Journal Home > Volume 2 , Issue 3

The world is facing an ever-growing global energy crisis with unprecedented depth and complexity. The sustainable development of high energy density lithium-ion batteries for electric vehicles and portable electric devices has become a feasible way to deal with this problem. Silicon suboxides (SiOx) have been deemed as one of the most promising anode materials because of their ultrahigh theoretical lithium storage capacity, proper working potential, natural abundance, and environmental friendliness. However, the mass utilization of SiOx-based anodes is severely obstructed by their low electrical conductivity and inevitable volume expansion. While lithium silicate and lithium oxide formed in the first lithiation process act as buffer layers to some extent, it is urgent to address the accompanying low initial Coulombic efficiency and unsatisfactory cycling stability. In this review, we summarized recent advances in the synthesis methods of SiOx-based materials. Besides, the benefits and shortcomings of the various methods are briefly concluded. Then, we discussed the effective combination of SiOx with carbon materials and designs of porous structure, which could considerably enhance the electrochemical performance in detail. Furthermore, progresses on the modified strategies, advanced characteristics and industrial applications for SiOx-based anodes are also mentioned. Finally, the remaining challenges encountered and future perspectives on SiOx-based anodes are highlighted.


menu
Abstract
Full text
Outline
About this article

Recent advances of SiOx-based anodes for sustainable lithium-ion batteries

Show Author's information Mengyu Zhang1Naiwen Liang1Derek Hao2Zuxin Chen3,4( )Fan Zhang1( )Jiang Yin1Yahui Yang1Li-shan Yang1,4( )
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
School of Science, STEM College, RMIT University, Melbourne 3000, Australia
School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
International Iberian Nanotechnology Laboratory (INL), 4715–330 Braga, Portugal

Abstract

The world is facing an ever-growing global energy crisis with unprecedented depth and complexity. The sustainable development of high energy density lithium-ion batteries for electric vehicles and portable electric devices has become a feasible way to deal with this problem. Silicon suboxides (SiOx) have been deemed as one of the most promising anode materials because of their ultrahigh theoretical lithium storage capacity, proper working potential, natural abundance, and environmental friendliness. However, the mass utilization of SiOx-based anodes is severely obstructed by their low electrical conductivity and inevitable volume expansion. While lithium silicate and lithium oxide formed in the first lithiation process act as buffer layers to some extent, it is urgent to address the accompanying low initial Coulombic efficiency and unsatisfactory cycling stability. In this review, we summarized recent advances in the synthesis methods of SiOx-based materials. Besides, the benefits and shortcomings of the various methods are briefly concluded. Then, we discussed the effective combination of SiOx with carbon materials and designs of porous structure, which could considerably enhance the electrochemical performance in detail. Furthermore, progresses on the modified strategies, advanced characteristics and industrial applications for SiOx-based anodes are also mentioned. Finally, the remaining challenges encountered and future perspectives on SiOx-based anodes are highlighted.

Keywords: lithium-ion batteries, porous, synthesis methods, SiOx anodes, SiOx/C composites

References(166)

[1]

Feng, Y.; Zhou, L. M.; Ma, H.; Wu, Z. H.; Zhao, Q.; Li, H. X.; Zhang, K.; Chen, J. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 2022, 15, 1711–1759.

[2]

Zhang, Y. X.; Wu, B. R.; Mu, G.; Ma, C. W.; Mu, D. B.; Wu, F. Recent progress and perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 2022, 64, 615–650.

[3]

Kitada, K.; Pecher, O.; Magusin, P. C. M. M.; Groh, M. F.; Weatherup, R. S.; Grey, C. P. Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ 7Li and ex situ 7Li/29Si solid-state NMR spectroscopy. J. Am. Chem. Soc. 2019, 141, 7014–7027.

[4]

Wang, R. Y.; Li, H. Y.; Wu, Y. Q.; Li, H. D.; Zhong, B. H.; Sun, Y.; Wu, Z. G.; Guo, X. D. How to promote the industrial application of SiOx anode prelithiation: Capability, accuracy, stability, uniformity, cost, and safety. Adv. Energy Mater. 2022, 12, 2202342.

[5]

Liu, Q.; Hu, Y. H.; Yu, X. R.; Qin, Y. F.; Meng, T.; Hu, X. L. The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review. Nano Res. Energy 2022, 1, e9120037.

[6]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

[7]

Zhang, S. L.; Liu, Y.; Fan, Q. N.; Zhang, C. F.; Zhou, T. F.; Kalantar-Zadeh, K.; Guo, Z. P. Liquid metal batteries for future energy storage. Energy Environ. Sci. 2021, 14, 4177–4202.

[8]

Zhang, S. L.; Fan, Q. N.; Liu, Y.; Xi, S. B.; Liu, X. F.; Wu, Z. B.; Hao, J. N.; Pang, W. K.; Zhou, T. F.; Guo, Z. P. Dehydration-triggered ionic channel engineering in potassium niobate for Li/K-ion storage. Adv. Mater. 2020, 32, 2000380.

[9]

Tian, Y. F.; Li, G.; Xu, D. X.; Lu, Z. Y.; Yan, M. Y.; Wan, J.; Li, J. Y.; Xu, Q.; Xin, S.; Wen, R. et al. Micrometer-sized SiMgyOx with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 2022, 34, 2200672.

[10]

Chen, S. M.; Song, Z. B.; Wang, L.; Chen, H.; Zhang, S. Q.; Pan, F.; Yang, L. Y. Establishing a resilient conductive binding network for Si-based anodes via molecular engineering. Acc. Chem. Res. 2022, 55, 2088–2102.

[11]
Sun, L. ; Li, G. J. ; Zhang, S. L. ; Liu, S. L. ; Yuwono, J. ; Mao, J. F. ; Guo, Z. P. Practical assessment of the energy density of potassium-ion batteries. Sci. China Chem., in press, DOI: 10.1007/s11426-022-1442-4.
DOI
[12]

Zhang, C. F.; Li, H.; Zeng, X. H.; Xi, S. B.; Wang, R.; Zhang, L. H.; Liang, G. M.; Davey, K.; Liu, Y. P.; Zhang, L. et al. Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage. Adv. Energy Mater. 2022, 12, 2202577.

[13]

Long, Z. X.; Fu, R. S.; Ji, J. J.; Feng, Z. Y.; Liu, Z. P. Unveiling the effect of surface and bulk structure on electrochemical properties of disproportionated SiOx anodes. ChemNanoMat 2020, 6, 1127–1135.

[14]

Yan, M. Y.; Liu, Z.; Lu, Z. Y.; Huang, L. B.; Jiang, K. C.; Li, H. L.; Xin, S.; Xu, Q.; Guo, Y. G. Stable Li storage in micron-sized SiOx particles with rigid-flexible coating. J. Energy Chem. 2022, 64, 309–314.

[15]

Wang, H. L.; Wu, B. Z.; Wu, X. K.; Zhuang, Q. Q.; Liu, T.; Pan, Y.; Shi, G. J.; Yi, H. M.; Xu, P.; Xiong, Z. N. et al. Key factors for binders to enhance the electrochemical performance of silicon anodes through molecular design. Small 2022, 18, 2101680.

[16]

Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

[17]

Shi, Y.; Wan, J.; Li, J. Y.; Hu, X. C.; Lang, S. Y.; Shen, Z. Z.; Li, G.; Yan, H. J.; Jiang, K. C.; Guo, Y. G. et al. Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries. Nano Energy 2019, 61, 304–310.

[18]

Li, X. L.; Yan, P. F.; Arey, B. W.; Luo, W.; Ji, X. L.; Wang, C. M.; Liu, J.; Zhang, J. G. A stable nanoporous silicon anode prepared by modified magnesiothermic reactions. Nano Energy 2016, 20, 68–75.

[19]

Zhu, X. B.; Liu, B.; Shao, J. W.; Zhang, Q. C.; Wan, Y. Z.; Zhong, C.; Lu, J. Fundamental mechanisms and promising strategies for the industrial application of SiOx anode. Adv. Funct. Mater. 2023, 33, 2213363.

[20]

Jin, Y.; Li, S.; Kushima, A.; Zheng, X. Q.; Sun, Y. M.; Xie, J.; Sun, J.; Xue, W. J.; Zhou, G. M.; Wu, J. et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a Coulombic efficiency exceeding 99.9%. Energy Environ. Sci. 2017, 10, 580–592.

[21]

Nie, P.; Le, Z. Y.; Chen, G.; Liu, D.; Liu, X. Y.; Wu, H. B.; Xu, P. C.; Li, X. R.; Liu, F.; Chang, L. M. et al. Graphene caging silicon particles for high-performance lithium-ion batteries. Small 2018, 14, 1800635.

[22]

Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

[23]

Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 2016, 1, 16113.

[24]

Li, M.; Hou, X. H.; Sha, Y. J.; Wang, J.; Hu, S. J.; Liu, X.; Shao, Z. P. Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J. Power Sources 2014, 248, 721–728.

[25]

Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.

[26]

Chen, T.; Wu, J.; Zhang, Q. L.; Su, X. Recent advancement of SiOx based anodes for lithium-ion batteries. J. Power Sources 2017, 363, 126–144.

[27]

Mabery, C. F. The composition of certain products from the Cowles electrical furnace. J. Franklin Inst. 1886, 122, 271–274.

[28]

Hass, G. Preparation, structure, and applications of thin films of silicon monoxide and titanium dioxide. J. Am. Ceram. Soc. 1950, 33, 353–360.

[29]

Yang, J.; Takeda, Y.; Imanishi, N.; Capiglia, C.; Xie, J. Y.; Yamamoto, O. SiOx-based anodes for secondary lithium batteries. Solid State Ionics 2002, 152, 125–129.

[30]

Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 2016, 16, 282–288.

[31]

Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y. W.; Fujita, T.; Chen, M. W. Atomic-scale disproportionation in amorphous silicon monoxide. Nat. Commun. 2016, 7, 11591.

[32]

Stetson, C.; Schnabel, M.; Li, Z. F.; Harvey, S. P.; Jiang, C. S.; Norman, A.; DeCaluwe, S. C.; Al-Jassim, M.; Burrell, A. Microscopic observation of solid electrolyte interphase bilayer inversion on silicon oxide. ACS Energy Lett. 2020, 5, 3657–3662.

[33]

Xu, Q.; Sun, J. K.; Yin, Y. X.; Guo, Y. G. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 2018, 28, 1705235.

[34]

Xu, Q.; Sun, J. K.; Yu, Z. L.; Yin, Y. X.; Xin, S.; Yu, S. H.; Guo, Y. G. SiOx encapsulated in graphene bubble film: An ultrastable Li-ion battery anode. Adv. Mater. 2018, 30, 1707430.

[35]

Wang, J. Y.; Wang, X. L.; Liu, B. N.; Lu, H.; Chu, G.; Liu, J.; Guo, Y. G.; Yu, X. Q.; Luo, F.; Ren, Y. et al. Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy 2020, 78, 105101.

[36]

Zhu, T. Y.; Sternlicht, H.; Ha, Y.; Fang, C.; Liu, D. Y.; Savitzky, B. H.; Zhao, X.; Lu, Y. Y.; Fu, Y. B.; Ophus, C. et al. Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries. Nat. Energy 2023, 8, 129–137.

[37]

Schnurre, S. M.; Gröbner, J.; Schmid-Fetzer, R. Thermodynamics and phase stability in the Si-O system. J. Non-Cryst. Solids 2004, 336, 1–25.

[38]

Philipp, H. R. Optical properties of non-crystalline Si, SiO, SiOx and SiO2. J. Phys. Chem. Solids 1971, 32, 1935–1945.

[39]

Philipp, H. R. Optical and bonding model for non-crystalline SiOx and SiOxNy materials. J. Non-Cryst. Solids 1972, 8–10, 627–632.

[40]

Temkin, R. J. An analysis of the radial distribution function of SiOx. J. Non-Cryst. Solids 1975, 17, 215–230.

[41]

Dupree, R.; Holland, D.; Williams, D. S. An assessment of the structural models for amorphous SiO using MAS NMR. Philos. Mag. B 1984, 50, L13–L18.

[42]

Liu, Z. H.; Yu, Q.; Zhao, Y. L.; He, R. H.; Xu, M.; Feng, S. H.; Li, S. D.; Zhou, L.; Mai, L. Q. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309.

[43]

Hohl, A.; Wieder, T.; Van Aken, P. A.; Weirich, T. E.; Denninger, G.; Vidal, M.; Oswald, S.; Deneke, C.; Mayer, J.; Fuess, H. An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). J. Non-Cryst. Solids 2003, 320, 255–280.

[44]

Schulmeister, K.; Mader, W. TEM investigation on the structure of amorphous silicon monoxide. J. Non-Cryst. Solids 2003, 320, 143–150.

[45]

Yu, B. C.; Hwa, Y.; Park, C. M.; Sohn, H. J. Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries. J. Mater. Chem. A 2013, 1, 4820–4825.

[46]

Yasuda, K.; Kashitani, Y.; Kizaki, S.; Takeshita, K.; Fujita, T.; Shimosaki, S. Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries. J. Power Sources 2016, 329, 462–472.

[47]

Pan, Q. R.; Zuo, P. J.; Mu, T. S.; Du, C. Y.; Cheng, X. Q.; Ma, Y. L.; Gao, Y. Z.; Yin, G. P. Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J. Power Sources 2017, 347, 170–177.

[48]

Liang, C.; Zhou, L. T.; Zhou, C. H.; Huang, H.; Liang, S.; Xia, Y.; Gan, Y. P.; Tao, X. Y.; Zhang, J.; Zhang, W. K. Submicron silica as high-capacity lithium storage material with superior cycling performance. Mater. Res. Bull. 2017, 96, 347–353.

[49]

Zhang, D. M.; Meng, X. L.; Hou, W. Y.; Hu, W. H.; Mo, J. S.; Yang, T. R.; Zhang, W. D.; Fan, Q. X.; Liu, L. H.; Jiang, B. et al. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. Nano Res. Energy 2023, 2, e9120050.

[50]

Jiao, M. L.; Wang, Y. F.; Ye, C. L.; Wang, C. Y.; Zhang, W. K.; Liang, C. High-capacity SiOx (0≤x≤2) as promising anode materials for next-generation lithium-ion batteries. J. Alloys Compd. 2020, 842, 155774.

[51]

Yu, B. C.; Hwa, Y.; Kim, J. H.; Sohn, H. J. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites. Electrochim. Acta 2014, 117, 426–430.

[52]

Hwa, Y.; Park, C. M.; Sohn, H. J. Modified SiO as a high performance anode for Li-ion batteries. J. Power Sources 2013, 222, 129–134.

[53]

Miyachi, M.; Yamamoto, H.; Kawai, H.; Ohta, T.; Shirakata, M. Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2089–A2091.

[54]

Jung, S. C.; Kim, H. J.; Kim, J. H.; Han, Y. K. Atomic-level understanding toward a high-capacity and high-power silicon oxide (SiO) material. J. Phys. Chem. C 2016, 120, 886–892.

[55]

Takezawa, H.; Iwamoto, K.; Ito, S.; Yoshizawa, H. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. J. Power Sources 2013, 244, 149–157.

[56]

Lee, J. K.; Yoon, W. Y.; Kim, B. K. Kinetics of reaction products of silicon monoxide with controlled amount of Li-ion insertion at various current densities for Li-ion batteries. J. Electrochem. Soc. 2014, 161, A927–A933.

[57]

Abel, P. R.; Lin, Y. M.; Celio, H.; Heller, A.; Mullins, C. B. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation. ACS Nano 2012, 6, 2506–2516.

[58]

Wu, W.; Wang, M.; Wang, R.; Xu, D. W.; Zeng, H. B.; Wang, C. Y.; Cao, Y. L.; Deng, Y. H. Magnesio-mechanochemical reduced SiOx for high-performance lithium ion batteries. J. Power Sources 2018, 407, 112–122.

[59]

Cao, Y. D.; Bennett, J. C.; Dunlap, R. A.; Obrovac, M. N. A simple synthesis route for high-capacity SiOx anode materials with tunable oxygen content for lithium-ion batteries. Chem. Mater. 2018, 30, 7418–7422.

[60]

Feng, X. J.; Yang, J.; Lu, Q. W.; Wang, J. L.; Nuli, Y. Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 14420–14426.

[61]

Hwang, J.; Kim, K.; Jung, W. S.; Choi, H.; Kim, J. H. Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes. J. Power Sources 2019, 436, 226883.

[62]

Zhang, Y.; Guo, G. N.; Chen, C.; Jiao, Y. C.; Li, T. T.; Chen, X.; Yang, Y. C.; Yang, D.; Dong, A. G. An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes. J. Power Sources 2019, 426, 116–123.

[63]

Zhou, M. J.; Gordin, M. L.; Chen, S. R.; Xu, T.; Song, J. X.; Lv, D. P.; Wang, D. H. Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries. Electrochem. Commun. 2013, 28, 79–82.

[64]

Li, H. Y.; Li, H. D.; Yang, Z. W.; Yang, L. W.; Gong, J. Y.; Liu, Y. X.; Wang, G. K.; Zheng, Z.; Zhong, B. H.; Song, Y. et al. SiOx anode: From fundamental mechanism toward industrial application. Small 2021, 17, 2102641.

[65]

Fan, S. C.; Zhou, X. Y.; Tang, J. J.; Ma, Y. Y.; Yang, J. Insights to the variation of oxygen content and reasons for improved electrochemical performance of annealing SiOx anodes for Li-ion battery. Appl. Surf. Sci. 2022, 579, 152179.

[66]

Zhang, J.; Zhang, F.; Zhu, W. Q.; Xi, X. M.; Yang, L. Z.; Tu, F. Y.; Feng, Q. G.; Li, T. T.; Yang, Y. H.; Yang, L. S. Restricted-magnesium-vapor-reduction of amorphous SiO/C precursors to polycrystalline Si/SiOx/C hybrid anodes. Chem. Commun. 2023, 59, 1169–1172.

[67]

Raza, A.; Jung, J. Y.; Lee, C. H.; Kim, B. G.; Choi, J. H.; Park, M. S.; Lee, S. M. Swelling-controlled double-layered SiOx/Mg2SiO4/SiOx composite with enhanced initial Coulombic efficiency for lithium-ion battery. ACS Appl. Mater. Interfaces 2021, 13, 7161–7170.

[68]

Liu, D.; Fang, K.; You, X. H.; Tang, H. L.; Xie, Z. Z.; Li, J. S.; Li, X.; Qu, D. Y. Formation of thin layer graphite wrapped meso-porous SiOx and its lithium storage application. Ceram. Int. 2019, 45, 24707–24716.

[69]

Kim, H. S.; Cho, W.; Park, D.; Kim, K.; Jung, W. S.; Choi, H.; Kim, J. H. Zn-induced synthesis of porous SiOx materials as negative electrodes for Li secondary batteries. J. Alloys Compd. 2019, 803, 325–331.

[70]

Park, M. S.; Park, E.; Lee, J.; Jeong, G.; Kim, K. J.; Kim, J. H.; Kim, Y. J.; Kim, H. Hydrogen silsequioxane-derived Si/SiOx nanospheres for high-capacity lithium storage materials. ACS Appl. Mater. Interfaces 2014, 6, 9608–9613.

[71]

Liu, Z. H.; Guan, D. D.; Yu, Q.; Xu, L.; Zhuang, Z. C.; Zhu, T.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Monodisperse and homogeneous SiOx/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater. 2018, 13, 112–118.

[72]

Yao, N. N.; Zhang, Y.; Rao, X. H.; Yang, Z.; Zheng, K.; Świerczek, K.; Zhao, H. L. A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries. Int. J. Miner. Metall. Mater. 2022, 29, 876–895.

[73]

Böke, F.; Giner, I.; Keller, A.; Grundmeier, G.; Fischer, H. Plasma-enhanced chemical vapor deposition (PE-CVD) yields better hydrolytical stability of biocompatible SiOx thin films on implant alumina ceramics compared to rapid thermal evaporation physical vapor deposition (PVD). ACS Appl. Mater. Interfaces 2016, 8, 17805–17816.

[74]

Kim, M. K.; Jang, B. Y.; Lee, J. S.; Kim, J. S.; Nahm, S. Microstructures and electrochemical performances of nano-sized SiOx (1.18 ≤ x ≤ 1.83) as an anode material for a lithium(Li)-ion battery. J. Power Sources 2013, 244, 115–121.

[75]

Suh, S. S.; Yoon, W. Y.; Kim, D. H.; Kwon, S. U.; Kim, J. H.; Kim, Y. U.; Jeong, C. U.; Chan, Y. Y.; Kang, S. H.; Lee, J. K. Electrochemical behavior of SiOx anodes with variation of oxygen ratio for Li-ion batteries. Electrochim. Acta 2014, 148, 111–117.

[76]

Tashiro, T.; Dougakiuchi, M.; Kambara, M. Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition. Sci. Technol. Adv. Mater. 2016, 17, 744–752.

[77]

Homma, K.; Kambara, M.; Yoshida, T. High throughput production of nanocomposite SiOx powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries. Sci. Technol. Adv. Mater. 2014, 15, 025006.

[78]

Zhu, G. J.; Jiang, W.; Yang, J. P. Engineering carbon distribution in silicon-based anodes at multiple scales. Chem. -Eur. J. 2020, 26, 1488–1496.

[79]

Wu, W.; Kang, Y. Y.; Wang, M.; Xu, D. W.; Wang, J.; Cao, Y. L.; Wang, C. Y.; Deng, Y. H. An ultrahigh-areal-capacity SiOx negative electrode for lithium ion batteries. J. Power Sources 2020, 464, 228244.

[80]

Zhu, G. B.; Gu, Y. Y.; Heng, S.; Wang, Y.; Qu, Q. T.; Zheng, H. H. Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability. Electrochim. Acta 2019, 323, 134840.

[81]

Wang, J.; Zhao, H. L.; He, J. C.; Wang, C. M.; Wang, J. Nano-sized SiOx/C composite anode for lithium ion batteries. J. Power Sources 2011, 196, 4811–4815.

[82]

Seong, I. W.; Kim, K. T.; Yoon, W. Y. Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell. J. Power Sources 2009, 189, 511–514.

[83]

Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

[84]

Xu, S.; Hou, X. D.; Wang, D. N.; Zuin, L.; Zhou, J. G.; Hou, Y.; Mann, M. Insights into the effect of heat treatment and carbon coating on the electrochemical behaviors of SiO anodes for Li-ion batteries. Adv. Energy Mater. 2022, 12, 2200127.

[85]

Zhang, K. Y.; Mao, H. Z.; Gu, X.; Song, C. H.; Yang, J.; Qian, Y. T. ZIF-derived cobalt-containing N-doped carbon-coated SiOx nanoparticles for superior lithium storage. ACS Appl. Mater. Interfaces 2020, 12, 7206–7211.

[86]

Hu, G. W.; Zhong, K. Z.; Yu, R. H.; Liu, Z. H.; Zhang, Y. Y.; Wu, J. S.; Zhou, L.; Mai, L. Enveloping SiOx in N-doped carbon for durable lithium storage via an eco-friendly solvent-free approach. J. Mater. Chem. A 2020, 8, 13285–13291.

[87]

Li, P.; Zhao, G. Q.; Zheng, X. B.; Xu, X.; Yao, C. H.; Sun, W. P.; Dou, S. X. Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 2018, 15, 422–446.

[88]

Liu, Z. H.; Zhao, Y. L.; He, R. H.; Luo, W.; Meng, J. S.; Yu, Q.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater. 2019, 19, 299–305.

[89]

Xu, Q.; Li, J. Y.; Sun, J. K.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted Lithium-ion battery anodes. Adv. Energy Mater. 2017, 7, 1601481.

[90]

Li, Z. L.; Zhao, H. L.; Lv, P. P.; Zhang, Z. J.; Zhang, Y.; Du, Z. H.; Teng, Y. Q.; Zhao, L. N.; Zhu, Z. M. Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater. 2018, 28, 1605711.

[91]

Zhang, K. Y.; Du, W. Z.; Qian, Z.; Lin, L. D.; Gu, X.; Yang, J.; Qian, Y. T. SiOx embedded in N-doped carbon nanoslices: A scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon 2021, 178, 202–210.

[92]

Dou, F.; Shi, L. Y.; Song, P. A.; Chen, G. R.; An, J.; Liu, H. J.; Zhang, D. S. Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery. Chem. Eng. J. 2018, 338, 488–495.

[93]

Gu, H. T.; Wang, Y.; Zeng, Y.; Yu, M.; Liu, T.; Chen, J.; Wang, K.; Xie, J. Y.; Li, L. S. Boosting cyclability and rate capability of SiOx via dopamine polymerization-assisted hybrid graphene coating for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 17388–17395.

[94]

Shi, L.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Jin, Z. Q.; Yang, Y. S. Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J. Power Sources 2016, 318, 184–191.

[95]

Yang, Z.; Jiang, M. X.; Wang, X.; Wang, Y. X. J.; Cao, M. H. Constructing a stable Si-N-enriched interface boosts lithium storage kinetics in a silicon-based anode. ACS Appl. Mater. Interfaces 2021, 13, 52636–52646.

[96]

Zhou, J.; Lu, Y.; Yang, L. S.; Zhu, W. Q.; Liu, W. F.; Yang, Y. H.; Liu, K. Y. Sustainable silicon anodes facilitated via a double-layer interface engineering: Inner SiOx combined with outer nitrogen and boron co-doped carbon. Carbon Energy 2022, 4, 399–410.

[97]

Xue, H. J.; Wu, Y. Q.; Zou, Y. G.; Shen, Y. B.; Liu, G.; Li, Q.; Yin, D. M.; Wang, L. M.; Ming, J. Unraveling metal oxide role in exfoliating graphite: New strategy to construct high-performance graphene-modified SiOx-based anode for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 1910657.

[98]

Chen, Z. H.; An, X. H.; Dai, L. M.; Xu, Y. X. Holey graphene-based nanocomposites for efficient electrochemical energy storage. Nano Energy 2020, 73, 104762.

[99]

Ren, Y. R.; Wu, X. M.; Li, M. Q. Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. Electrochim. Acta 2016, 206, 328–336.

[100]

Xue, H. J.; Cheng, Y.; Gu, Q. Q.; Wang, Z. M.; Shen, Y. B.; Yin, D. M.; Wang, L. M.; Huang, G. An SiOx anode strengthened by the self-catalytic growth of carbon nanotubes. Nanoscale 2021, 13, 3808–3816.

[101]

Tian, H.; Tian, H. J.; Yang, W.; Zhang, F.; Yang, W.; Zhang, Q. B.; Wang, Y.; Liu, J.; Silva, S. R. P.; Liu, H. et al. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101796.

[102]

Park, B. H.; Lee, G. W.; Choi, S. B.; Kim, Y. H.; Kim, K. B. Triethoxysilane-derived SiOx-assisted structural reinforcement of Si/carbon nanotube composite for lithium-ion battery. Nanoscale 2020, 12, 22140–22149.

[103]

Zhang, J. Y.; Yang, G.; Wang, J. A.; Hou, Z. L.; Zhang, X. M.; Li, C. B. Graphene and carbon nanotube dual-decorated SiOx composite anode material for lithium-ion batteries. Energy Fuels 2021, 35, 19784–19790.

[104]

Chen, L. Y.; Zheng, J.; Lin, S. Y.; Khan, S.; Huang, J. L.; Liu, S. H.; Chen, Z. R.; Wu, D. C.; Fu, R. W. Synthesis of SiOx/C composite nanosheets as high-rate and stable anode materials for lithium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 3562–3568.

[105]

Li, G.; Huang, L. B.; Yan, M. Y.; Li, J. Y.; Jiang, K. C.; Yin, Y. X.; Xin, S.; Xu, Q.; Guo, Y. G. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy 2020, 74, 104890.

[106]

Liu, D. J.; Jiang, Z. P.; Zhang, W.; Ma, J. Q.; Xie, J. Micron-sized SiOx/N-doped carbon composite spheres fabricated with biomass chitosan for high-performance lithium-ion battery anodes. RSC Adv. 2020, 10, 38524–38531.

[107]

Li, X. X.; Shi, H. B.; Zhang, L. Q.; Chen, J. B.; Lü, P. P. Novel synthesis of SiOx/C composite as high-capacity lithium-ion battery anode from silica-carbon binary xerogel. Chin. J. Chem. Eng. 2020, 28, 579–583.

[108]

Han, M. S.; Mu, Y. B.; Yuan, F.; Liang, J. B.; Jiang, T.; Bai, X. D.; Yu, J. Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J. Mater. Chem. A 2020, 8, 3822–3833.

[109]

Zhang, F.; Zhu, W. Q.; Li, T. T.; Yuan, Y.; Yin, J.; Jiang, J. H.; Yang, L. S. Advances of synthesis methods for porous silicon-based anode materials. Front. Chem. 2022, 10, 889563.

[110]

Lee, J. I.; Park, S. High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching. Nano Energy 2013, 2, 146–152.

[111]

Park, E.; Park, M. S.; Lee, J.; Kim, K. J.; Jeong, G.; Kim, J. H.; Kim, Y. J.; Kim, H. A highly resilient mesoporous SiOx lithium storage material engineered by oil-water templating. ChemSusChem 2015, 8, 688–694.

[112]

Rehman, W. U.; Wang, H. F.; Manj, R. Z. A.; Luo, W.; Yang, J. P. When silicon materials meet natural sources: Opportunities and challenges for low-cost lithium storage. Small 2021, 17, 1904508.

[113]

Liu, J.; Kopold, P.; van Aken, P. A. V.; Maier, J.; Yu, Y. Energy storage materials from nature through nanotechnology: A sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew. Chem. , Int. Ed. 2015, 54, 9632–9636.

[114]

Ahn, J.; Lee, D. H.; Kang, M. S.; Lee, K. J.; Lee, J. K.; Sung, Y. E.; Yoo, W. C. Sea sand-derived magnesium silicide as a reactive precursor for silicon-based composite electrodes of lithium-ion battery. Electrochim. Acta 2017, 245, 893–901.

[115]

Kuang, S. J.; Xu, D. H.; Chen, W. Y.; Huang, X. Q.; Sun, L. Y.; Cai, X.; Yu, X. Y. In situ construction of bamboo charcoal derived SiOx embedded in hierarchical porous carbon framework as stable anode material for superior lithium storage. Appl. Surf. Sci. 2020, 521, 146497.

[116]

Lin, D. C.; Lu, Z. D.; Hsu, P. C.; Lee, H. R.; Liu, N.; Zhao, J.; Wang, H. T.; Liu, C.; Cui, Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 2015, 8, 2371–2376.

[117]

Li, G.; Li, J. Y.; Yue, F. S.; Xu, Q.; Zuo, T. T.; Yin, Y. X.; Guo, Y. G. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy 2019, 60, 485–492.

[118]

Zhu, G. J.; Chao, D. L.; Xu, W. L.; Wu, M. H.; Zhang, H. J. Microscale silicon-based anodes: Fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 2021, 15, 15567–15593.

[119]

He, D. L.; Li, P.; Wang, W.; Wan, Q.; Zhang, J.; Xi, K.; Ma, X. M.; Liu, Z. W.; Zhang, L.; Qu, X. H. Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage. Small 2020, 16, 1905736.

[120]

Jing, J. Y.; Zhang, C. H.; Li, Q.; Li, C. Z.; Yao, S. Y.; Li, T.; Bai, X. Study of commercial binders on the lithium storage performance of SiOx/G@C anode. Mater. Chem. Phys. 2022, 292, 126797.

[121]

Lee, K.; Lim, S.; Go, N.; Kim, J.; Mun, J.; Kim, T. H. Dopamine-grafted heparin as an additive to the commercialized carboxymethyl cellulose/styrene-butadiene rubber binder for practical use of SiOx/graphite composite anode. Sci. Rep. 2018, 8, 11322.

[122]

Tang, W. T.; Feng, L.; Wei, X. J.; Lai, G. Y.; Chen, H. P.; Li, Z. H.; Huang, X. H.; Wu, S. X.; Lin, Z. Three-dimensional crosslinked PAA-TA hybrid binders for long-cycle-life SiOx anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 56910–56918.

[123]

Liao, H. J.; He, W. J.; Liu, N.; Luo, D. R.; Dou, H.; Zhang, X. G. Facile in situ cross-linked robust three-dimensional binder for high-performance SiOx anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 49313–49321.

[124]

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

[125]

Cho, Y.; Kim, J.; Elabd, A.; Choi, S.; Park, K.; Kwon, T. W.; Lee, J.; Char, K.; Coskun, A.; Choi, J. W. A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes. Adv. Mater. 2019, 31, 1905048.

[126]

Zhang, C. K.; Chen, Q. L.; Ai, X.; Li, X. G.; Xie, Q. S.; Cheng, Y.; Kong, H. F.; Xu, W. J.; Wang, L. S.; Wang, M. S. et al. Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties. J. Mater. Chem. A 2020, 8, 16323–16331.

[127]

Song, Z. B.; Chen, S. M.; Zhao, Y.; Xue, S. D.; Qian, G. Y.; Fang, J. J.; Zhang, T. H.; Long, C. J.; Yang, L. Y.; Pan, F. Constructing a resilient hierarchical conductive network to promote cycling stability of SiOx anode via binder design. Small 2021, 17, 2102256.

[128]

Xu, G. J.; Wang, X.; Li, J. D.; Shangguan, X. H.; Huang, S. Q.; Lu, D.; Chen, B. B.; Ma, J.; Dong, S. M.; Zhou, X. H. et al. Tracing the impact of hybrid functional additives on a high-voltage (5 V-class) SiOx-C/LiNi0.5Mn1. 5O4 Li-ion battery system. Chem. Mater. 2018, 30, 8291–8302.

[129]

Kong, X. B.; Liu, J. J.; Zhang, Y. G.; Zeng, J.; Zhao, J. B. An effective electrolyte design to improve the high-voltage performance of high-capacity NCM811/SiOx-Gr batteries. Electrochim. Acta 2020, 349, 136356.

[130]

Xu, N. B.; Sun, Y. O.; Shi, J. W.; Chen, J. N.; Liu, G. P.; Zhou, K.; He, H. J.; Zhu, J. P.; Zhang, Z. R.; Yang, Y. Fluorinated cyclic siloxane additives for high energy density Li-ion batteries with high nickel cathodes and silicon-carbon anodes. J. Power Sources 2021, 511, 230437.

[131]

Kang, Y. Y.; Wang, J.; Wang, M.; Tang, X. W.; Cao, Z. Z.; Wang, C. Y.; Shi, Q.; Qian, Y. X.; Deng, Y. H. Multifunctional fluoroethylene carbonate for improving high-temperature performance of LiNi0.8Mn0. 1Co0. 1O2| | SiOx@Graphite lithium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 9989–10000.

[132]

Zhou, M.; Jin, C.; Cao, Z.; Wang, X. M.; Yuan, Y. N.; Jin, L. H.; Zheng, H. H. Effects and attenuation mechanism analysis of a fluoroethylene carbonate additive on SiOx/Graphite anode-based pouch cells. Energy Fuels 2022, 36, 1114–1120.

[133]

Zhou, M.; Wang, Y. R.; Jin, C.; Yuan, Y. N.; Zheng, H. H. Effects of nitriles additives on performances of SiOx/Graphite| | NCM811 pouch cell at elevated temperature. Int. J. Electrochem. Sci. 2022, 17, 220549.

[134]

Ouyang, D. X.; Wang, K.; Gao, T. F.; Wang, Z. R. Investigation on safety characteristics of high-nickel lithium-ion cells with anode partially doped by silicon oxide. J. Loss Prev. Process Ind. 2022, 80, 104924.

[135]

Yang, H. W.; Kang, W. S.; Kim, S. J. A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiOx anode for Li-ion batteries. Electrochim. Acta 2022, 412, 140107.

[136]

Yang, H. W.; Maniyazagan, M.; Naveenkumar, P.; Kang, W. S.; Kim, S. J. Building optimal SEI through control of morphology and chemical composition for high-performance lithium-ion batteries. Appl. Surf. Sci. 2023, 612, 155888.

[137]

Kim, J. W.; Seong, M. J.; Park, D. W.; Jeong, G.; Yim, T. Anti-corrosive and surface-stabilizing functional electrolyte containing LiFSI and LiPO2F2 for SiOx/NCM811-based batteries. Corros. Sci. 2022, 198, 110117.

[138]

Qi, W. B.; Ben, L. B.; Yu, H. L.; Zhao, W. W.; Zhao, G. J.; Huang, X. J. Improving the rate capability of a SiOx/graphite anode by adding LiNO3. Prog. Nat. Sci. Mater. Int. 2020, 30, 321–327.

[139]
An, F. Q. ; Zhao, H. L. ; Zhou, W. N. ; Ma, Y. H. ; Li, P. S-containing and Si-containing compounds as highly effective electrolyte additives for SiOx-based anodes/NCM 811 cathodes in lithium ion cells. Sci. Rep. 2019, 9, 14108.
DOI
[140]

Huang, L. B.; Li, G.; Lu, Z. Y.; Li, J. Y.; Zhao, L.; Zhang, Y.; Zhang, X. D.; Jiang, K. C.; Xu, Q.; Guo, Y. G. Trans-difluoroethylene carbonate as an electrolyte additive for microsized SiOx@C anodes. ACS Appl. Mater. Interfaces 2021, 13, 24916–24924.

[141]

Jeon, Y. J.; Yim, T. Fluorine- and maleimide-functionalized electrolyte additive as an interface modifier for Ni-rich LNMC/SiOx batteries. Curr. Appl. Phys. 2023, 46, 76–82.

[142]

Kim, H. N.; Yim, T. 1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether as an advanced electrolyte additive for SiOx-based lithium-ion batteries. J. Alloys Compd. 2023, 931, 167529.

[143]

Meng, Q. H.; Li, G.; Yue, J. P.; Xu, Q.; Yin, Y. X.; Guo, Y. G. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy. ACS Appl. Mater. Interfaces 2019, 11, 32062–32068.

[144]

Zhao, H.; Wang, Z. H.; Lu, P.; Jiang, M.; Shi, F. F.; Song, X. Y.; Zheng, Z. Y.; Zhou, X.; Fu, Y. B.; Abdelbast, G. et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 2014, 14, 6704–6710.

[145]

Yan, M. Y.; Li, G.; Zhang, J.; Tian, Y. F.; Yin, Y. X.; Zhang, C. J.; Jiang, K. C.; Xu, Q.; Li, H. L.; Guo, Y. G. Enabling SiOx/C anode with high initial Coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 27202–27209.

[146]

Adhitama, E.; Bela, M. M.; Demelash, F.; Stan, M. C.; Winter, M.; Gomez-Martin, A.; Placke, T. On the practical applicability of the Li metal-based thermal evaporation prelithiation technique on Si anodes for lithium ion batteries. Adv. Energy Mater. 2023, 13, 2203256.

[147]

Adhitama, E.; Brandao, F. D.; Dienwiebel, I.; Bela, M. M.; Javed, A.; Haneke, L.; Stan, M. C.; Winter, M.; Gomez-Martin, A.; Placke, T. Pre-lithiation of silicon anodes by thermal evaporation of lithium for boosting the energy density of lithium ion cells. Adv. Funct. Mater. 2022, 32, 2201455.

[148]

Takezawa, H.; Ito, S.; Yoshizawa, H.; Abe, T. Electrochemical properties of a SiOx film anode pre-lithiated by evaporation of metallic Li in Li-ion batteries. Chem. Lett. 2017, 46, 1365–1367.

[149]

Lee, D. I.; Yang, H. W.; Kang, W. S.; Kim, J.; Kim, S. J. Optimal condition of solid-electrolyte-interphase prepared by controlled prelithiation for high performance Li-ion batteries. J. Electrochem. Soc. 2019, 166, A787–A792.

[150]

Li, Y.; Qian, Y.; Zhou, J.; Lin, N.; Qian, Y. T. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Res. 2022, 15, 230–237.

[151]

Choi, J.; Jeong, H.; Jang, J.; Jeon, A. R.; Kang, I.; Kwon, M.; Hong, J.; Lee, M. Weakly solvating solution enables chemical prelithiation of Graphite-SiOx anodes for high-energy Li-ion batteries. J. Am. Chem. Soc. 2021, 143, 9169–9176.

[152]

Gong, S.; Lee, Y.; Choi, J.; Lee, M.; Chung, K. Y.; Jung, H. G.; Jeong, S.; Kim, H. S. In situ mesopore formation in SiOx nanoparticles by chemically reinforced heterointerface and use of chemical prelithiation for highly reversible Lithium-ion battery anode. Small 2023, 19, 2206238.

[153]

Park, J.; Park, S. S.; Won, Y. S. In situ XRD study of the structural changes of graphite anodes mixed with SiOx during lithium insertion and extraction in lithium ion batteries. Electrochim. Acta 2013, 107, 467–472.

[154]

Chou, C. Y.; Hwang, G. S. Lithiation behavior of silicon-rich oxide (SiO1/3): A first-principles study. Chem. Mater. 2013, 25, 3435–3440.

[155]

Adkins, E. R.; Jiang, T. Z.; Luo, L. L.; Wang, C. M.; Korgel, B. A. In situ transmission electron microsopy of oxide shell-induced pore formation in (de)lithiated silicon nanowires. ACS Energy Lett. 2018, 3, 2829–2834.

[156]

Jung, H.; Yeo, B. C.; Lee, K. R.; Han, S. S. Atomistics of the lithiation of oxidized silicon (SiOx) nanowires in reactive molecular dynamics simulations. Phys. Chem. Chem. Phys. 2016, 18, 32078–32086.

[157]

Xiao, Z. X.; Lin, X. Q.; Zhang, C. X.; Shen, J. Q.; Zhang, R. R.; He, Z. Y.; Lin, Z. K.; Jiang, H. R.; Wei, F. Insights into the coating integrity and its effect on the electrochemical performance of core-shell structure SiOx@C composite anodes. Small 2023, 2201623.

[158]

Nguyen, C. C.; Choi, H.; Song, S. W. Roles of oxygen and interfacial stabilization in enhancing the cycling ability of silicon oxide anodes for rechargeable lithium batteries. J. Electrochem. Soc. 2013, 160, A906–A914.

[159]

Kang, T. X.; Tan, J. H.; Li, X. C.; Liang, J. L.; Wang, H.; Shen, D.; Wu, Y.; Huang, Z. M.; Lu, Y.; Tong, Z. Q. et al. Armoring SiOx with a conformal LiF layer to boost lithium storage. J. Mater. Chem. A 2021, 9, 7807–7816.

[160]

Han, J.; Jo, S.; Na, I.; Oh, S. M.; Jeon, Y. M.; Park, J. G.; Koo, B.; Hyun, H.; Seo, S.; Lee, D. et al. Homogenizing silicon domains in SiOx anode during cycling and enhancing battery performance via magnesium doping. ACS Appl. Mater. Interfaces 2021, 13, 52202–52214.

[161]

Feng, Y.; Koo, B. M.; Seyeux, A.; Światowska, J.; de Villeneuve, C. H.; Rosso, M.; Ozanam, F. ToF-SIMS Li depth profiling of pure and methylated amorphous silicon electrodes after their partial lithiation. ACS Appl. Mater. Interfaces 2022, 14, 35716–35725.

[162]

Pereira-Nabais, C.; Światowska, J.; Chagnes, A.; Ozanam, F.; Gohier, A.; Tran-Van, P.; Cojocaru, C. S.; Cassir, M.; Marcus, P. Interphase chemistry of Si electrodes used as anodes in Li-ion batteries. Appl. Surf. Sci. 2013, 266, 5–16.

[163]

Pereira-Nabais, C.; Światowska, J.; Rosso, M.; Ozanam, F.; Seyeux, A.; Gohier, A.; Tran-Van, P.; Cassir, M.; Marcus, P. Effect of lithiation potential and cycling on chemical and morphological evolution of Si thin film electrode studied by ToF-SIMS. ACS Appl. Mater. Interfaces 2014, 6, 13023–13033.

[164]

Li, C.; Liu, B. W.; Jiang, N. Y.; Ding, Y. Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. Nano Res. Energy 2022, 1, e9120031.

[165]

Chandrasekaran, R.; Fuller, T. F. Analysis of the lithium-ion insertion silicon composite electrode/separator/lithium foil cell. J. Electrochem. Soc. 2011, 158, A859–A871.

[166]

Yue, C.; Zhang, S.; Yu, Y. J.; Hu, F.; Zhang, Q. W.; Qi, D. F.; Shu, J.; Li, J. Laser-patterned Si/TiN/Ge anode for stable Si based Li-ion microbatteries. J. Power Sources 2021, 493, 229697.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 March 2023
Revised: 24 April 2023
Accepted: 03 May 2023
Published: 23 May 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported partially by the National Key Research and Development Program (No. 2022YFC3900905), the National Natural Science Foundation of China (Nos. 52234001, 62104703, and 52074119), the Science and Technology Planning Project of Hunan Province (No. 2018TP1017), the Scientific Research Fund of Hunan Provincial Education Department (No. 22A0045), the Science and Technology Innovation Program of Hunan Province (No. 2021RC1003), the Changsha Science and Technology Foundation (No. kq2208162) and Joint Funds of Hunan Provincial Innovation Foundation for Post-graduate (No. CX20220512).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return