AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Progress of organic, inorganic redox flow battery and mechanism of electrode reaction

Yinping Liu1,§Yingchun Niu1,§Xiangcheng Ouyang1,§Chao Guo1Peiyu Han1Ruichen Zhou1Ali Heydari1Yang Zhou1Olli Ikkala2Glazkov Artem Tigranovich3Chunming Xu1Quan Xu1( )
State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
Center of Excellence Molecular Engineering of Biosynthetic Hybrid Materials Research, Aalto University and VTT, Espoo FI-00076, Finland
EMCPS Department, Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia

§ Yinping Liu and Yingchun Niu and Xiangcheng Ouyang contributed equally to this work.

Show Author Information

Graphical Abstract

The latest development of inorganic vanadium flow batteries, iron-chromium flow batteries, zinc-based redox flow batteries, organic redox flow batteries, and novel flow batteries are reviewed. In addition, the electrode reaction of redox flow batteries (RFBs) and their modification mechanism are also studied, which is used to improve the performance and economic benefits of RFBs.

Abstract

With the deployment of renewable energy and the increasing demand for power grid modernization, redox flow battery has attracted a lot of research interest in recent years. Among the available energy storage technologies, the redox flow battery is considered the most promising candidate battery due to its unlimited capacity, design flexibility, and safety. In this review, we summarize the latest progress and improvement strategies of common inorganic redox flow batteries, such as vanadium redox flow batteries, iron-chromium redox flow batteries, and zinc-based redox flow batteries, including electrolyte, membrane, electrode, structure design, etc. In addition, we introduce the latest progress in aqueous and non-aqueous organic redox flow batteries. We also focus on the modification mechanism, optimization design, improvement strategy, and modeling method of the redox flow battery reaction. Finally, this review presents a brief summary, challenges, and perspectives of the redox flow battery.

References

[1]

Noack, J.; Roznyatovskaya, N.; Herr, T.; Fischer, P. The chemistry of redox-flow batteries. Angew. Chem., Int. Ed 2015, 54, 9776–9809.

[2]

Zheng, Q.; Li, X. F.; Cheng, Y. H.; Ning, G. L.; Xing, F.; Zhang, H. M. Development and perspective in vanadium flow battery modeling. Appl. Energy 2014, 132, 254–266.

[3]

Arévalo-Cid, P.; Dias, P.; Mendes, A.; Azevedo, J. Redox flow batteries: A new frontier on energy storage. Sustainable Energy Fuels 2021, 5, 5366–5419.

[4]

Li, B.; Liu, J. Progress and directions in low-cost redox-flow batteries for large-scale energy storage. Natl. Sci. Rev. 2017, 4, 91–105.

[5]

Wei, L.;Zhao, T. S.; Zeng, L.; Zhou, X. L.; Zeng, Y. K. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energy 2016, 180, 386–391.

[6]

Leung, P.; Li, X. H.; Ponce de León, C.; Berlouis, L.; Low, C. T. J.; Walsh, F. C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156.

[7]

Park, M.; Ryu, J.; Wang, W.; Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2017, 2, 16080.

[8]

Li, L. Y.; Kim, S.; Wang, W.; Vijayakumar, M.; Nie, Z. M.; Chen, B. W.; Zhang, J. L.; Xia, G. G.; Hu, J. Z.; Graff, G. et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 2011, 1, 394–400.

[9]

Yao, Y. X.; Lei, J. F.; Shi, Y.; Ai, F.; Lu, Y. C. Assessment methods and performance metrics for redox flow batteries. Nat. Energy 2021, 6, 582–588.

[10]

Yang, D. S.; Han, J. H.; Jeon, J. W.; Lee, J. Y.; Kim, D. G.; Seo, D. H.; Kim, B. G.; Kim, T. H.; Hong, Y. T. Multimodal porous and nitrogen-functionalized electrode based on graphite felt modified with carbonized porous polymer skin layer for all-vanadium redox flow battery. Mater. Today Energy 2019, 11, 159–165.

[11]

Branchi, M.; Gigli, M.; Mecheri, B.; Zurlo, F.; Licoccia, S.; D'Epifanio, A. Highly ion selective hydrocarbon-based membranes containing sulfonated hypercrosslinked polystyrene nanoparticles for vanadium redox flow batteries. J. Membr. Sci. 2018, 563, 552–560.

[12]

Lu, W. J.; Yuan, Z. Z.; Zhao, Y. Y.; Zhang, H. Z.; Zhang, H. M.; Li, X. F. Porous membranes in secondary battery technologies. Chem. Soc. Rev. 2017, 46, 2199–2236.

[13]

Cao, L. Y.; Skyllas-Kazacos, M.; Menictas, C.; Noack, J. A review of electrolyte additives and impurities in vanadium redox flow batteries. J. Energy Chem. 2018, 27, 1269–1291.

[14]

Bamgbopa, M. O.; Shao-Horn, Y.; Almheiri, S. The potential of non-aqueous redox flow batteries as fast-charging capable energy storage solutions: Demonstration with an iron-chromium acetylacetonate chemistry. J. Mater. Chem. A 2017, 5, 13457–13468.

[15]

Yu, L. H.; Xi, J. Y. Durable and efficient PTFE sandwiched SPEEK membrane for vanadium flow batteries. ACS Appl. Mater. Interfaces 2016, 8, 23425–23430.

[16]

Sun, C. Y.; Zhang, H. Review of the development of first-generation redox flow batteries: Iron-chromium system. ChemSusChem 2022, 15, e202101798.

[17]

Yuan, Z. Z.; Liu, X. Q.; Xu, W. B.; Duan, Y. Q.; Zhang, H. M.; Li, X. F. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life. Nat. Commun. 2018, 9, 3731.

[18]

Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

[19]

Khor, A.; Leung, P.; Mohamed, M. R.; Flox, C.; Xu, Q.; An, L.; Wills, R. G. A.; Morante, J. R.; Shah, A. A. Review of zinc-based hybrid flow batteries: From fundamentals to applications. Mater. Today Energy 2018, 8, 80–108.

[20]

Hu, B.; Tang, Y. J.; Luo, J.; Grove, G.; Guo, Y. S.; Liu, T. L. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Chem. Commun. 2018, 54, 6871–6874.

[21]

Yang, C. Z.; Nikiforidis, G.; Park, J. Y.; Choi, J.; Luo, Y.; Zhang, L.; Wang, S. C.; Chan, Y. T.; Lim, J.; Hou, Z. M. et al. Designing redox-stable cobalt-polypyridyl complexes for redox flow batteries: Spin-crossover delocalizes excess charge. Adv. Energy Mater. 2018, 8, 1702897.

[22]

Ding, Y.; Zhang, C. K.; Zhang, L. Y.; Zhou, Y. E.; Yu, G. H. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69–103.

[23]

Kowalski, J. A.; Su, L.; Milshtein, J. D.; Brushett, F. R. Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries. Curr. Opin. Chem. Eng. 2016, 13, 45–52.

[24]

Wei, X. L.; Pan, W. X.; Duan, W. T.; Hollas, A.; Yang, Z.; Li, B.; Nie, Z. M.; Liu, J.; Reed, D.; Wang, Y. et al. Materials and systems for organic redox flow batteries: Status and challenges. ACS Energy Lett. 2017, 2, 2187–2204.

[25]

Wei, L.; Zhao, T. S.; Zhao, G.; An, L.; Zeng, L. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Appl. Energy 2016, 176, 74–79.

[26]

Abbas, S.; Lee, H.; Hwang, J.; Mehmood, A.; Shin, H. J.; Mehboob, S.; Lee, J. Y.; Ha, H. Y. A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery. Carbon 2018, 128, 31–37.

[27]

Zhao, Y.; Liu, L.; Qiu, X. P.; Xi, J. Y. Revealing sulfuric acid concentration impact on comprehensive performance of vanadium electrolytes and flow batteries. Electrochim. Acta 2019, 303, 21–31.

[28]

Yang, Y. D.; Zhang, Y. M.; Liu, T.; Huang, J. Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte. J. Power Sources 2019, 415, 62–68.

[29]

Nguyen, T. D.; Wang, L. P.; Whitehead, A.; Wai, N.; Scherer, G. G.; Xu, Z. J. Insights into the synergistic effect of ammonium and phosphate-containing additives for a thermally stable vanadium redox flow battery electrolyte. J. Power Sources 2018, 402, 75–81.

[30]

Song, Y. X.; Li, X. R.; Yan, C. W.; Tang, A. Uncovering ionic conductivity impact towards high power vanadium flow battery design and operation. J. Power Sources 2020, 480, 229141.

[31]

Wei, L.; Zeng, L.; Wu, M. C.; Fan, X. Z.; Zhao, T. S. Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries. Appl. Energy 2019, 251, 113344.

[32]

Zhang, Z. H.; Wei, L.; Wu, M. C.; Bai, B. F.; Zhao, T. S. Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries. Appl. Energy 2021, 289, 116690.

[33]

Mousa, A.; Skyllas-Kazacos, M. Effect of additives on the low-temperature stability of vanadium redox flow battery negative half-cell electrolyte. ChemElectroChem 2015, 2, 1742–1751.

[34]

Ai, F.; Wang, Z. Y.; Lai, N. C.; Zou, Q. L.; Liang, Z. J.; Lu, Y. C. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy 2022, 7, 417–426.

[35]

Min-suk, J. J.; Parrondo, J.; Arges, C. G.; Ramani, V. Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery. J. Mater. Chem. A 2013, 1, 10458–10464.

[36]

Gan, R. J.; Ma, Y. J.; Li, S. S.; Zhang, F. X.; He, G. H. Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications. J. Energy Chem. 2018, 27, 1189–1197.

[37]

Li, X. F.; Zhang, H. M.; Mai, Z. S.; Zhang, H. Z.; Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 2011, 4, 1147–1160.

[38]

Kim, J. Q.; So, S.; Kim, H. T.; Choi, S. Q. Highly ordered ultrathin perfluorinated sulfonic acid ionomer membranes for vanadium redox flow battery. ACS Energy Lett. 2021, 6, 184–192.

[39]

Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries. J. Power Sources 2016, 327, 374–383.

[40]

Shin, D. W.; Guiver, M. D.; Lee, Y. M. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability. Chem. Rev. 2017, 117, 4759–4805.

[41]

Bhushan, M.; Kumar, S.; Singh, A. K.; Shahi, V. K. High-performance membrane for vanadium redox flow batteries: Cross-linked poly(ether ether ketone) grafted with sulfonic acid groups via the spacer. J. Membr. Sci. 2019, 583, 1–8.

[42]

Zhou, J. H.; Liu, Y. H.; Zuo, P. P.; Li, Y. Y.; Dong, Y.; Wu, L.; Yang, Z. J.; Xu, T. W. Highly conductive and vanadium sieving microporous Tröger’s base membranes for vanadium redox flow battery. J. Membr. Sci. 2021, 620, 118832.

[43]

Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

[44]

Sasmal, H. S.; Aiyappa, H. B.; Bhange, S. N.; Karak, S.; Halder, A.; Kurungot, S.; Banerjee, R. Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. 2018, 130, 11060–11064.

[45]

Di, M. T.; Hu, L.; Gao, L.; Yan, X. M.; Zheng, W. J.; Dai, Y.; Jiang, X. B.; Wu, X. M.; He, G. H. Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries. Chem. Eng. J 2020, 399, 125833.

[46]

Deng, Q.; Huang, P.; Zhou, W. X.; Ma, Q.; Zhou, N.; Xie, H.; Ling, W.; Zhou, C. J.; Yin, Y. X.; Wu, X. W. et al. A high-performance composite electrode for vanadium redox flow batteries. Adv. Energy Mater. 2017, 7, 1700461.

[47]

Zhang, Y.; Qian, G. C.; Huang, C. D.; Wang, Y. X. Effect of modification of polyacrylonitrile-based graphite felts on their performance in redox fuel cell and redox flow battery. J. Power Sources 2016, 324, 528–537.

[48]

Han, P. X.; Wang, H. B.; Liu, Z. H.; Chen, X.; Ma, W.; Yao, J. H; Zhu, Y. W.; Cui, G. L. Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon 2011, 49, 693–700.

[49]
Lim, H.-S.; Chae, S.; Yan, L. T.; Li, G. S.; Feng, R. Z.; Shin, Y.; Nie, Z. M.; Sivakumar, B. M.; Zhang, X.; Liang, Y. G. et al. Crosslinked polyethyleneimine gel polymer interface to improve cycling stability of RFBs. Energy Mater. Adv. 2022, 2022, https://doi.org/10.34133/32022/9863679.
[50]

Jin, J. T.; Fu, X. G.; Liu, Q.; Liu, Y. R.; Wei, Z. Y.; Niu, K. X.; Zhang, J. Y. Identifying the active site in nitrogen-doped graphene for the VO2+/VO2+ redox reaction. ACS Nano 2013, 7, 4764–4773.

[51]

Li, W. Y.; Zhang, Z. Y.; Tang, Y. B.; Bian, H. D.; Ng, T. W.; Zhang, W. J.; Lee, C. S. Graphene-nanowall-decorated carbon felt with excellent electrochemical activity toward VO2+/VO2+ couple for all vanadium redox flow battery. Adv. Sci. 2016, 3, 1500276.

[52]

Huang, P.; Ling, W.; Sheng, H.; Zhou, Y.; Wu, X. P.; Zeng, X. X.; Wu, X. W.; Guo, Y. G. Heteroatom-doped electrodes for all-vanadium redox flow batteries with ultralong lifespan. J. Mater. Chem. A 2018, 6, 41–44.

[53]

Ma, Q.; Deng, Q.; Sheng, H.; Ling, W.; Wang, H. Y.; Jiao, H. W.; Wu, X. W.; Zhou, W. X.; Zeng, X. X.; Yin, Y. X. et al. High electro-catalytic graphite felt/MnO2 composite electrodes for vanadium redox flow batteries. Sci. China 2018, 61, 732–738.

[54]

Petek, T. J.; Hoyt, N. C.; Savinell, R. F.; Wainright, J. S. Characterizing slurry electrodes using electrochemical impedance spectroscopy. J. Electrochem. Soc. 2016, 163, A5001–A5009.

[55]

Percin, K.; Rommerskirchen, A.; Sengpiel, R.; Gendel, Y.; Wessling, M. 3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes. J. Power Sources 2018, 379, 228–233.

[56]

Zheng, Q.; Xing, F.; Li, X. F.; Liu, T.; Lai, Q. Z.; Ning, G. L.; Zhang, H. M. Dramatic performance gains of a novel circular vanadium flow battery. J. Power Sources 2015, 277, 104–109.

[57]

Bhattarai, A.; Wai, N.; Schweiss, R.; Whitehead, A.; Lim, T. M.; Hng, H. H. Advanced porous electrodes with flow channels for vanadium redox flow battery. J. Power Sources 2017, 341, 83–90.

[58]

Al-Yasiri, M.; Park, J. A novel cell design of vanadium redox flow batteries for enhancing energy and power performance. Appl. Energy 2018, 222, 530–539.

[59]

Li, X. F.; Zhang, H. Z.; Zheng, Q.; Yan, J. W.; Guo, Y. G.; Hu, Y. S. Electrochemical energy storage technology in energy revolution. Bull. Chin. Acad. Sci. 2019, 34, 443–449.

[60]

Sun, C. Y.; Zhang, H.; Luo, X. D.; Chen, N. A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron-chromium redox flow battery. Ionics 2019, 25, 4219–4229.

[61]
Wuhan Nanrui VFBs energy storage system [Online]. https://www.sohu.com/a/498690633_418320 (accessed Apr 30, 2023).
[62]
Weilide Xinjiang Awati VFBs energy storage power station [Online]. https://m.sohu.com/a/440547278_465261 (accessed Apr 30, 2023)
[63]
Shantou Smart Energy RFBs Energy Storage [Online]. https://mnewenergy.in-en.com/html/newenergy-2406327.shtml (accessed Apr 30, 2023).
[64]

Zhang, H.; Tan, Y.; Luo, X. D.; Sun, C. Y.; Chen, N. Polarization effects of a rayon and polyacrylonitrile based graphite felt for iron-chromium redox flow batteries. ChemElectroChem 2019, 6, 3175–3188.

[65]

Su, Y.; Chen, N.; Ren, H. L.; Guo, L. L.; Li, Z.; Wang, X. M. Preparation and properties of indium ion modified graphite felt composite electrode. Front. Chem. 2022, 10, 899287.

[66]

Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 2015, 300, 438–443.

[67]

Wang, S. L.; Xu, Z. Y.; Wu, X. L.; Zhao, H.; Zhao, J. L.; Liu, J. G.; Yan, C. W.; Fan, X. Z. Excellent stability and electrochemical performance of the electrolyte with indium ion for iron-chromium flow battery. Electrochim. Acta 2021, 368, 137524.

[68]

Johnson, D. A.; Reid, M. A. Chemical and electrochemical behavior of the Cr(III)/Cr(II) half-cell in the iron-chromium redox energy storage system. J. Electrochem. Soc. 1985, 132, 1058–1062.

[69]

Zhang, H.; Sun, C. Y. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. J. Power Sources 2021, 493, 229445.

[70]

Wang, S. L.; Xu, Z. Y.; Wu, X. L.; Zhao, H.; Zhao, J. L.; Liu, J. G.; Yan, C. W.; Fan, X. Z. Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery. Appl. Energy 2020, 271, 115252.

[71]

Waters, S. E.; Robb, B. H.; Marshak, M. P. Effect of chelation on iron-chromium redox flow batteries. ACS Energy Lett. 2020, 5, 1758–1762.

[72]

Sun, C. Y.; Zhang, H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery. Int. J. Energy Res. 2019, 43, 8739–8752.

[73]

Yang, P.; Xuan, S. S.; Long, J.; Wang, Y. L.; Zhang, Y. P.; Zhang, H. P. Fluorine-containing branched sulfonated polyimide membrane for vanadium redox flow battery applications. ChemElectroChem 2018, 5, 3695–3707.

[74]

Teng, X. G.; Yu, C.; Wu, X. F.; Dong, Y. C.; Gao, P.; Hu, H. L.; Zhu, Y. M.; Dai, J. C. PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application. J. Mater. Sci. 2018, 53, 5204–5215.

[75]

Xu, Z.; Michos, I.; Cao, Z. S.; Jing, W. H.; Gu, X. H.; Hinkle, K.; Murad, S.; Dong, J. H. Proton-selective ion transport in ZSM-5 zeolite membrane. J. Phys. Chem. C 2016, 120, 26386–26392.

[76]

Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zeng, L.; Wei, L. The effects of design parameters on the charge–discharge performance of iron-chromium redox flow batteries. Appl. Energy 2016, 182, 204–209.

[77]

Nibel, O.; Schmidt, T. J.; Gubler, L. Bifunctional ion-conducting polymer electrolyte for the vanadium redox flow battery with high selectivity. J. Electrochem. Soc. 2016, 163, A2563–A2570.

[78]

Mu, D.; Yu, L. H.; Liu, L.; Xi, J. Y. Rice paper reinforced sulfonated poly(ether ether ketone) as low-cost membrane for vanadium flow batteries. ACS Sustainable Chem. Eng. 2017, 5, 2437–2444.

[79]

Qiao, L.; Liu, S. M.; Fang, M. L.; Yang, M. J.; Ma, X. K. A composite membrane with high stability and low cost specifically for iron-chromium flow battery. Polymers 2022, 14, 2245.

[80]

Rabbow, T. J.; Trampert, M.; Pokorny, P.; Binder, P.; Whitehead, A. H. Variability within a single type of polyacrylonitrile-based graphite felt after thermal treatment. Part I: Physical properties. Electrochim. Acta 2015, 173, 17–23.

[81]

Kim, K. J.; Park, M. S.; Kim, Y. J.; Kim, J. H.; Dou, S. X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933.

[82]

Zhang, H.; Tan, Y.; Li, J. Y.; Xue, B. Studies on properties of rayon-and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance. Electrochim. Acta 2017, 248, 603–613.

[83]

Zhang, H.; Chen, N.; Sun, C. Y.; Luo, X. D. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery. Int. J. Energy Res. 2020, 44, 3839–3853.

[84]

Chen, N.; Zhang, H.; Luo, X. D.; Sun, C. Y. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery. Electrochim. Acta 2020, 336, 135646.

[85]

Li, Z.; Guo, L. L.; Chen, N.; Su, Y.; Wang, X. M. Boric acid thermal etching graphite felt as a high-performance electrode for iron-chromium redox flow battery. Mater. Res. Express 2022, 9, 025601.

[86]

Ahn, Y.; Moon, J.; Park, S. E.; Shin, J.; Wook Choi, J.; Kim, K. J. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries. Chem. Eng. J 2021, 421, 127855.

[87]

Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields. J. Power Sources 2016, 327, 258–264.

[88]

Zeng, Y. K.; Zhou, X. L.; An, L.; Wei, L.; Zhao, T. S. A high-performance flow-field structured iron-chromium redox flow battery. J. Power Sources 2016, 324, 738–744.

[89]
Thaller, L. H. Electrically rechargeable redox flow cells. In Proceedings of the 9th Intersociety Energy Conversion Engineering Conference, San Francisco, USA, 1974; pp 924–928.
[90]
Hagedorn, N. H. NASA redox storage system development project. Final Report. NASA Lewis Research Center, Cleveland, OH (USA), 1984.
[91]
Thaller, L. Redox flow cell energy storage systems. In Proceedings of Terrestrial Energy Systems Conference, Orlando, USA, 1979; pp 989.
[92]
Lin, Z. Q.; Jiang, Z. Research progress of Fe-Cr redox-flow battery in Japan I development progress of Fe-Cr redox-flow battery. Chin. J. Power Sources 1991, 3239, 47.
[93]

Futamata, M.; Higuchi, S.; Nakamura, O.; Ogino, I.; Takada, Y.; Okazaki, S.; Ashimura, S.; Takahashi, S. Performance testing of 10 kW-class advanced batteries for electric energy storage systems in Japan. J. Power Sources 1988, 24, 137–155.

[94]

Soloveichik, G. L. Flow batteries: Current status and trends. Chem. Rev. 2015, 115, 11533–11558.

[95]

Yang, L.; Wang, H.; Li, X. M.; Zhao, Z.; Zuo, Y. J.; Liu, Y. J.; Liu, Y. Introduction and engineering case analysis of 250 kW/1.5 MW·h iron-chromium redox flow batteries energy storage demonstrationpower station. Energy Storage Sci. Technol. 2020, 9, 751–756.

[96]

Song, Z. C.; Zhang, B. F.; Tong, B.; Zhong, Y. Q.; Kang, M. Commercialization progress of flow battery and its application prospects in electric power system. Therm. Power Gener. 2022, 51, 9–20.

[97]

Wang, G. X.; Zou, H. T.; Zhu, X. B.; Ding, M.; Jia, C. K. Recent progress in zinc-based redox flow batteries: A review. J. Phys. D Appl. Phys. 2022, 55, 163001.

[98]

Huang, S. Q.; Yuan, Z. Z.; Salla, M.; Wang, X.; Zhang, H.; Huang, S. P.; Lek, D. G.; Li, X. F.; Wang, Q. A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energy Environ. Sci. 2023, 16, 438–445.

[99]

Xie, C. X.; Li, T. Y.; Deng, C. Z.; Song, Y.; Zhang, H. M.; Li, X. F. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 2020, 13, 135–143.

[100]

Lei, J. F.; Yao, Y. X.; Wang, Z. Y.; Lu, Y.-C. Towards high-areal-capacity aqueous zinc-manganese batteries: Promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 2021, 14, 4418–4426.

[101]

Kim, M.; Lee, S.; Choi, J.; Park, J.; Park, J. W.; Park, M. Reversible metal ionic catalysts for high-voltage aqueous hybrid zinc-manganese redox flow batteries. Energy Storage Mater. 2023, 55, 698–707.

[102]

Yu, X.; Song, Y. X.; Tang, A. Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery. J. Power Sources 2021, 507, 230295.

[103]

Li, B.; Nie, Z. M.; Vijayakumar, M.; Li, G. S.; Liu, J.; Sprenkle, V.; Wang, W. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 2015, 6, 6303.

[104]

Xie, C. X.; Zhang, H. M.; Xu, W. B.; Wang, W.; Li, X. F. A long cycle life, self-healing zinc-iodine flow battery with high power density. Angew. Chem., Int. Ed. 2018, 57, 11171–11176.

[105]

Jiang, H. R.; Wu, M. C.; Ren, Y. X.; Shyy, W.; Zhao, T. S. Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries. Appl. Energy 2018, 213, 366–374.

[106]

Wu, M. C.; Zhao, T. S.; Zhang, R. H.; Wei, L.; Jiang, H. R. Carbonized tubular polypyrrole with a high activity for the Br2/Br redox reaction in zinc-bromine flow batteries. Electrochim. Acta 2018, 284, 569–576.

[107]

Yang, M. H.; Xu, Z. Z.; Xiang, W. Z.; Xu, H.; Ding, M.; Li, L. Y.; Tang, A.; Gao, R. H.; Zhou, G. M.; Jia, C. K. High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Mater. 2022, 44, 433–440.

[108]

Wu, M. C.; Jiang, H. R.; Zhang, R. H.; Wei, L.; Chan, K. Y.; Zhao, T. S. N-doped graphene nanoplatelets as a highly active catalyst for Br2/Br redox reactions in zinc-bromine flow batteries. Electrochim. Acta 2019, 318, 69–75.

[109]

Xu, Z. C.; Fan, Q.; Li, Y.; Wang, J.; Lund, P. D. Review of zinc dendrite formation in zinc bromine redox flow battery. Renew. Sustainable Energy Rev. 2020, 127, 109838.

[110]

Yin, Y. B.; Wang, S. N.; Zhang, Q.; Song, Y.; Chang, N. N.; Pan, Y. W.; Zhang, H. M.; Li, X. F. Dendrite-free zinc deposition induced by tin-modified multifunctional 3d host for stable zinc-based flow battery. Adv. Mater. 2020, 32, 1906803.

[111]

Lu, W. J.; Xu, P. C.; Shao, S. Y.; Li, T. Y.; Zhang, H. M.; Li, X. F. Multifunctional carbon felt electrode with N-rich defects enables a long-cycle zinc-bromine flow battery with ultrahigh power density. Adv. Funct. Mater. 2021, 31, 2102913.

[112]

Chen, H. L.; Kang, C. Z.; Shang, E. H.; Liu, G. Y.; Chen, D. J.; Yuan, Z. Z. Montmorillonite-based separator enables a long-life alkaline zinc-iron flow battery. Ind. Eng. Chem. Res. 2023, 62, 676–684.

[113]

Mariyappan, K.; Ragupathy, P.; Ulaganathan, M. Enhancement of bromine kinetics using Pt@graphite felt and its applications in Zn-Br2 redox flow battery. J. Electrochem. Soc. 2021, 168, 090566.

[114]

Suresh, S.; Ulaganathan, M.; Aswathy, R.; Ragupathy, P. Enhancement of bromine reversibility using chemically modified electrodes and their applications in zinc bromine hybrid redox flow batteries. ChemElectroChem 2018, 5, 3411–3418.

[115]

Xiang, H. X.; Tan, A. D.; Piao, J. H.; Fu, Z. Y.; Liang, Z. X. Efficient nitrogen-doped carbon for zinc-bromine flow battery. Small 2019, 15, 1901848.

[116]

Gao, L. J.; Li, Z. X.; Zou, Y. P.; Yin, S. F.; Peng, P.; Shao, Y. Y.; Liang, X. A high-performance aqueous zinc-bromine static battery. iScience 2020, 23, 101348.

[117]

Zelger, C.; Süßenbacher, M.; Laskos, A.; Gollas, B. State of charge indicators for alkaline zinc-air redox flow batteries. J. Power Sources 2019, 424, 76–81.

[118]

Abbasi, A.; Hosseini, S.; Somwangthanaroj, A.; Cheacharoen, R.; Olaru, S.; Kheawhom, S. Discharge profile of a zinc-air flow battery at various electrolyte flow rates and discharge currents. Sci. Data 2020, 7, 196.

[119]

Cheng, Y. H.; Li, D. M.; Shi, L.; Xiang, Z. H. Efficient unitary oxygen electrode for air-based flow batteries. Nano Energy 2018, 47, 361–367.

[120]

Cui, J.; Leng, Y. M.; Xiang, Z. H. FeNi co-doped electrocatalyst synthesized via binary ligand strategy as a bifunctional catalyst for Zn-air flow battery. Chem. Eng. Sci. 2022, 247, 117038.

[121]

Zhang, W.; Chang, J. F.; Wang, G. Z.; Li, Z.; Wang, M. Y.; Zhu, Y. M.; Li, B. Y.; Zhou, H.; Wang, G. F.; Gu, M. et al. Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. Energy Environ. Sci. 2022, 15, 1573–1584.

[122]

Huang, S. Q.; Zhang, H.; Zhuang, J. H.; Zhou, M. Y.; Gao, M. Q.; Zhang, F. F.; Wang, Q. Redox-mediated two-electron oxygen reduction reaction with ultrafast kinetics for Zn-air flow battery. Adv. Energy Mater. 2022, 12, 2103622.

[123]

Zhang, H.; Huang, S. Q.; Salla, M.; Zhuang, J. H.; Gao, M. Q.; Lek, D. G.; Ye, H. L.; Wang, Q. A redox-mediated zinc-air fuel cell. ACS Energy Lett. 2022, 7, 2565–2575.

[124]

Shi, Y.; Wang, Z. Y.; Yao, Y. X.; Wang, W. W.; Lu, Y. C. High-areal-capacity conversion type iron-based hybrid redox flow batteries. Energy Environ. Sci. 2021, 14, 6329–6337.

[125]

Yao, Y. X.; Wang, Z. Y.; Li, Z. J.; Lu, Y. C. A dendrite-free tin anode for high-energy aqueous redox flow batteries. Adv. Mater. 2021, 33, 2008095.

[126]

Lu, W. J.; Li, T. Y.; Yuan, C. G.; Zhang, H. M.; Li, X. F. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery. Energy Storage Mater. 2022, 47, 415–423.

[127]

Khataee, A.; Wedege, K.; Dražević, E.; Bentien, A. Differential pH as a method for increasing cell potential in organic aqueous flow batteries. J. Mater. Chem. A 2017, 5, 21875–21882.

[128]

Gerhardt, M. R.; Beh, E. S.; Tong, L. C.; Gordon, R. G.; Aziz, M. J. Comparison of capacity retention rates during cycling of quinone-bromide flow batteries. MRS Adv. 2017, 2, 431–438.

[129]

Gerhardt, M. R.; Tong, L. C.; Gómez-Bombarelli, R.; Chen, Q.; Marshak, M. P.; Galvin, C. J.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Anthraquinone derivatives in aqueous flow batteries. Adv. Energy Mater. 2017, 7, 1601488.

[130]

Yang, B.; Hoober-Burkhardt, L.; Wang, F.; Surya Prakash, G. K.; Narayanan, S. R. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 2014, 161, A1371–A1380.

[131]

Liu, W. Q.; Zhao, Z. M.; Li, T. Y.; Li, S. H.; Zhang, H. M.; Li, X. F. A high potential biphenol derivative cathode: Toward a highly stable air-insensitive aqueous organic flow battery. Sci. Bull. 2021, 66, 457–463.

[132]

Wang, C. X.; Yang, Z.; Yu, B.; Wang, H. Z.; Zhang, K. Q.; Li, G. G.; Tie, Z. X.; Jin, Z. Alkaline soluble 1,3,5,7-tetrahydroxyanthraquinone with high reversibility as anolyte for aqueous redox flow battery. J. Power Sources 2022, 524, 231001.

[133]

Huang, S. Q.; Zhang, H.; Salla, M.; Zhuang, J. H.; Zhi, Y. F.; Wang, X.; Wang, Q. Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries. Nat. Commun. 2022, 13, 4746.

[134]

Wang, C. X.; Li, X.; Yu, B.; Wang, Y. R.; Yang, Z.; Wang, H. Z.; Lin, H. N.; Ma, J.; Li, G. G.; Jin, Z. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries. ACS Energy Lett. 2020, 5, 411–417.

[135]

Liu, Z. R.; Wang, Z.; Shi, Y. J.; Shen, Y. M.; Wang, W. C.; Chen, Z. D.; Xu, J.; Cao, J. Y. A high-capacity hexaazatrinaphthylene anode for aqueous organic hybrid flow batteries. J. Mater. Chem. A 2021, 9, 27028–27033.

[136]

Wu, M.; Jing, Y.; Wong, A. A.; Fell, E. M.; Jin, S. J.; Tang, Z. J.; Gordon, R. G.; Aziz, M. J. Extremely stable anthraquinone negolytes synthesized from common precursors. Chem 2020, 6, 1432–1442.

[137]

Hollas, A.; Wei, X. L.; Murugesan, V.; Nie, Z. M.; Li, B.; Reed, D.; Liu, J.; Sprenkle, V.; Wang, W. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 2018, 3, 508–514.

[138]

Ye, C. C.; Wang, A. Q.; Breakwell, C.; Tan, R.; Grazia Bezzu, C.; Hunter-Sellars, E.; Williams, D. R.; Brandon, N. P.; Klusener, P. A. A.; Kucernak, A. R. et al. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat. Commun. 2022, 13, 3184.

[139]

Lv, X. L.; Sullivan, P.; Fu, H. C.; Hu, X. X.; Liu, H. H.; Jin, S.; Li, W. J.; Feng, D. W. Dextrosil-viologen: A robust and sustainable anolyte for aqueous organic redox flow batteries. ACS Energy Lett. 2022, 7, 2428–2434.

[140]

Fan, H.; Wu, W. D.; Ravivarma, M.; Li, H. B.; Hu, B.; Lei, J. F.; Feng, Y. Y.; Sun, X. H.; Song, J. X.; Liu, T. L. Mitigating ring-opening to develop stable TEMPO catholytes for ph-neutral all-organic redox flow batteries. Adv. Funct. Mater. 2022, 32, 2203032.

[141]

Wu, W. D.; Luo, J.; Wang, F.; Yuan, B.; Liu, T. L. A self-trapping, bipolar viologen bromide electrolyte for redox flow batteries. ACS Energy Lett. 2021, 6, 2891–2897.

[142]

Xiao, Y.; Xu, J. H.; Hu, L.; Wang, H.; Gao, L.; Peng, S. Q.; Di, M. T.; Sun, X. J.; Liu, J.; Yan, X. M. Advanced anion-selective membranes with pendant quaternary ammonium for neutral aqueous supporting redox flow battery. J. Membr. Sci. 2022, 659, 120748.

[143]

Liu, B.; Tang, C. W.; Zhang, C.; Jia, G. C.; Zhao, T. S. Cost-effective, high-energy-density, nonaqueous nitrobenzene organic redox flow battery. Chem. Mater. 2021, 33, 978–986.

[144]

Xu, D. H.; Zhang, C. J.; Zhen, Y. H.; Zhao, Y. C.; Li, Y. D. A high-rate nonaqueous organic redox flow battery. J. Power Sources 2021, 495, 229819.

[145]

Yan, Y. C.; Walser-Kuntz, R.; Sanford, M. S. Targeted optimization of phenoxazine redox center for nonaqueous redox flow batteries. ACS Mater. Lett. 2022, 4, 733–739.

[146]

Yan, Y. C.; Vogt, D. B.; Vaid, T. P.; Sigman, M. S.; Sanford, M. S. Development of high energy density diaminocyclopropenium–phenothiazine hybrid catholytes for non-aqueous redox flow batteries. Angew. Chem., Int. Ed. 2021, 60, 27039–27045.

[147]

Nambafu, G. S.; Delmo, E. P.; Bin Shahid, U.; Zhang, C.; Chen, Q.; Zhao, T. S.; Gao, P.; Amine, K.; Shao, M. H. Pyromellitic diimide based bipolar molecule for total organic symmetric redox flow battery. Nano Energy 2022, 94, 106963.

[148]

Su, L.; Darling, R. M.; Gallagher, K. G.; Xie, W.; Thelen, J. L.; Badel, A. F.; Barton, J. L.; Cheng, K. J.; Balsara, N. P.; Moore, J. S. et al. An investigation of the ionic conductivity and species crossover of lithiated Nafion 117 in nonaqueous electrolytes. J. Electrochem. Soc 2016, 163, A5253–A5262.

[149]

Kwabi, D. G.; Ji, Y. L.; Aziz, M. J. Electrolyte lifetime in aqueous organic redox flow batteries: A critical review. Chem. Rev. 2020, 120, 6467–6489.

[150]

Liu, T. B.; Wei, X. L.; Nie, Z. M.; Sprenkle, V.; Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 2016, 6, 1501449.

[151]

Janoschka, T.; Morgenstern, S.; Hiller, H.; Friebe, C.; Wolkersdörfer, K.; Häupler, B.; Hager, M. D.; Schubert, U. S. Synthesis and characterization of TEMPO- and viologen-polymers for water-based redox-flow batteries. Polym. Chem. 2015, 6, 7801–7811.

[152]

Pang, S.; Wang, X. Y.; Wang, P.; Ji, Y. L. Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH. Angew. Chem., Int. Ed. 2021, 60, 5289–5298.

[153]

Beh, E. S.; de Porcellinis, D.; Gracia, R. L.; Xia, K. T.; Gordon, R. G.; Aziz, M. J. A neutral pH aqueous organic/organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2017, 2, 639–644.

[154]

Forner-Cuenca, A.; Brushett, F. R. Engineering porous electrodes for next-generation redox flow batteries: Recent progress and opportunities. Curr. Opin. Electrochem. 2019, 18, 113–122.

[155]

Wu, Q. X.; Lv, Y. H.; Lin, L. Y.; Zhang, X. Y.; Liu, Y.; Zhou, X. L. An improved thin-film electrode for vanadium redox flow batteries enabled by a dual layered structure. J. Power Sources 2019, 410–411, 152–161.

[156]

Li, G.; Jia, Y. B.; Zhang, S.; Li, X.; Li, J. L.; Li, L. J. The crossover behavior of bromine species in the metal-free flow battery. J. Appl. Electrochem. 2017, 47, 261–272.

[157]

Vijayakumar, M.; Wang, W.; Nie, Z. M.; Sprenkle, V.; Hu, J. Z. Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes. J. Power Sources 2013, 241, 173–177.

[158]

Wang, R.; Li, Y. S. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective. Energy Storage Mater. 2020, 31, 230–251.

[159]

Sun, B.; Skyllas-Kazacos, M. Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochim. Acta 1992, 37, 1253–1260.

[160]

Yue, L.; Li, W. S.; Sun, F. Q.; Zhao, L. Z.; Xing, L. D. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon 2010, 48, 3079–3090.

[161]

Esan, O. C.; Shi, X. Y.; Pan, Z. F.; Huo, X. Y.; An, L.; Zhao, T. S. Modeling and simulation of flow batteries. Adv. Energy Mater. 2020, 10, 2000758.

[162]

Zhang, W. G.; Xi, J. Y.; Li, Z. H.; Zhou, H. P.; Liu, L.; Wu, Z. H.; Qiu, X. P. Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application. Electrochim. Acta 2013, 89, 429–435.

[163]

Wu, X. W.; Yamamura, T.; Ohta, S.; Zhang, Q. X.; Lv, F. C.; Liu, C. M.; Shirasaki, K.; Satoh, I.; Shikama, T.; Lu, D. et al. Acceleration of the redox kinetics of VO2+/VO2+ and V3+/V2+ couples on carbon paper. J. Appl. Electrochem. 2011, 41, 1183–1190.

[164]

Singh, A. K.; Pahlevaninezhad, M.; Yasri, N.; Roberts, E. P. L. Degradation of carbon electrodes in the all-vanadium redox flow battery. ChemSusChem 2021, 14, 2100–2111.

[165]

Jiang, Z.; Klyukin, K.; Alexandrov, V. First-principles study of adsorption-desorption kinetics of aqueous V2+/V3+ redox species on graphite in a vanadium redox flow battery. Phys. Chem. Chem. Phys. 2017, 19, 14897–14901.

[166]

Hassan, A.; Haile, A. S.; Tzedakis, T.; Hansen, H. A.; de Silva, P. The role of oxygenic groups and sp3 carbon hybridization in activated graphite electrodes for vanadium redox flow batteries. ChemSusChem 2021, 14, 3945–3952.

[167]

Moro, F.; Trovò, A.; Bortolin, S.; del Col, D.; Guarnieri, M. An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment. J. Power Sources 2017, 340, 229–241.

[168]

Ni, S.; Li, Z. Y.; Yang, J. L. Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale 2012, 4, 1184–1189.

[169]

Wu, T.; Huang, K. L.; Liu, S. Q.; Zhuang, S. X.; Fang, D.; Li, S.; Lu, D.; Su, A. Q. Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery. J. Solid State Electrochem. 2012, 16, 579–585.

[170]

Ejigu, A.; Edwards, M.; Walsh, D. A. Synergistic catalyst-support interactions in a graphene-Mn3O4 electrocatalyst for vanadium redox flow batteries. ACS Catal. 2015, 5, 7122–7130.

[171]

Ferre-Vilaplana, A.; Herrero, E. Understanding the chemisorption-based activation mechanism of the oxygen reduction reaction on nitrogen-doped graphitic materials. Electrochim. Acta 2016, 204, 245–254.

[172]

Xu, A.; Shi, L.; Zeng, L.; Zhao, T. S. First-principle investigations of nitrogen-, boron-, phosphorus-doped graphite electrodes for vanadium redox flow batteries. Electrochim. Acta 2019, 300, 389–395.

[173]

Gursu, H.; Gencten, M.; Sahin, Y. Synthesis of phosphorus doped graphenes via the yucel’s method as the positive electrode of a vanadium redox flow battery. J. Electrochem. Soc. 2021, 168, 060504.

[174]

Noh, C.; Kwon, B. W.; Chung, Y.; Kwon, Y. Effect of the redox reactivity of vanadium ions enhanced by phosphorylethanolamine based catalyst on the performance of vanadium redox flow battery. J. Power Sources 2018, 406, 26–34.

[175]

Yang, N.; Zheng, X. Q.; Li, L.; Li, J.; Wei, Z. D. Influence of phosphorus configuration on electronic structure and oxygen reduction reactions of phosphorus-doped graphene. J. Phys. Chem. C 2017, 121, 19321–19328.

[176]

Zhang, X. L.; Lu, Z. S.; Fu, Z. M.; Tang, Y. A.; Ma, D. W.; Yang, Z. X. The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study. J. Power Sources 2015, 276, 222–229.

[177]

Opar, D. O.; Nankya, R.; Raj, C. J.; Jung, H. In-situ functionalization of binder-free three-dimensional boron-doped mesoporous graphene electrocatalyst as a high-performance electrode material for all-vanadium redox flow batteries. Appl. Mater. Today 2021, 22, 100950.

[178]

Jiang, H. R.; Shyy, W.; Zeng, L.; Zhang, R. H.; Zhao, T. S. Highly efficient and ultra-stable boron-doped graphite felt electrodes for vanadium redox flow batteries. J. Mater. Chem. A 2018, 6, 13244–13253.

[179]

Park, S. E.; Yang, S. Y.; Kim, K. J. Boron-functionalized carbon felt electrode for enhancing the electrochemical performance of vanadium redox flow batteries. Appl. Surf. Sci. 2021, 546, 148941.

[180]

Shi, L.; Liu, S. Q.; He, Z.; Yuan, H.; Shen, J. X. Synthesis of boron and nitrogen co-doped carbon nanofiber as efficient metal-free electrocatalyst for the VO2+/VO2+ redox reaction. Electrochim. Acta 2015, 178, 748–757.

[181]

Su, J. C.; Zhao, Y.; Xi, J. Y. Phosphorus-doped carbon nitride as powerful electrocatalyst for high-power vanadium flow battery. Electrochim. Acta 2018, 286, 22–28.

[182]

Li, W. Y.; Liu, J. G.; Yan, C. W. Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon 2011, 49, 3463–3470.

[183]

González, Z.; Vizireanu, S.; Dinescu, G.; Blanco, C.; Santamaría, R. Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries. Nano Energy 2012, 1, 833–839.

[184]

Han, P. X.; Yue, Y. H.; Liu, Z. H.; Xu, W.; Zhang, L. X.; Xu, H. X.; Dong, S. M.; Cui, G. L. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energy Environ. Sci. 2011, 4, 4710–4717.

[185]

Chaudhuri, P.; Lima, C. N.; Frota, H. O.; Ghosh, A. First-principles study of nanotubes of carbon, boron and nitrogen. Appl. Surf. Sci. 2019, 490, 242–250.

[186]

Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries. J. Power Sources 2017, 365, 34–42.

[187]

Jeong, S.; Kim, S.; Kwon, Y. Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process. Electrochim. Acta 2013, 114, 439–447.

[188]

Sun, B. T.; Skyllas-Kazakos, M. Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim. Acta 1991, 36, 513–517.

[189]

Yao, C.; Zhang, H. M.; Liu, T.; Li, X. F.; Liu, Z. H. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. J. Power Sources 2012, 218, 455–461.

[190]

Flox, C.; Rubio-Garcia, J.; Nafria, R.; Zamani, R.; Skoumal, M.; Andreu, T.; Arbiol, J.; Cabot, A.; Morante, J. R. Active nano-CuPt3 electrocatalyst supported on graphene for enhancing reactions at the cathode in all-vanadium redox flow batteries. Carbon 2012, 50, 2372–2374.

[191]

Zhou, H. P.; Xi, J. Y.; Li, Z. H.; Zhang, Z. Y.; Yu, L. H.; Liu, L.; Qiu, X. P.; Chen, L. Q. CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. RSC Adv. 2014, 4, 61912–61918.

[192]

Yang, F. C.; Mousavie, S. M. A.; Oh, T. K.; Yang, T. R.; Lu, Y. Q.; Farley, C.; Bodnar, R. J.; Niu, L.; Qiao, R.; Li, Z. Sodium-sulfur flow battery for low-cost electrical storage. Adv. Energy Mater. 2018, 8, 1701991.

[193]

Wei, S. Y.; Xu, S. M.; Agrawral, A.; Choudhury, S.; Lu, Y. Y.; Tu, Z. Y.; Ma, L.; Archer, L. A. A stable room-temperature sodium-sulfur battery. Nat. Commun. 2016, 7, 11722.

[194]

Li, Z. J.; Lu, Y. C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 2021, 6, 517–528.

[195]

Lei, J. F.; Yao, Y. X.; Huang, Y. Q.; Lu, Y. C. A highly reversible low-cost aqueous sulfur-manganese redox flow battery. ACS Energy Lett. 2022, 8, 429–435.

[196]

Wei, J.; Zhang, P. B.; Liu, Y. Z.; Liang, J. C.; Xia, Y. R.; Tao, A. Y.; Zhang, K. Q.; Tie, Z. X.; Jin, Z. Hypersaline aqueous lithium-ion slurry flow batteries. ACS Energy Lett. 2022, 7, 862–870.

[197]

Chen, H. N.; Lai, N. C.; Lu, Y. C. Silicon-carbon nanocomposite semi-solid negolyte and its application in redox flow batteries. Chem. Mater. 2017, 29, 7533–7542.

[198]

Chu, F. J.; Guo, L. B.; Wang, S. C.; Cheng, Y. H. Semi-solid zinc slurry with abundant electron–ion transfer interfaces for aqueous zinc-based flow batteries. J. Power Sources 2022, 535, 231442.

[199]

Wang, N.; Zhou, R. K.; Zheng, Z. L.; Xin, T.; Hu, M. J.; Wang, B.; Liu, J. Z. Flexible solid-state Zn-polymer batteries with practical functions. Chem. Eng. J 2021, 425, 131454.

[200]

Wang, X.; Chai, J. C.; Zhang, S.; Chen, B. B.; Chaturvedi, A.; Cui, G. L.; Jiang, J. J. Insights into Indigo K+ association in a half-slurry flow battery. ACS Energy Lett. 2022, 7, 1178–1186.

[201]

Wang, X.; Lashgari, A.; Chai, J. C.; Jiang, J. J. A membrane-free, aqueous/nonaqueous hybrid redox flow battery. Energy Storage Mater. 2022, 45, 1100–1108.

[202]

Zanzola, E.; Dennison, C. R.; Battistel, A.; Peljo, P.; Vrubel, H.; Amstutz, V.; Girault, H. H. Redox solid energy boosters for flow batteries: Polyaniline as a case study. Electrochim. Acta 2017, 235, 664–671.

Nano Research Energy
Article number: e9120081
Cite this article:
Liu Y, Niu Y, Ouyang X, et al. Progress of organic, inorganic redox flow battery and mechanism of electrode reaction. Nano Research Energy, 2023, 2: e9120081. https://doi.org/10.26599/NRE.2023.9120081

8523

Views

2149

Downloads

14

Crossref

16

Scopus

Altmetrics

Received: 07 March 2023
Revised: 01 April 2023
Accepted: 30 April 2023
Published: 29 June 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return