Journal Home > Volume 2 , Issue 4

With the rapid development of economy, the increasing energy crisis and environmental pollution urge us to develop sustainable and clean novel energy systems. Among them, the electrochemical energy conversion technology is considered as one of the ideal potential alternative energy systems, and the electrocatalysts play critical roles but are still challenging. Metal-organic frameworks (MOFs), thanks to their regular channels, atomically dispersed active centers, adjustable chemical and pore environments, have severed as promising electrocatalysts for electrochemical energy conversion. However, the relatively low conductivities and instabilities of MOFs limit their wide application in this field. In this case, fabricating hybrids of MOFs and carbon-based materials is an effective way to overcome above deficiencies. In addition, the synergistic effects between MOFs and carbons could optimize the electronic structures of active sites and promote the active surface areas, and thus improve the electrocatalytic performances of the composites. Herein, we outline the current development of MOF/carbon composites, including the fabrication methods of MOFs hybridized with various dimensions of carbon-based materials and the electrocatalysis utilization for water splitting, including the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR). Finally, the advantages and challenges of such catalysts are highlighted and future endeavors on the development of MOF/carbon composites for the HER, OER and ORR are discussed.


menu
Abstract
Full text
Outline
About this article

Metal–organic framework and carbon hybrid nanostructures: Fabrication strategies and electrocatalytic application for the water splitting and oxygen reduction reaction

Show Author's information Ziyun Su1Qiupin Huang1Qian Guo1S. Jafar Hoseini2Fuqin Zheng1( )Wei Chen1( )
School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran

Abstract

With the rapid development of economy, the increasing energy crisis and environmental pollution urge us to develop sustainable and clean novel energy systems. Among them, the electrochemical energy conversion technology is considered as one of the ideal potential alternative energy systems, and the electrocatalysts play critical roles but are still challenging. Metal-organic frameworks (MOFs), thanks to their regular channels, atomically dispersed active centers, adjustable chemical and pore environments, have severed as promising electrocatalysts for electrochemical energy conversion. However, the relatively low conductivities and instabilities of MOFs limit their wide application in this field. In this case, fabricating hybrids of MOFs and carbon-based materials is an effective way to overcome above deficiencies. In addition, the synergistic effects between MOFs and carbons could optimize the electronic structures of active sites and promote the active surface areas, and thus improve the electrocatalytic performances of the composites. Herein, we outline the current development of MOF/carbon composites, including the fabrication methods of MOFs hybridized with various dimensions of carbon-based materials and the electrocatalysis utilization for water splitting, including the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR). Finally, the advantages and challenges of such catalysts are highlighted and future endeavors on the development of MOF/carbon composites for the HER, OER and ORR are discussed.

Keywords: oxygen reduction reaction, metal-organic frameworks, electrocatalysis, oxygen evolution reaction, water splitting, hydrogen evolution reaction, energy conversion, carbon materials

References(166)

[1]

Hussain, A.; Arif, S. M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sust. Energy Rev. 2017, 71, 12–28.

[2]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[3]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[4]

Wang, C. S.; Yan, B.; Chen, Z. Z.; You, B.; Liao, T.; Zhang, Q.; Lu, Y. Z.; Jiang, S. H.; He, S. J. Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 25773–25795.

[5]

Han, H.; Qiu, Y. L.; Zhang, H.; Bi, T. Y.; Yang, Q.; Liu, M. Y.; Zhou, J.; Ji, X. Q. Lattice-disorder layer generation from liquid processing at room temperature with boosted nanointerface exposure toward water splitting. Sustain. Energy Fuels 2022, 6, 3008–3013.

[6]

Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

[7]

Tang, C.; Wang, H. F.; Zhang, Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 2018, 51, 881–889.

[8]

Kuang, M.; Zheng, G. F. Nanostructured bifunctional redox electrocatalysts. Small 2016, 12, 5656–5675.

[9]

Qiu, Y. L.; Liu, Z. Q.; Yang, Q.; Zhang, X. Y.; Liu, J. Q.; Liu, M. Y.; Bi, T. Y.; Ji, X. Q. Atmospheric-temperature chain reaction towards ultrathin non-crystal-phase construction for highly efficient water splitting. Chem. -Eur. J. 2022, 28, e202200683.

[10]

Chen, J.; Zhang, L. C.; Li, J.; He, X.; Zheng, Y. Y.; Sun, S. J.; Fang, X. D.; Zheng, D. D.; Luo, Y. S.; Wang, Y. et al. High-efficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122.

[11]

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

[12]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[13]

Li, Z. Q.; Ge, X. L.; Li, C. X.; Dong, S. H.; Tang, R.; Wang, C. X.; Zhang, Z. W.; Yin, L. W. Rational microstructure design on metal-organic framework composites for better electrochemical performances: Design principle, synthetic strategy, and promotion mechanism. Small Methods 2020, 4, 1900756.

[14]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[15]

Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

[16]

Fang, X. D.; Wang, X. G.; Ouyang, L.; Zhang, L. C.; Sun, S. J.; Liang, Y. M.; Luo, Y. S.; Zheng, D. D.; Kang, T. R.; Liu, Q. et al. Amorphous Co-Mo-B film: A high-active electrocatalyst for hydrogen generation in alkaline seawater. Molecules 2022, 27, 7617.

[17]

Liang, J.; Wang, Y. Y.; Liu, Q.; Luo, Y. L.; Li, T. S.; Zhao, H. T.; Lu, S. Y.; Zhang, F.; Asiri, A. M.; Liu, F. G. et al. Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 2021, 9, 6117–6122.

[18]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[19]

Liu, Q.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Yang, Q.; Dong, K.; Fang, X. D.; Zheng, D. D.; Alshehri, A. A.; Sun, X. P. N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res. 2022, 15, 8922–8927.

[20]

Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

[21]

Ouyang, L.; He, X.; Sun, Y. T.; Zhang, L. C.; Zhao, D. L.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Asiri, A. M.; Liu, Q. et al. RuO2 nanoparticle-decorated TiO2 nanobelt array as a highly efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Inorg. Chem. Front. 2022, 9, 6602–6607.

[22]

Deng, B.; Liang, J.; Yue, L. C.; Li, T. S.; Liu, Q.; Liu, Y.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L. et al. CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media. Chin. Chem. Lett. 2022, 33, 890–892.

[23]

Ye, C.; Zhang, L. C.; Yue, L. C.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y. L.; Lu, S. Y.; Zheng, B. Z.; Sun, X. P. A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166.

[24]

Cao, Y.; Wang, T.; Li, X.; Zhang, L. C.; Luo, Y. L.; Zhang, F.; Asiri, A. M.; Hu, J. M.; Liu, Q.; Sun, X. P. A hierarchical CuO@NiCo layered double hydroxide core-shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorg. Chem. Front. 2021, 8, 3049–3054.

[25]

Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

[26]

Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem. , Int. Ed. 2004, 43, 2334–2375.

[27]

Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Modular chemistry:  Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.

[28]

Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

[29]

Jiang, H. L.; Xu, Q. Porous metal-organic frameworks as platforms for functional applications. Chem. Commun. 2011, 47, 3351–3370.

[30]

Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696–753.

[31]

Bétard, A.; Fischer, R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev. 2012, 112, 1055–1083.

[32]

Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y.; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 2013, 339, 193–196.

[33]

Thorarinsdottir, A. E.; Harris, T. D. Metal-organic framework magnets. Chem. Rev. 2020, 120, 8716–8789.

[34]

Emam, H. E.; Abdelhameed, R. M.; Ahmed, H. B. Adsorptive performance of MOFs and MOF containing composites for clean energy and safe environment. J. Environ. Chem. Eng. 2020, 8, 104386.

[35]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[36]

Qian, Y. T.; Zhang, F. F.; Pang, H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv. Funct. Mater. 2021, 31, 2104231.

[37]

Deng, Z. Q.; Ma, C. Q.; Yan, S. H.; Dong, K.; Liu, Q.; Luo, Y. L.; Liu, Y.; Du, J.; Sun, X. P.; Zheng, B. Z. One-dimensional conductive metal-organic framework nanorods: A highly selective electrocatalyst for the oxygen reduction to hydrogen peroxide. J. Mater. Chem. A 2021, 9, 20345–20349.

[38]

Fan, W. D.; Zhang, X. R.; Kang, Z. X.; Liu, X. P.; Sun, D. F. Isoreticular chemistry within metal-organic frameworks for gas storage and separation. Coord. Chem. Rev. 2021, 443, 213968.

[39]

Manoj, D.; Rajendran, S.; Hoang, T. K. A.; Soto-Moscoso, M. The role of MOF based nanocomposites in the detection of phenolic compounds for environmental remediation-A review. Chemosphere 2022, 300, 134516.

[40]

Lin, X. M.; Gao, G. M.; Zheng, L. Y.; Chi, Y. W.; Chen, G. N. Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal. Chem. 2014, 86, 1223–1228.

[41]

Anik, Ü.; Timur, S.; Dursun, Z. Metal organic frameworks in electrochemical and optical sensing platforms: A review. Microchim. Acta 2019, 186, 196.

[42]

Rani, S.; Sharma, B.; Malhotra, R.; Kumar, S.; Varma, R. S.; Dilbaghi, N. Sn-MOF@CNT nanocomposite: An efficient electrochemical sensor for detection of hydrogen peroxide. Environ. Res. 2020, 191, 110005.

[43]

Lin, R. B.; Li, S. M.; Wang, J. Y.; Xu, J. P.; Xu, C. H.; Wang, J.; Li, C. X.; Li, Z. Q. Facile generation of carbon quantum dots in MIL-53(Fe) particles as localized electron acceptors for enhancing their photocatalytic Cr(VI) reduction. Inorg. Chem. Front. 2018, 5, 3170–3177.

[44]

Zhang, C.; Wang, Q.; Zhang, W. Q.; Li, X.; Zhu, Z. R.; Zhang, C. L.; Xie, A. L.; Luo, S. P. Preparation and application of Co3O4-Ni-MOF/MWCNTs hybrid for supercapacitor. Ionics 2021, 27, 3543–3551.

[45]

Wen, P.; Gong, P. W.; Sun, J. F.; Wang, J. Q.; Yang, S. R. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 2015, 3, 13874–13883.

[46]

Farahani, F. S.; Rahmanifar, M. S.; Noori, A.; El-Kady, M. F.; Hassani, N.; Neek-Amal, M.; Kaner, R. B.; Mousavi, M. F. Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications. J. Am. Chem. Soc. 2022, 144, 3411–3428.

[47]

Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

[48]

Meng, C. Q.; Cao, Y.; Luo, Y. L.; Zhang, F.; Kong, Q. Q.; Alshehri, A. A.; Alzahrani, K. A.; Li, T. S.; Liu, Q.; Sun, X. P. A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg. Chem. Front. 2021, 8, 3007–3011.

[49]

Dong, K.; Liang, J.; Wang, Y. Y.; Zhang, L. C.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Li, T. S.; Liu, Q.; Li, N. et al. Conductive two-dimensional magnesium metal-organic frameworks for high-efficiency O2 electroreduction to H2O2. ACS Catal. 2022, 12, 6092–6099.

[50]

Zheng, F. Q.; Zhang, Z. W.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z. H.; Li, X. K.; Chen, W. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J. Colloid Interface Sci. 2019, 555, 541–547.

[51]

Lim, D. W.; Kitagawa, H. Proton transport in metal-organic frameworks. Chem. Rev. 2020, 120, 8416–8467.

[52]

Zheng, F. Q.; Zhang, Z. W.; Zhang, C. M.; Chen, W. Advanced electrocatalysts based on metal-organic frameworks. ACS Omega 2020, 5, 2495–2502.

[53]

Jin, S. How to effectively utilize MOFs for electrocatalysis. ACS Energy Lett. 2019, 4, 1443–1445.

[54]

Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically conductive metal-organic frameworks. Chem. Rev. 2020, 120, 8536–8580.

[55]
Cho, J. H. ; Lee, C. ; Hong, S. H. ; Jang, H. Y. ; Back, S. ; Seo, M. G. ; Lee, M. ; Min, H. K. ; Choi, Y. ; Jang, Y. J. et al. Transition metal ion doping on ZIF-8 for enhances the electrochemical CO2 reduction reaction. Adv. Mater, in press, https://doi.org/10.1002/adma.202208224.
DOI
[56]

Mo, Q. J.; Zhang, L.; Li, S. H.; Song, H. L.; Fan, Y. N.; Su, C. Y. Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2022, 114, 22747–22758.

[57]

Zheng, F. Q.; Fan, Y. J.; Chen, W. Homogeneous distribution of Pt16(C4O4SH5)26 clusters in ZIF-67 for efficient hydrogen generation and oxygen reduction. ACS Appl. Mater. Interfaces 2021, 13, 38170–38178.

[58]

Zheng, F. Q.; Zhang, C. M.; Gao, X. H.; Du, C.; Zhuang, Z. H.; Chen, W. Immobilizing Pd nanoclusters into electronically conductive metal-organic frameworks as bi-functional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Electrochim. Acta 2019, 306, 627–634.

[59]

Zou, L. L.; Wei, Y. S.; Hou, C. C.; Li, C. X.; Xu, Q. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications. Small 2021, 17, 2004809.

[60]

Song, Z. X.; Zhu, Y. N.; Liu, H. S.; Banis, M. N.; Zhang, L.; Li, J. J.; Doyle-Davis, K.; Li, R. Y.; Sham, T. K.; Yang, L. J. et al. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small 2020, 16, 2003096.

[61]

Peng, Y.; Xu, J.; Xu, J. M.; Ma, J.; Bai, Y.; Cao, S.; Zhang, S. T.; Pang, H. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid Interface Sci. 2022, 307, 102732.

[62]

Bai, Y.; Liu, C. L.; Shan, Y. Y.; Chen, T. T.; Zhao, Y.; Yu, C.; Pang, H. Metal-organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv. Energy Mater. 2022, 12, 2100346.

[63]

Dong, K.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Xu, Z. Q.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y. et al. Electrochemical two-electron O2 reduction reaction toward H2O2 production: Using cobalt porphyrin decorated carbon nanotubes as a nanohybrid catalyst. J. Mater. Chem. A 2021, 9, 26019–26027.

[64]

Chronopoulos, D. D.; Saini, H.; Tantis, I.; Zbořil, R.; Jayaramulu, K.; Otyepka, M. Carbon nanotube based metal-organic framework hybrids from fundamentals toward applications. Small 2022, 18, 2104628.

[65]

Jayaramulu, K.; Mukherjee, S.; Morales, D. M.; Dubal, D. P.; Nanjundan, A. K.; Schneemann, A.; Masa, J.; Kment, S.; Schuhmann, W.; Otyepka, M. et al. Graphene-based metal-organic framework hybrids for applications in catalysis, environmental, and energy technologies. Chem. Rev. 2022, 122, 17241–17338.

[66]

Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.

[67]

Chae, S. H.; Muthurasu, A.; Kim, T.; Kim, J. S.; Khil, M. S.; Lee, M.; Kim, H.; Lee, J. Y.; Kim, H. Y. Templated fabrication of perfectly aligned metal-organic framework-supported iron-doped copper-cobalt selenide nanostructure on hollow carbon nanofibers for an efficient trifunctional electrode material. Appl. Catal. B Environ. 2021, 293, 120209.

[68]

Rui, K.; Zhao, G. Q.; Lao, M. M.; Cui, P. X.; Zheng, X. S.; Zheng, X. B.; Zhu, J. X.; Huang, W.; Dou, S. X.; Sun, W. P. Direct hybridization of noble metal nanostructures on 2D metal-organic framework nanosheets to catalyze hydrogen evolution. Nano Lett. 2019, 19, 8447–8453.

[69]

Vinodh, R.; Babu, R. S.; Sambasivam, S.; Gopi, C. V. V. M.; Alzahmi, S.; Kim, H. J.; De Barros, A. L. F.; Obaidat, I. M. Recent advancements of polyaniline/metal organic framework (PANI/MOF) composite electrodes for supercapacitor applications: A critical review. Nanomaterials (Basel) 2022, 12, 1511.

[70]

Xiong, W. F.; Li, H. F.; You, H. H.; Cao, M. N.; Cao, R. Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. Natl. Sci. Rev. 2020, 7, 609–619.

[71]

Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem. , Int. Ed. 2021, 60, 10583–10587.

[72]

Zhang, L. C.; Liang, J. ; Yue, L. C.; Xu, Z. Q.; Dong, K. ; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2022, 15, 304–309.

[73]

Zhang, C. M.; Zhang, R. Z.; Li, X. K.; Chen, W. PtNi nanocrystals supported on hollow carbon spheres: Enhancing the electrocatalytic performance through high-temperature annealing and electrochemical CO stripping treatments. ACS Appl. Mater. Interfaces 2017, 9, 29623–29632.

[74]

Liu, X. W.; Sun, T. J.; Hu, J. L.; Wang, S. D. Composites of metal-organic frameworks and carbon-based materials: Preparations, functionalities and applications. J. Mater. Chem. A 2016, 4, 3584–3616.

[75]

Micheroni, D.; Lan, G. X.; Lin, W. B. Efficient electrocatalytic proton reduction with carbon nanotube-supported metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 15591–15595.

[76]

Xiang, D.; Bo, X. J.; Gao, X. H.; Zhang, C. M.; Du, C.; Zheng, F. Q.; Zhuang, Z. H.; Li, P.; Zhu, L. D.; Chen, W. Novel one-step synthesis of core@shell iron-nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis. J. Power Sources 2019, 438, 226988.

[77]

Mazlan, N. A.; Butt, F. S.; Lewis, A.; Yang, Y. H.; Yang, S. Q.; Huang, Y. The growth of metal-organic frameworks in the presence of graphene oxide: A mini review. Membranes (Basel) 2022, 12, 501.

[78]

Li, Y.; Karimi, M.; Gong, Y. N.; Dai, N.; Safarifard, V.; Jiang, H. L. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter 2021, 4, 2230–2265.

[79]

Tekalgne, M. A.; Do, H. H.; Hasani, A.; Van Le, Q.; Jang, H. W.; Ahn, S. H.; Kim, S. Y. Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction. Mater. Today Adv. 2020, 5, 100038.

[80]

Li, S. Z.; Yang, K.; Tan, C. L.; Huang, X.; Huang, W.; Zhang, H. Preparation and applications of novel composites composed of metal-organic frameworks and two-dimensional materials. Chem. Commun. 2016, 52, 1555–1562.

[81]

Zhang, X. Y.; Zhang, S. T.; Tang, Y. J.; Huang, X.; Pang, H. Recent advances and challenges of metal-organic framework/graphene-based composites. Compos. Part B Eng. 2022, 230, 109532.

[82]

Wang, Z. X.; Huang, J. Y.; Mao, J. J.; Guo, Q.; Chen, Z.; Lai, Y. K. Metal-organic frameworks and their derivatives with graphene composites: Preparation and applications in electrocatalysis and photocatalysis. J. Mater. Chem. A 2020, 8, 2934–2961.

[83]

Wang, X.; Wang, Y. X.; Ying, Y. B. Recent advances in sensing applications of metal nanoparticle/metal-organic framework composites. TrAC Trends Anal. Chem. 2021, 143, 116395.

[84]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

[85]

Meteku, B. E.; Huang, J. K.; Zeng, J. B.; Subhan, F.; Feng, F.; Zhang, Y.; Qiu, Z. W.; Aslam, S.; Li, G. Y.; Yan, Z. F. Magnetic metal-organic framework composites for environmental monitoring and remediation. Coord. Chem. Rev. 2020, 413, 213261.

[86]

Longley, L.; Calahoo, C.; Limbach, R.; Xia, Y.; Tuffnell, J. M.; Sapnik, A. F.; Thorne, M. F.; Keeble, D. S.; Keen, D. A.; Wondraczek, L. et al. Metal-organic framework and inorganic glass composites. Nat. Commun. 2020, 11, 5800.

[87]

Li, S. Z.; Huo, F. W. Metal-organic framework composites: From fundamentals to applications. Nanoscale 2015, 7, 7482–7501.

[88]

Molaei, M. J. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal. Methods 2020, 12, 1266–1287.

[89]

Wang, Y. F.; Wang, M. K.; Wang, X. X.; Ma, W. Y.; Liu, J. X.; Li, J. Y. Designed synthesis of CD@Cu-ZIF-8 composites as excellent peroxidase mimics for assaying glutathione. Mater. Chem. Front. 2021, 5, 6125–6132.

[90]

Li, B. Z.; Suo, T. Y.; Xie, S. Y.; Xia, A. Q.; Ma, Y. J.; Huang, H.; Zhang, X.; Hu, Q. Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors. TrAC Trends Anal. Chem. 2021, 135, 116163.

[91]

Chen, Y. C.; Chiang, W. H.; Kurniawan, D.; Yeh, P. C.; Otake, K. I.; Kung, C. W. Impregnation of graphene quantum dots into a metal-organic framework to render increased electrical conductivity and activity for electrochemical sensing. ACS Appl. Mater. Interfaces 2019, 11, 35319–35326.

[92]

Wang, J. S.; Jin, F. Z.; Ma, H. C.; Li, X. B.; Liu, M. Y.; Kan, J. L.; Chen, G. J.; Dong, Y. B. Au@Cu(II)-MOF: Highly efficient bifunctional heterogeneous catalyst for successive oxidation-condensation reactions. Inorg. Chem. 2016, 55, 6685–6691.

[93]

He, Y. Z.; Luo, S.; Hu, X. L.; Cheng, Y. L.; Huang, Y. M.; Chen, S. M.; Fu, M.; Jia, Y. M.; Liu, X. Y. NH2-MIL-125(Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution. Chem. Eng. J. 2021, 420, 127643.

[94]

Meng, X. B.; Sheng, J. L.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl. Catal. B Environ. 2019, 244, 340–346.

[95]

Albolkany, M. K.; Wang, Y.; Li, W. J.; Arooj, S.; Chen, C. H.; Wu, N. N.; Wang, Y.; Zbořil, R.; Fischer, R. A.; Liu, B. Dual-function HKUST-1: Templating and catalyzing formation of graphitic carbon nitride quantum dots under mild conditions. Angew. Chem. , Int. Ed. 2020, 59, 21499–21504.

[96]

Giri, L.; Rout, S. R.; Varma, R. S.; Otyepka, M.; Jayaramulu, K.; Dandela, R. Recent advancements in metal-organic frameworks integrating quantum dots (QDs@MOF) and their potential applications. Nanotechnol. Rev. 2022, 11, 1947–1976.

[97]

Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites. Coord. Chem. Rev. 2016, 307, 267–291.

[98]

Hou, Y.; Liu, Z. X.; Tong, L.; Zhao, L.; Kuang, X.; Kuang, R.; Ju, H. X. One-step electrodeposition of the MOF@CCQDs/NiF electrode for chiral recognition of tyrosine isomers. Dalton Trans. 2020, 49, 31–34.

[99]

Ur Rehman, M. Y.; Manzoor, S.; Nazar, N.; Abid, A. G.; Qureshi, A. M.; Chughtai, A. H.; Joya, K. S.; Shah, A.; Ashiq, M. N. Facile synthesis of novel carbon dots@metal organic framework composite for remarkable and highly sustained oxygen evolution reaction. J. Alloys Compd. 2021, 856, 158038.

[100]
Hong, Q.; Wang, Y. M.; Wang, R. R.; Chen, Z. L.; Yang, H. Y.; Yu, K.; Liu, Y.; Huang, H.; Kang, Z. H.; Menezes, P. W. In situ coupling of carbon dots with Co-ZIF nanoarrays enabling highly efficient oxygen evolution electrocatalysis. Small, in press, https://doi.org/10.1002/smll.202206723.
DOI
[101]

Mou, Q. X.; Wang, X.; Xu, Z. H.; Zul, P.; Li, E. L.; Zhao, P. P.; Liu, X. H.; Li, H. B.; Cheng, G. Z. A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation. Chin. Chem. Lett. 2022, 33, 562–566.

[102]

Dong, Y. Q.; Cai, J. H.; Fang, Q. Q.; You, X.; Chi, Y. W. Dual-emission of lanthanide metal-organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents. Anal. Chem. 2016, 88, 1748–1752.

[103]

Song, D. Q.; Guo, H. Z.; Huang, K.; Zhang, H. Y.; Chen, J.; Wang, L.; Lian, C.; Wang, Y. Carboxylated carbon quantum dot-induced binary metal-organic framework nanosheet synthesis to boost the electrocatalytic performance. Mater. Today 2022, 54, 42–51.

[104]

Zhang, J.; Zhang, R.; Liu, Y. Y.; Kong, Y. R.; Luo, H. B.; Zou, Y.; Zhai, L.; Ren, X. M. Acidic groups functionalized carbon dots capping channels of a proton conductive metal-organic framework by coordination bonds to improve the water-retention capacity and boost proton conduction. ACS Appl. Mater. Interfaces 2021, 13, 60084–60091.

[105]

Wang, Q. J.; Wang, G. L.; Liang, X. F.; Dong, X. L.; Zhang, X. F. Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation. Appl. Surf. Sci. 2019, 467–468, 320–327.

[106]

Feng, J. F.; Gao, S. Y.; Shi, J. L.; Liu, T. F.; Cao, R. C-QDs@UiO-66-(COOH)2 composite film via electrophoretic deposition for temperature sensing. Inorg. Chem. 2018, 57, 2447–2454.

[107]

Shao, L. Y.; Yu, Z. X.; Li, X. H.; Li, X. Y.; Zeng, H. J.; Feng, X. F. Carbon nanodots anchored onto the metal-organic framework NH2-MIL-88B(Fe) as a novel visible light-driven photocatalyst: Photocatalytic performance and mechanism investigation. Appl. Surf. Sci. 2020, 505, 144616.

[108]

Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. , Int. Ed. 2019, 58, 10677–10682.

[109]

Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Zaman, N.; Talha, K. Electrochemical synergies of Fe-Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloys Compd. 2021, 850, 156583.

[110]

Yu, S.; Wu, Y.; Xue, Q.; Zhu, J. J.; Zhou, Y. Z. A novel multi-walled carbon nanotube-coupled CoNi MOF composite enhances the oxygen evolution reaction through synergistic effects. J. Mater. Chem. A 2022, 10, 4936–4943.

[111]

Qiang, C. C.; Liu, M. ; Zhang, L.; Chen, Z.; Fang, Z. In situ growth of Ni-based metal-organic framework nanosheets on carbon nanotube films for efficient oxygen evolution reaction. Inorg. Chem. 2021, 60, 3439–3446.

[112]

Jin, Y. C.; Zhang, T.; Pan, N.; Wang, S. H.; Zhang, B.; Zhu, X. K.; Hao, Y. J.; Wang, X. Y.; Song, L.; Zhang, M. D. Surface functionalization of carbon cloth with conductive Ni/Fe-MOFs for highly efficient oxygen evolution. Surf. Interfaces 2022, 33, 102294.

[113]

Xu, Z. H.; Wang, Q. Z.; Zhangsun, H.; Zhao, S.; Zhao, Y. J.; Wang, L. Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: A stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage. Food Chem. 2021, 349, 129202.

[114]

Geng, B.; Yan, F.; Zhang, X.; He, Y. Q.; Zhu, C. L.; Chou, S. L.; Zhang, X. L.; Chen, Y. J. Conductive CuCo-based bimetal organic framework for efficient hydrogen evolution. Adv. Mater. 2021, 33, 2106781.

[115]

Yang, S. J.; Choi, J. Y.; Chae, H. K.; Cho, J. H.; Nahm, K. S.; Park, C. R. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite. Chem. Mater. 2009, 21, 1893–1897.

[116]

Xu, Y. C.; Yang, C. H.; Deng, Q. H.; Zhou, Y. M.; Mao, C. F.; Song, Y. C.; Zhu, M.; Zhang, Y. W. Bi-porphyrins MOF with confinement and ion-attracting effects in concert with RuO2-doped CNT as efficient electrocatalysts for HER in acidic and alkaline media. Appl. Surf. Sci. 2023, 612, 155870.

[117]

Jung, H. B.; Kim, Y.; Lim, J.; Cho, S.; Seo, M.; Kim, I. S.; Kim, M.; Lee, C.; Lee, Y. W.; Yoo, C. Y. et al. ZIF-67 metal-organic frameworks synthesized onto CNT supports for oxygen evolution reaction in alkaline water electrolysis. Electrochim. Acta 2023, 439, 141593.

[118]

Zhao, Y. L.; Stoddart, J. F. Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 2009, 42, 1161–1171.

[119]

Li, W. L.; Zhang, Y. X. ; Yu, Z.; Zhu, T. X.; Kang, J. L.; Liu, K. X.; Li, Z. X.; Tan, S. C. In situ growth of a stable metal-organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications. ACS Nano 2022, 16, 14779–14791.

[120]

Zeng, S. S.; Lyu, F.; Sun, L. G.; Zhan, Y. W.; Ma, F. X.; Lu, J.; Li, Y. Y. UiO-66-NO2 as an oxygen “pump” for enhancing oxygen reduction reaction performance. Chem. Mater. 2019, 31, 1646–1654.

[121]

Shekhah, O.; Wang, H.; Paradinas, M.; Ocal, C.; Schüpbach, B.; Terfort, A.; Zacher, D.; Fischer, R. A.; Wöll, C. Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. Nat. Mater. 2009, 8, 481–484.

[122]

Dumée, L.; He, L.; Hill, M.; Zhu, B.; Duke, M.; Schütz, J.; She, F. S.; Wang, H. T.; Gray, S.; Hodgson, P. et al. Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes. J. Mater. Chem. A 2013, 1, 9208–9214.

[123]

Kong, L. Y.; Zhang, X. F.; Liu, H. O.; Wang, T. H.; Qiu, J. S. Preparation of ZIF-8 membranes supported on macroporous carbon tubes via a dipcoating-rubbing method. J. Phys. Chem. Solids 2015, 77, 23–29.

[124]

Cheng, W. R.; Lu, X. F.; Luan, D. Y.; Lou, X. W. D. NiMn-based bimetal-organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew. Chem. , Int. Ed. 2020, 59, 18234–18239.

[125]

Zheng, F. Q.; Zhang, W. F.; Zhang, X. X.; Zhang, Y. L.; Chen, W. Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis. Adv. Funct. Mater. 2021, 31, 2103318.

[126]

Zha, Q.; Li, M. X.; Liu, Z. H.; Ni, Y. H. Hierarchical Co, Fe-MOF-74/Co/carbon cloth hybrid electrode: Simple construction and enhanced catalytic performance in full water splitting. ACS Sustainable Chem. Eng. 2020, 8, 12025–12035.

[127]

Yue, Y. F.; Guo, B. K.; Qiao, Z. A.; Fulvio, P. F.; Chen, J. H.; Binder, A. J.; Tian, C. C.; Dai, S. Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor. Microporous Mesoporous Mater. 2014, 198, 139–143.

[128]

Li, X.; Yang, X. Y.; Sha, J. Q.; Han, T.; Du, C. J.; Sun, Y. J.; Lan, Y. Q. POMOF/SWNT nanocomposites with prominent peroxidase-mimicking activity for L-cysteine “on-off switch” colorimetric biosensing. ACS Appl. Mater. Interfaces 2019, 11, 16896–16904.

[129]

Wang, C. Y.; Huang, S. M.; Luo, L. Z.; Zhou, Y.; Lu, X. C.; Zhang, G.; Ye, H.; Gu, J. J.; Cao, F. F. Ultrathin two-dimension metal-organic framework nanosheets/multi-walled carbon nanotube composite films for the electrochemical detection of H2O2. J. Electroanal. Chem. 2019, 835, 178–185.

[130]

Kitao, T.; MacLean, M. W. A.; Nakata, K.; Takayanagi, M.; Nagaoka, M.; Uemura, T. Scalable and precise synthesis of armchair-edge graphene nanoribbon in metal-organic framework. J. Am. Chem. Soc. 2020, 142, 5509–5514.

[131]

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[132]

Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal-organic frameworks/graphene-based materials: Preparations and applications. Adv. Funct. Mater. 2018, 28, 1804950.

[133]

Xiao, Y.; Guo, B. B.; Zhang, J.; Hu, C.; Ma, R. G.; Wang, D. Y.; Wang, J. C. A bimetallic MOF@graphene oxide composite as an efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Dalton Trans. 2020, 49, 5730–5735.

[134]

Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Sohail, M.; Zaman, N.; Usman, M. Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electrocatalyst for oxygen evolution reaction (OER). Renew. Energ. 2020, 156, 1040–1054.

[135]

Hu, A. Q.; Pang, Q. Q.; Tang, C.; Bao, J. X.; Liu, H. Q.; Ba, K.; Xie, S. H.; Chen, J.; Chen, J. H.; Yue, Y. W. et al. Epitaxial growth and integration of insulating metal-organic frameworks in electrochemistry. J. Am. Chem. Soc. 2019, 141, 11322–11327.

[136]

Zheng, X. R.; Cao, Y. H.; Liu, D. Y.; Cai, M.; Ding, J.; Liu, X. R.; Wang, J. H.; Hu, W. B.; Zhong, C. Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15662–15669.

[137]

Huang, X. F.; Oleynikov, P.; He, H. L.; Mayoral, A.; Mu, L. Q.; Lin, F.; Zhang, Y. B. Docking MOF crystals on graphene support for highly selective electrocatalytic peroxide production. Nano Res. 2022, 15, 145–152.

[138]

Hai, G. T.; Tao, Z. P.; Gao, H. Y.; Zhao, J.; Jia, D. D.; Huang, X. B.; Chen, X.; Xue, X. D.; Feng, S. H.; Wang, G. Targeted synthesis of covalently linked Ni-MOFs nanosheets/graphene for oxygen evolution reaction by computational screening of anchoring primers. Nano Energy 2021, 79, 105418.

[139]

Jayaramulu, K.; Dubal, D. P.; Schneemann, A.; Ranc, V.; Perez‐Reyes, C.; Stráská, J.; Kment, Š.; Otyepka, M.; Fischer, R. A.; Zbořil, R. Shape-assisted 2D MOF/graphene derived hybrids as exceptional lithium-ion battery electrodes. Adv. Funct. Mater. 2019, 29, 1902539.

[140]

Pollet, B. The use of power ultrasound for the production of PEMFC and PEMWE catalysts and low-Pt loading and high-performing electrodes. Catalysts 2019, 9, 246.

[141]

Dastbaz, A.; Karimi-Sabet, J.; Moosavian, M. A. Sonochemical synthesis of novel decorated graphene nanosheets with amine functional Cu-terephthalate MOF for hydrogen adsorption: Effect of ultrasound and graphene content. Int. J. Hydrogen Energy 2019, 44, 26444–26458.

[142]

Ehrnst, Y.; Ahmed, H.; Komljenovic, R.; Massahud, E.; Shepelin, N. A.; Sherrell, P. C.; Ellis, A. V.; Rezk, A. R.; Yeo, L. Y. Acoustotemplating: Rapid synthesis of freestanding quasi-2D MOF/graphene oxide heterostructures for supercapacitor applications. J. Mater. Chem. A 2022, 10, 7058–7072.

[143]

Xu, T.; Zhang, Y. X.; Liu, M. S.; Wang, H. T.; Ren, J.; Tian, Y. J.; Liu, X.; Zhou, Y. F.; Wang, J. L.; Zhu, W. X. et al. In-situ two-step electrodeposition of α-CD-rGO/Ni-MOF composite film for superior glucose sensing. J. Alloys Compd. 2022, 923, 166418.

[144]

Lyu, S.; Guo, C. X.; Wang, J. N.; Li, Z. J.; Yang, B.; Lei, L. C.; Wang, L. P.; Xiao, J. P.; Zhang, T.; Hou, Y. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat. Commun. 2022, 13, 6171.

[145]

Tung, T. T.; Tran, M. T.; Feller, J. F.; Castro, M.; Van Ngo, T.; Hassan, K.; Nine, M. J.; Losic, D. Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers. Carbon 2020, 159, 333–344.

[146]

Zhuang, S. Q.; Singh, H.; Nunna, B. B.; Mandal, D.; Boscoboinik, J. A.; Lee, E. S. Nitrogen-doped graphene-based catalyst with metal-reduced organic framework: Chemical analysis and structure control. Carbon 2018, 139, 933–944.

[147]

Sikdar, A.; Majumdar, A.; Gogoi, A.; Dutta, P.; Borah, M.; Maiti, S.; Gogoi, C.; Reddy, K. A.; Oh, Y.; Maiti, U. N. Diffusion driven nanostructuring of metal-organic frameworks (MOFs) for graphene hydrogel based tunable heterostructures: Highly active electrocatalysts for efficient water oxidation. J. Mater. Chem. A 2021, 9, 7640–7649.

[148]

Bian, Z. J.; Xu, J.; Zhang, S. P.; Zhu, X. M.; Liu, H. L.; Hu, J. Interfacial growth of metal organic framework/graphite oxide composites through pickering emulsion and their CO2 capture performance in the presence of humidity. Langmuir 2015, 31, 7410–7417.

[149]

Wu, J.; Ma, G. H. Recent studies of pickering emulsions: Particles make the difference. Small 2016, 12, 4633–4648.

[150]

Liu, T. Q.; Li, Z.; Zhang, X.; Tan, H. X.; Chen, Z. Y.; Wu, J. S.; Chen, J.; Qiu, H. D. Metal-organic framework-intercalated graphene oxide membranes for selective separation of uranium. Anal. Chem. 2021, 93, 16175–16183.

[151]

Zhang, W.; Zhu, S. Y.; Luque, R.; Han, S.; Hu, L. Z.; Xu, G. B. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem. Soc. Rev. 2016, 45, 715–752.

[152]

Zhang, C. M.; Hou, L.; Cheng, C. F.; Zhuang, Z. H.; Zheng, F. Q.; Chen, W. Nitrogen and phosphorus co-doped hollow carbon spheres as efficient metal-free electrocatalysts for the oxygen reduction reaction. ChemElectroChem 2018, 5, 1891–1898.

[153]

Kim, H. S.; Kang, M. S.; Yoo, W. C. Boost-up electrochemical performance of MOFs via confined synthesis within nanoporous carbon matrices for supercapacitor and oxygen reduction reaction applications. J. Mater. Chem. A 2019, 7, 5561–5574.

[154]

Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210–10213.

[155]

Shen, Y.; Li, Z. F.; Guo, S. Y.; Shao, Y. R.; Hu, T. L. Encapsulation of ultrafine metal-organic framework nanoparticles within multichamber carbon spheres by a two-step double-solvent strategy for high-performance catalysts. ACS Appl. Mater. Interfaces 2021, 13, 12169–12180.

[156]

Xie, A. J.; Du, J. W.; Tao, F.; Tao, Y. W.; Xiong, Z. C.; Luo, S. P.; Li, X. Z.; Yao, C. Three-dimensional graphene surface-mounted nickel-based metal organic framework for oxygen evolution reaction. Electrochim. Acta 2019, 305, 338–348.

[157]

Wang, Z.; Jin, X. D.; Yan, L. P.; Yang, Y. Z.; Liu, X. G. Recent research progress in CDs@MOFs composites: Fabrication, property modulation, and application. Mikrochim. Acta 2022, 190, 28.

[158]

Sreekanth, T. V. M.; Dillip, G. R.; Nagajyothi, P. C.; Yoo, K.; Kim, J. Integration of Marigold 3D flower-like Ni-MOF self-assembled on MWCNTs via microwave irradiation for high-performance electrocatalytic alcohol oxidation and oxygen evolution reactions. Appl. Catal. B Environ. 2021, 285, 119793.

[159]

Wang, Y.; Yan, L. T.; Dastafkan, K.; Zhao, C.; Zhao, X. B.; Xue, Y. Y.; Huo, J. M.; Li, S. N.; Zhai, Q. G. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. 2021, 33, 2006351.

[160]

Liao, P. Q.; Shen, J. Q.; Zhang, J. P. Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 2018, 373, 22–48.

[161]

Li, S. S.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: Current status and perspectives. J. Mater. Chem. A 2019, 7, 18674–18707.

[162]

Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem. , Int. Ed. 2018, 57, 1888–1892.

[163]

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

[164]

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

[165]

Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

[166]

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 January 2023
Revised: 04 April 2023
Accepted: 12 April 2023
Published: 01 June 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province (Nos. 2019GXNSFGA245003 and 2021GXNSFBA220058), the National Natural Science Foundation of China (Nos. 22002026 and 22272036) and the Guangxi Normal University Research Grant (2022TD).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return