Science and Technology Major Project of China (No. 2021YFB3500700), and National Natural Science Foundation of China (Nos. 22020102003 and 22025506).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return