Journal Home > Volume 2 , Issue 4

Two-dimensional (2D) materials have attracted considerable research interest, leading to significant advances in energy applications in recent years, such as lithium batteries, catalysis, electronics, and thermoelectrics, owing to their rich controllable properties and excellent performances. Recently, pressure has been successfully employed as an effective method for property modulation of 2D materials, through tuning electronic orbitals and bonding patterns. In this review, we summarize recent progresses in the pressure-driven property modulations and elucidate the underlying mechanism of the pressure modulation of 2D materials. Further, we identify the remaining challenges and opportunities in this new, vibrant area of research for energy conversion and utilization. Among the different property modulation strategies, the in situ application of high pressure is systematically identified as a promising knob for 2D materials. This review is expected to inspire further research on the fundamental understanding and practical applications of high-pressure modulation in 2D materials.


menu
Abstract
Full text
Outline
About this article

Property modulations of two-dimensional materials under compression

Show Author's information Zhen WuYuxi WangYunjie DouLin ZhouJia Zhu( )
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China

Abstract

Two-dimensional (2D) materials have attracted considerable research interest, leading to significant advances in energy applications in recent years, such as lithium batteries, catalysis, electronics, and thermoelectrics, owing to their rich controllable properties and excellent performances. Recently, pressure has been successfully employed as an effective method for property modulation of 2D materials, through tuning electronic orbitals and bonding patterns. In this review, we summarize recent progresses in the pressure-driven property modulations and elucidate the underlying mechanism of the pressure modulation of 2D materials. Further, we identify the remaining challenges and opportunities in this new, vibrant area of research for energy conversion and utilization. Among the different property modulation strategies, the in situ application of high pressure is systematically identified as a promising knob for 2D materials. This review is expected to inspire further research on the fundamental understanding and practical applications of high-pressure modulation in 2D materials.

Keywords: diamond anvil cell, two-dimensional material, energy applications, property modulations, hydrostatic pressure

References(142)

[1]

Cai, Z.; Liu, B.; Zou, X.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[2]

Pei, S.; Wang, Z.; Xia, J. High pressure studies of 2D materials and heterostructures: A review. Mater. Design 2022, 213, 110363.

[3]

Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

[4]

Lemme, M.; Akinwande, D.; Huyghebaert, C.; Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 2022, 13, 1392.

[5]

Safaei, J.; Wang, G. Progress and prospects of two-dimensional materials for membrane-based osmotic power generation. Nano Res. Energy 2022, 1, e9120008.

[6]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan, H. J.; Fan, Z.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin 2021, 37, 2108017.

[7]

Duan, X.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.; Pan, A.; Jiang, J.; Yu, R.; Huang, Y.; Duan, X. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

[8]

Mao, H.-K.; Chen, B.; Chen, J.; Li, K.; Lin, J.-F.; Yang, W.; Zheng, H. Recent advances in high-pressure science and technology. Matter Radiat. Extrem. 2016, 1, 59–75.

[9]

Mao, H. -K.; Chen, X. -J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 01507.

[10]

Zhang, L.; Wang, Y.; Lv, J.; Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2017, 2, 17005.

[11]

Xu, M.; Li, Y.; Ma, Y. Materials by design at high pressures. Chem. Sci. 2022, 13, 329–344.

[12]

Su, H.; Zhang, H.; Wu, W.; Wang, X.; Wang, G.; Zhou, L. Chemically engineered dendrite growth of uniform monolayers MoS2 for enhanced photoluminescence. Chin. Opt. Lett. 2022, 20, 011602.

[13]

Zeng, M.; Liu, J.; Zhou, L.; Mendes, R. G.; Dong, Y.; Zhang, M. Y.; Cui, Z. H.; Cai, Z.; Zhang, Z.; Zhu, D. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. 2020, 19, 528–533.

[14]

Bai, Y.; Zhou, L.; Wang, J.; Wu, W.; McGilly, L. J.; Halbertal, D.; Lo, C. F. B.; Liu, F.; Ardelean, J.; Rivera, P. et al. Excitons in strain-induced one-dimensional moire potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 2020, 19, 1068–1073.

[15]

Fan, W.; Zhu, X.; Ke, F.; Chen, Y.; Dong, K.; Ji, J.; Chen, B.; Tongay, S.; Ager, J. W.; Liu, K. et al. Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers. Phys. Rev. B 2015, 92.

[16]

Rooney, A. P.; Kozikov, A.; Rudenko, A. N.; Prestat, E.; Hamer, M. J.; Withers, F.; Cao, Y.; Novoselov, K. S.; Katsnelson, M. I.; Gorbachev, R. et al. Observing imperfection in atomic interfaces for van der Waals heterostructures. Nano Lett. 2017, 17, 5222–5228.

[17]

Xia, J.; Yan, J.; Wang, Z.; He, Y.; Gong, Y.; Chen, W.; Sum, T. C.; Liu, Z.; Ajayan, P. M.; Shen, Z. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat. Phys. 2020, 17, 92–98.

[18]

Chen, M.; Xia, J.; Zhou, J.; Zeng, Q.; Li, K.; Fujisawa, K.; Fu, W.; Zhang, T.; Zhang, J.; Wang, Z. et al. Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities. ACS Nano 2017, 11, 9191–9199.

[19]

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

[20]

Yankowitz, M.; Jung, J.; Laksono, E.; Leconte, N.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Adam, S.; Graf, D.; Dean, C. R. Dynamic band-structure tuning of graphene moire superlattices with pressure. Nature 2018, 557, 404–408.

[21]

Hui, Y. Y.; Liu, X.; Jie, W.; Chan, N. Y.; Hao, J.; Hsu, Y.-T.; Li, L.-J.; Guo, W.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126–7131.

[22]

Wang, J.; Su, R.; Xing, J.; Bao, D.; Diederichs, C.; Liu, S.; Liew, T. C. H.; Chen, Z.; Xiong, Q. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano 2018, 12, 8382–8389.

[23]

Tsai, H.; Nie, W.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312–316.

[24]

Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349, 1518–1521.

[25]

Liu, S.; Sun, S.; Gan, C. K.; del Águila, A. G.; Fang, Y.; Xing, J.; Do, T. T. H.; White, T. J.; Li, H.; Huang, W. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 2019, 5, eaav9445.

[26]

Mao, L.; Stoumpos, C. C.; Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 2019, 141, 1171–1190.

[27]

Liu, G.; Kong, L.; Yang, W.; Mao, H.-K. Pressure engineering of photovoltaic perovskites. Mater. Today 2019, 27, 91–106.

[28]

Liu, G.; Gong, J.; Kong, L.; Schaller, R. D.; Hu, Q.; Liu, Z.; Yan, S.; Yang, W.; Stoumpos, C. C.; Kanatzidis, M. G. et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. USA 2018, 115, 8076–8081.

[29]

Kong, L.; Liu, G.; Gong, J.; Hu, Q.; Schaller, R. D.; Dera, P.; Zhang, D.; Liu, Z.; Yang, W.; Zhu, K. et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites. Proc. Natl. Acad. Sci. USA 2016, 113, 8910–8915.

[30]

Xiao, G.; Cao, Y.; Qi, G.; Wang, L.; Liu, C.; Ma, Z.; Yang, X.; Sui, Y.; Zheng, W.; Zou, B. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 10087–10094.

[31]

Zhu, H.; Cai, T.; Que, M.; Song, J.-P.; Rubenstein, B. M.; Wang, Z.; Chen, O. Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals. J. Phys. Chem. Lett. 2018, 9, 4199–4205.

[32]

Fang, Y.; Zhang, L.; Wu, L.; Yan, J.; Lin, Y.; Wang, K.; Mao, W. L.; Zou, B. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). Angew Chem., Int. Ed. 2019, 58, 15249–15253.

[33]

Chen, Y.; Fu, R.; Wang, L.; Ma, Z.; Xiao, G.; Wang, K.; Zou, B. Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure. J. Mater. Chem. A 2019, 7, 6357–6362.

[34]

Ren, X.; Yan, X.; Gennep, D. V.; Cheng, H.; Wang, L.; Li, Y.; Zhao, Y.; Wang, S. Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. Appl. Phys. Lett. 2020, 116.

[35]

Kong, L.; Liu, G.; Gong, J.; Mao, L.; Chen, M.; Hu, Q.; Lu, X.; Yang, W.; Kanatzidis, M. G.; Mao, H. K. Highly tunable properties in pressure-treated two-dimensional Dion-Jacobson perovskites. Proc. Natl. Acad. Sci. USA 2020, 117, 16121–16126.

[36]

Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C. H.; Li, L. J.; Chhowalla, M. et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 2015, 15, 346–353.

[37]

Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.

[38]

Fu, L.; Wan, Y.; Tang, N.; Ding, Y. -M.; Gao, J.; Yu, J.; Guan, H.; Zhang, K.; Wang, W.; Zhang, C.; Shi J.; Wu, X.; Shi, S.; Ge, W.; Dai, J.; Shen, B. K. Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure. Sci. Adv. 2017, 3, e1700162.

[39]

Dou, X.; Ding, K.; Jiang, D.; Sun, B. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure. ACS Nano 2014, 8, 7458–7464.

[40]

Dou, X.; Ding, K.; Jiang, D.; Fan, X.; Sun, B. Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure. ACS Nano 2016, 10, 1619–1624.

[41]

Rifliková, M.; Martoňák, R.; Tosatti, E. Pressure-induced gap closing and metallization of MoSe2 and MoTe2. Phys. Rev. B 2014, 90, 035108.

[42]

Fan, X.; Singh, D. J.; Jiang, Q.; Zheng, W. T. Pressure evolution of the potential barriers of phase transition of MoS2, MoSe2 and MoTe2. Phys. Chem. Chem. Phys. 2016, 18, 12080–12085.

[43]

Ke, F.; Chen, Y.; Yin, K.; Yan, J.; Zhang, H.; Liu, Z.; Tse, J. S.; Wu, J.; Mao, H. K.; Chen, B. Large bandgap of pressurized trilayer graphene. Proc. Natl. Acad. Sci. USA 2019, 116, 9186–9190.

[44]

Nicolle, J.; Machon, D.; Poncharal, P.; Pierre-Louis, O.; San-Miguel, A. Pressure-mediated doping in graphene. Nano Lett. 2011, 11, 3564–3568.

[45]

Hu, K.; Yao, M.; Yang, Z.; Xiao, G.; Zhu, L.; Zhang, H.; Liu, R.; Zou, B.; Liu, B. Pressure tuned photoluminescence and band gap in two-dimensional layered g-C3N4: the effect of interlayer interactions. Nanoscale 2020, 12, 12300–12307.

[46]

Xiang, Z. J.; Ye, G. J.; Shang, C.; Lei, B.; Wang, N. Z.; Yang, K. S.; Liu, D. Y.; Meng, F. B.; Luo, X. G.; Zou, L. J. et al. Pressure-induced electronic transition in black phosphorus. Phys. Rev. Lett. 2015, 115, 186403.

[47]

Polian, A.; Gauthier, M.; Souza, S. M.; Trichês, D. M.; Cardoso de Lima, J.; Grandi, T. A. Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Phys. Rev. B 2011, 83, 113106.

[48]

Du, K. Z.; Tu, Q.; Zhang, X.; Han, Q.; Liu, J.; Zauscher, S.; Mitzi, D. B. Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 2017, 56, 9291–9302.

[49]

Jaffe, A.; Lin, Y.; Karunadasa, H. I. Halide perovskites under pressure: accessing new properties through lattice compression. ACS Energy Lett. 2017, 2, 1549–1555.

[50]

Qin, Z.; Dai, S.; Gajjela, C. C.; Wang, C.; Hadjiev, V. G.; Yang, G.; Li, J.; Zhong, X.; Tang, Z.; Yao, Y. et al. Spontaneous formation of 2D/3D heterostructures on the edges of 2D Ruddlesden-Popper hybrid perovskite crystals. Chem. Mater. 2020, 32, 5009–5015.

[51]

Ke, F.; Zhang, L.; Chen, Y.; Yin, K.; Wang, C.; Tzeng, Y. K.; Lin, Y.; Dong, H.; Liu, Z.; Tse, J. S. et al. Synthesis of atomically thin hexagonal diamond with compression. Nano Lett. 2020, 20, 5916–5921.

[52]

Proctor, J. E.; Gregoryanz, E.; Novoselov, K. S.; Lotya, M.; Coleman, J. N.; Halsall, M. P. High-pressure Raman spectroscopy of graphene. Phys. Rev. B 2009, 80, 073408.

[53]

Filintoglou, K.; Papadopoulos, N.; Arvanitidis, J.; Christofilos, D.; Frank, O.; Kalbac, M.; Parthenios, J.; Kalosakas, G.; Galiotis, C.; Papagelis, K. Raman spectroscopy of graphene at high pressure: Effects of the substrate and the pressure transmitting media. Phys. Rev. B 2013, 88, 045418.

[54]

Clark, S. M.; Jeon, K.-J.; Chen, J.-Y.; Yoo, C.-S. Few-layer graphene under high pressure: Raman and X-ray diffraction studies. Solid State Commun. 2013, 154, 15–18.

[55]

Lu, S.; Yao, M.; Yang, X.; Li, Q.; Xiao, J.; Yao, Z.; Jiang, L.; Liu, R.; Liu, B.; Chen, S. et al. High pressure transformation of graphene nanoplates: A Raman study. Chem. Phys. Lett. 2013, 585, 101–106.

[56]

Chi, Z. H.; Zhao, X. M.; Zhang, H.; Goncharov, A. F.; Lobanov, S. S.; Kagayama, T.; Sakata, M.; Chen, X. J. Pressure-induced metallization of molybdenum disulfide. Phys. Rev. Lett. 2014, 113, 036802.

[57]

Livneh, T.; Sterer, E. Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys. Rev. B 2010, 81, 195209.

[58]

Aksoy, R.; Ma, Y.; Selvi, E.; Chyu, M. C.; Ertas, A.; White, A. X-ray diffraction study of molybdenum disulfide to 38.8 GPa. J. Phys. Chem. Solids 2006, 67, 1914.

[59]

Hromadová, L.; Martoňák, R.; Tosatti, E. Structure change, layer sliding, and metallization in high-pressure MoS2. Phys. Rev. B 2013, 87, 144105.

[60]

Machon, D.; Bousige, C.; Alencar, R.; Torres-Dias, A.; Balima, F.; Nicolle, J.; de Sousa Pinheiro, G.; Souza Filho, A. G.; San-Miguel, A. Raman scattering studies of graphene under high pressure. J. Raman Spectrosc. 2018, 49, 121–129.

[61]

Zhuang, Y.; Dai, L.; Wu, L.; Li, H.; Hu, H.; Liu, K.; Yang, L.; Pu, C. Pressure-induced permanent metallization with reversible structural transition in molybdenum disulfide. Appl. Phys. Lett. 2017, 110, 122103.

[62]

Zhao, Z.; Zhang, H.; Yuan, H.; Wang, S.; Lin, Y.; Zeng, Q.; Xu, G.; Liu, Z.; Solanki, G. K.; Patel, K. D. et al. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide. Nat. Commun. 2015, 6, 7312.

[63]

Geick, R.; Perry, C. H.; Rupprecht, G. Normal modes in hexagonal boron nitride. Phys. Rev. 1966, 146, 543–547.

[64]

Liu, L.; Feng, Y. P.; Shen, Z. X. Structural and electronic properties of h-BN. Phys. Rev. B 2003, 68, 104102.

[65]

Chang, H.-Y.; Yang, S.; Lee, J.; Tao, L.; Hwang, W.-S.; Jena, D.; Lu, N.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446–5452.

[66]

Schmidt, H.; Wang, S.; Chu, L.; Toh, M.; Kumar, R.; Zhao, W.; Neto, A. H.; Martin, J.; Adam, S.; Özyilmaz, B.; Eda, G. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 2014, 14, 1909–1913.

[67]

Lee, G.-H.; Cui, X.; Kim, Y. D.; Arefe, G.; Zhang, X.; Lee, C.-H.; Ye, F.; Watanabe, K.; Taniguchi, T.; Kim, P.; Hone, J. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 2015, 9, 7019–7026.

[68]

Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 2013, 4, 1794.

[69]

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

[70]

Xu, Y. N.; Ching, W. Y. Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B Condens Matter 1991, 44, 7787–7798.

[71]

Furthmüller, J.; Hafner, J.; Kresse, G. Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. Phys. Rev. B Condens. Matter 1994, 50, 15606–15622.

[72]

Wentzcovitch, R. M.; Fahy, S.; Cohen, M. L.; Louie, S. G. Ab initio study of graphite→diamondlike transitions in BN. Phys. Rev. B 1988, 38, 6191–6195.

[73]

Meng, Y.; Mao, H. K.; Eng, P. J.; Trainor, T. P.; Newville, M.; Hu, M. Y.; Kao, C.; Shu, J.; Hausermann, D.; Hemley, R. J. The formation of sp3 bonding in compressed BN. Nat. Mater. 2004, 3, 111–1114.

[74]

Segura, A.; Cuscó, R.; Taniguchi, T.; Watanabe, K.; Cassabois, G.; Gil, B.; Artús, L. Nonreversible transition from the hexagonal to wurtzite phase of boron nitride under high pressure: Optical properties of the wurtzite phase. J. Phys. Chem. C 2019, 123, 20167–20173.

[75]

Saha, S.; Muthu, D. V. S.; Golberg, D.; Tang, C.; Zhi, C.; Bando, Y.; Sood, A. K. Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride. Chem. Phys. Lett. 2006, 421, 86–90.

[76]

Xia, H.; Xia, Q.; Ruoff, A. L. High-pressure structure of gallium nitride: Wurtzite-to-rocksalt phase transition. Phys. Rev. B Condens Matter 1993, 47, 12925–12928.

[77]

Manjón, F. J.; Errandonea, D.; Romero, A. H.; Garro, N.; Serrano, J.; Kuball, M. Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors. Phys. Rev. B 2008, 77, 205204.

[78]

Ibáñez, J.; Segura, A.; García-Domene, B.; Oliva, R.; Manjón, F. J.; Yamaguchi, T.; Nanishi, Y.; Artús, L. High-pressure optical absorption in InN: Electron density dependence in the wurtzite phase and reevaluation of the indirect band gap of rocksalt InN. Phys. Rev. B 2012, 86, 035210.

[79]

Amsler, M.; Flores-Livas, J. A.; Lehtovaara, L.; Balima, F.; Ghasemi, S. A.; Machon, D.; Pailhès, S.; Willand, A.; Caliste, D.; Botti, S. et al. Crystal structure of cold compressed graphite. Phys. Rev. Lett. 2012, 108, 065501.

[80]

Wang, J. T.; Chen, C.; Kawazoe, Y. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. 2011, 106, 075501.

[81]

Szafrański, M.; Katrusiak, A. Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide. J. Phys. Chem. Lett. 2016, 7, 3458–3466.

[82]

Lee, Y.; Mitzi, D. B.; Barnes, P. W.; Vogt, T. Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites. Phys. Rev. B 2003, 68, 020103.

[83]

Jaffe, A.; Lin, Y.; Mao, W. L.; Karunadasa, H. I. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J. Am. Chem. Soc. 2017, 139, 4330–4333.

[84]

Wang, Y.; Lü, X.; Yang, W.; Wen, T.; Yang, L.; Ren, X.; Wang, L.; Lin, Z.; Zhao, Y. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 2015, 137, 11144–11149.

[85]

Lü, X.; Wang, Y.; Stoumpos, C. C.; Hu, Q.; Guo, X.; Chen, H.; Yang, L.; Smith, J. S.; Yang, W.; Zhao, Y.; Xu, H.; Kanatzidis, M. G.; Jia, Q. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 2016, 28, 8663–8668.

[86]

Jaffe, A.; Lin, Y.; Mao, W. L.; Karunadasa, H. I. Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite. J. Am. Chem. Soc. 2015, 137, 1673–1678.

[87]

Nayak, A. P.; Yuan, Z.; Cao, B.; Liu, J.; Wu, J.; Moran, S. T.; Li, T.; Akinwande, D.; Jin, C.; Lin, J.-F. Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano 2015, 9, 9117–9123.

[88]

Pan, X. C.; Chen, X.; Liu, H.; Feng, Y.; Wei, Z.; Zhou, Y.; Chi, Z.; Pi, L.; Yen, F.; Song, F.; Wan, X.; Yang, Z.; Wang, B.; Wang, G.; Zhang, Y. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 2015, 6, 7805.

[89]

Kang, D.; Zhou, Y.; Yi, W.; Yang, C.; Guo, J.; Shi, Y.; Zhang, S.; Wang, Z.; Zhang, C.; Jiang, S.; Li, A.; Yang, K.; Wu, Q.; Zhang, G.; Sun, L.; Zhao, Z. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat. Commun. 2015, 6, 7804.

[90]

Xia, J.; Li, D. F.; Zhou, J. D.; Yu, P.; Lin, J. H.; Kuo, J. L.; Li, H. B.; Liu, Z.; Yan, J. X.; Shen, Z. X. Pressure-induced phase transition in weyl semimetallic WTe2. Small 2017, 13, 1701887.

[91]

Qi, Y.; Naumov, P. G.; Ali, M. N.; Rajamathi, C. R.; Schnelle, W.; Barkalov, O.; Hanfland, M.; Wu, S. C.; Shekhar, C.; Sun, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 2016, 7, 11038.

[92]

Yan, Z.; Yin, K.; Yu, Z.; Li, X.; Li, M.; Yuan, Y.; Li, X.; Yang, K.; Wang, X.; Wang, L. Pressure-induced band-gap closure and metallization in two-dimensional transition metal halide CdI2. Appl. Mater. Tod. 2020, 18, 100532.

[93]

Pandey, T.; Nayak, A. P.; Liu, J.; Moran, S. T.; Kim, J. S.; Li, L. J.; Lin, J. F.; Akinwande, D.; Singh, A. K. Pressure-induced charge transfer doping of monolayer graphene/MoS2 heterostructure. Small 2016, 12, 4063–4069.

[94]

Malavi, P.; Kumar, P.; Jakhar, N.; Singh, S.; Karmakar, S. Signature of superconducting onset in presence of large magnetoresistance in type-II dirac semimetal candidate Ir2In8S. New J. Phys. 2022, 24, 102002.

[95]

Hirata, M.; Kobayashi, A.; Berthier, C.; Kanoda, K. Interacting chiral electrons at the 2D dirac points: A review. Rep. Prog. Phys. 2021, 84, 036502.

[96]

Liu, F.; Li, J.; Zhang, K.; Peng, S.; Huang, H.; Yan, M.; Li, N.; Zhang, Q.; Guo, S.; Lu, X. et al. Pressure-induced Lifshitz transition in the type II dirac semimetal PtTe2. Sci. China Phys. Mech. 2019, 62, 1.

[97]

Bykov, M.; Fedotenko, T.; Chariton, S.; Laniel, D.; Glazyrin, K.; Hanfland, M.; Smith, J. S.; Prakapenka, V. B.; Mahmood, M. F.; Goncharov, A. F. et al. High-pressure synthesis of dirac materials: layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett. 2021, 126, 175501.

[98]

Wojciechowski, R.; Yamamoto, K.; Yakushi, K.; Inokuchi, M.; Kawamoto, A. High-pressure Raman study of the charge ordering in α-(BEDT-TTF)2I3. Phys. Rev. B 2003, 67, 224105.

[99]

Konoike, T.; Uchida, K.; Osada, T. Specific heat of the multilayered massless dirac fermion system. J. Phys. Soc. Jpn. 2012, 81, 043601.

[100]

Beyer, R.; Dengl, A.; Peterseim, T.; Wackerow, S.; Ivek, T.; Pronin, A. V.; Schweitzer, D.; Dressel, M. Pressure-dependent optical investigations of α-(BEDT-TTF)2I3: Tuning charge order and narrow gap towards a dirac semimetal. Phys. Rev. B 2016, 93, 195116.

[101]

Klotz, S.; Chervin, J. C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D:Appl. Phys. 2009, 42, 075413.

[102]

Zhou, Y.; Dong, Z.-Y.; Hsieh, W.-P.; Goncharov, A. F.; Chen, X.-J. Thermal conductivity of materials under pressure. Nat. Rev. Phys. 2022, 4, 319–335.

[103]

Chen, J.; Xu, X.; Zhou, J.; Li, B. Interfacial thermal resistance: Past, present, and future. Rev. Mod. Phys. 2022, 94, 025002.

[104]

Yang, F.; Wang, R.; Zhao, W.; Jiang, J.; Wei, X.; Zheng, T.; Yang, Y.; Wang, X.; Lu, J.; Ni, Z. Thermal transport and energy dissipation in two-dimensional Bi2O2Se. Appl. Phys. Lett. 2019, 115, 193103.

[105]

Guerra, V.; Wan, C.; McNally, T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 2019, 100, 170–186.

[106]

Chakraborty, P.; Xiong, G.; Cao, L.; Wang, Y. Lattice thermal transport in superhard hexagonal diamond and wurtzite boron nitride: A comparative study with cubic diamond and cubic boron nitride. Carbon 2018, 139, 85–93.

[107]

Segura, A.; Cuscó, R.; Taniguchi, T.; Watanabe, K.; Cassabois, G.; Gil, B.; Artús, L. High-pressure softening of the out-of-plane A2u(transverse-optic) mode of hexagonal boron nitride induced by dynamical buckling. J. Phys. Chem. C 2019, 123, 17491–17497.

[108]

Hromadová, L.; Martoňák, R. Pressure-induced structural transitions in BN from ab initio metadynamics. Phys. Rev. B 2011, 84, 224108.

[109]

Chen, K.; Song, B.; Ravichandran, N. K.; Zheng, Q.; Chen, X.; Lee, H.; Sun, H.; Li, S.; Udalamatta Gamage, G. A. G.; Tian, F. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 2020, 367, 555–559.

[110]

Cuscó, R.; Pellicer-Porres, J.; Edgar, J. H.; Li, J.; Segura, A.; Artús, L. Pressure dependence of the interlayer and intralayer E2g Raman-active modes of hexagonal BN up to the wurtzite phase transition. Phys. Rev. B 2020, 102, 075206.

[111]

Hanfland, M.; Beister, H.; Syassen, K. Graphite under pressure: Equation of state and first-order Raman modes. Phys. Rev. B Condens. Matter 1989, 39, 12598–12603.

[112]

Ni, K.; Du, J.; Yang, J.; Xu, S.; Cong, X.; Shu, N.; Zhang, K.; Wang, A.; Wang, F.; Ge, L. et al. Stronger interlayer interactions contribute to faster hot carrier cooling of bilayer graphene under pressure. Phys. Rev. Lett. 2021, 126, 027402.

[113]

Meng, X.; Pandey, T.; Jeong, J.; Fu, S.; Yang, J.; Chen, K.; Singh, A.; He, F.; Xu, X.; Zhou, J. et al. Thermal conductivity enhancement in MoS2 under extreme strain. Phys. Rev. Lett. 2019, 122, 155901.

[114]

Hsieh, W.-P.; Losego, M. D.; Braun, P. V.; Shenogin, S.; Keblinski, P.; Cahill, D. G. Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 2011, 83, 174205.

[115]

Abramson, E. H.; Brown, J. M.; Slutsky, L. J. The thermal diffusivity of water at high pressures and temperatures. J. Chem. Phys. 2001, 115, 10461–10463.

[116]

Frost, R. S.; Chen, R. Y. S.; Barker, R. E. Pressure dependence of thermal conductivity in polyethylene. J. Appl. Phys. 1975, 46, 4506–4509.

[117]

Beck, P.; Goncharov, A. F.; Struzhkin, V. V.; Militzer, B.; Mao, H.-K.; Hemley, R. J. Measurement of thermal diffusivity at high pressure using a transient heating technique. Appl. Phys. Lett. 2007, 91, 181914.

[118]

Hsieh, W.-P.; Chen, B.; Li, J.; Keblinski, P.; Cahill, D. G. Pressure tuning of the thermal conductivity of the layered muscovite crystal. Phys. Rev. B 2009, 80, 180302.

[119]

Xiao, G.; Geng, T.; Zou, B. Emerging functional materials under high pressure toward enhanced properties. ACS Mater. Lett. 2020, 2, 1233–1239.

[120]

Miao, M.; Sun, Y.; Zurek, E.; Lin, H. Chemistry under high pressure. Nat. Rev. Chem. 2020, 4, 508–527.

[121]

Li, S.; Zheng, Q.; Lv, Y.; Liu, X.; Wang, X.; Huang, P. Y.; Cahill, D. G.; Lv, B. High thermal conductivity in cubic boron arsenide crystals. Science 2018, 361, 579–581.

[122]

Kang, J. S.; Li, M.; Wu, H.; Nguyen, H.; Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 2018, 361, 575–578.

[123]

Tian, F.; Song, B.; Chen, X.; Ravichandran, N. K.; Lv, Y.; Chen, K.; Sullivan, S.; Kim, J.; Zhou, Y.; Liu, T.-H. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 2018, 361, 582–585.

[124]

Li, S.; Qin, Z.; Wu, H.; Li, M.; Kunz, M.; Alatas, A.; Kavner, A.; Hu, Y. Anomalous thermal transport under high pressure in boron arsenide. Nature 2022, 612, 459–464.

[125]

Ravichandran, N. K.; Broido, D. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide. Nat. Commun. 2019, 10, 827.

[126]

Meng, X.; Singh, A.; Juneja, R.; Zhang, Y.; Tian, F.; Ren, Z.; Singh, A. K.; Shi, L.; Lin, J. F.; Wang, Y. Pressure-dependent behavior of defect-modulated band structure in boron arsenide. Adv. Mater. 2020, 32, e2001942.

[127]

Song, T.; Fei, Z.; Yankowitz, M.; Lin, Z.; Jiang, Q.; Hwangbo, K.; Zhang, Q.; Sun, B.; Taniguchi, T.; Watanabe, K. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302.

[128]

Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

[129]

Li, T.; Jiang, S.; Sivadas, N.; Wang, Z.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J.; Mak, K. F.; Shan, J. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.

[130]

Hsieh, S.; Bhattacharyya, P.; Zu, C.; Mittiga, T.; Smart, T. J.; Machado, F.; Kobrin, B.; Höhn, T. O.; Rui, N. Z.; Kamrani, M. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 2019, 366, 1349–1354.

[131]

Lesik, M.; Plisson, T.; Toraille, L.; Renaud, J.; Occelli, F.; Schmidt, M.; Salord, O.; Delobbe, A.; Debuisschert, T.; Rondin, L. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 2019, 366, 1359–1362.

[132]

Yip, K. Y.; Ho, K. O.; Yu, K. Y.; Chen, Y.; Zhang, W.; Kasahara, S.; Mizukami, Y.; Shibauchi, T.; Matsuda, Y.; Goh, S. K. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 2019, 366, 1355–1359.

[133]

Ishizuka, M.; Yamada, I.; Amaya, K.; Endo, S. Change of magnetism in the two-dimensional Heisenberg ferromagnet K2CuF4 observed at high pressures. J. Phys. Soc. Jpn 1996, 65, 1927–1929.

[134]

Martins, L. G. P.; Matos, M. J. S.; Paschoal, A. R.; Freire, P. T. C.; Andrade, N. F.; Aguiar, A. L.; Kong, J.; Neves, B. R. A.; de Oliveira, A. B.; Mazzoni, M. S. C.; Filho, A. G. S.; Cancado, L. G. Raman evidence for pressure-induced formation of diamondene. Nat. Commun. 2017, 8, 96.

[135]

Barboza, A. P.; Guimaraes, M. H.; Massote, D. V.; Campos, L. C.; Barbosa Neto, N. M.; Cancado, L. G.; Lacerda, R. G.; Chacham, H.; Mazzoni, M. S.; Neves, B. R. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 2011, 23, 3014–3017.

[136]

Mao, W. L.; Mao, H. K.; Eng, P. J.; Trainor, T. P.; Newville, M.; Kao, C. C.; Heinz, D. L.; Shu, J.; Meng, Y.; Hemley, R. J. Bonding changes in compressed superhard graphite. Science 2003, 302, 425–427.

[137]

Yu, Z.; Xia, W.; Xu, K.; Xu, M.; Wang, H.; Wang, X.; Yu, N.; Zou, Z.; Zhao, J.; Wang, L. et al. Pressure-induced structural phase transition and a special amorphization phase of two-dimensional ferromagnetic semiconductor Cr2Ge2Te6. J. Phys. Chem. C 2019, 123, 13885–13891.

[138]

Chen, L.-C.; Chen, P.-Q.; Li, W.-J.; Zhang, Q.; Struzhkin, V. V.; Goncharov, A. F.; Ren, Z.; Chen, X.-J. Enhancement of thermoelectric performance across the topological phase transition in dense lead selenide. Nat. Mater. 2019, 18, 1321–1326.

[139]

Chen, L.-C.; Yu, H.; Pang, H.-J.; Jiang, B.-B.; Su, L.; Shi, X.; Chen, L.-D.; Chen, X.-J. Pressure-induced enhancement of thermoelectric performance in palladium sulfide. Mater. Tod. Phys. 2018, 5, 64–71.

[140]

Yu, H.; Chen, L.-C.; Pang, H.-J.; Qin, X.-Y.; Qiu, P.-F.; Shi, X.; Chen, L.-D.; Chen, X.-J. Large enhancement of thermoelectric performance in CuInTe2 upon compression. Mater. Tod. Phys. 2018, 5, 1–6.

[141]

Baker, J. L.; Kumar, R. S.; Park, C.; Velisavljevic, N.; Cornelius, A. Compressibility and thermoelectric behavior of TiCoSb half-Heusler compound at high pressures. Intermetallics 2018, 95, 137–143.

[142]

Pang, H.-J.; Yu, H.; Chen, L.-C.; Fu, C.-G.; Zhu, T.-J.; Chen, X.-J. Pressure tuning of thermoelectric performance in FeNbSb. J. Alloy. Compd. 2019, 805, 1224–1230.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 February 2023
Revised: 19 April 2023
Accepted: 08 May 2023
Published: 14 June 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors acknowledge the micro-fabrication center of National Laboratory of Solid State Microstructures (NLSSM) for technique support. Prof. Jia Zhu acknowledges the support from the XPLORER PRIZE. This work is jointly supported by the National Key Research and Development Program of China (No. 2021YFA140070), the National Natural Science Foundation of China (Nos. 61735008, 51925204, 12022403), Excellent Research Program of Nanjing University (ZYJH005), Carbon Peaking and Carbon Neutrality Science and Technology Innovation Fund of Jiangsu Province (BK20220035).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return