Journal Home > Volume 2 , Issue 3

With the growing economy and technology, disease prevention and individual health are becoming more and more important. It is highly urgent to develop a non-toxic, self-powered, and safe high-voltage power source to prevent diseases spread by mosquitoes, especially in isolated or remote areas. Herein, we reported a high-performance rotary triboelectric nanogenerator (R-TENG) based on customized theoretical simulations and a ferroelectric nanocomposite intermediate layer. The customized theoretical simulations based on gradient electrode gaps were established to optimize gap angles and segment numbers of the electrodes, which could prevent air breakdown and enhance the R-TENG output energy by at least 1.5 times. Meanwhile, the electrical output performance of the TENG was further enhanced with a highly oriented BaTiO3 (BTO) nanoparticles intermediate layer by about 2.5 times. The open-circuit voltage of R-TENG reached more than 6 kV and could continuously light 3420 light-emitting devices (LEDs) or 4 serially connected 36 W household fluorescent lamps. Therefore, a self-powered high-voltage disease prevention system is developed based on the high-performance R-TENG to reduce the risk of disease transmission. This work provides a prospective strategy for the further development of TENGs and expands practical applications of self-powered and high-voltage systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-performance triboelectric nanogenerator based on theoretical analysis and ferroelectric nanocomposites and its high-voltage applications

Show Author's information Xuhua Guo1,2,§Jianwei He1,§Yang Zheng1Junpeng Wu1Caofeng Pan2( )Yunlong Zi3( )Hongzhi Cui1( )Xiaoyi Li1,4( )
College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
Sustainable Energy and Environment Thrust, Hong Kong University of Science and Technology, Guangzhou 510000, China
Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China

§ Xuhua Guo and Jianwei He contributed equally to this work.

Abstract

With the growing economy and technology, disease prevention and individual health are becoming more and more important. It is highly urgent to develop a non-toxic, self-powered, and safe high-voltage power source to prevent diseases spread by mosquitoes, especially in isolated or remote areas. Herein, we reported a high-performance rotary triboelectric nanogenerator (R-TENG) based on customized theoretical simulations and a ferroelectric nanocomposite intermediate layer. The customized theoretical simulations based on gradient electrode gaps were established to optimize gap angles and segment numbers of the electrodes, which could prevent air breakdown and enhance the R-TENG output energy by at least 1.5 times. Meanwhile, the electrical output performance of the TENG was further enhanced with a highly oriented BaTiO3 (BTO) nanoparticles intermediate layer by about 2.5 times. The open-circuit voltage of R-TENG reached more than 6 kV and could continuously light 3420 light-emitting devices (LEDs) or 4 serially connected 36 W household fluorescent lamps. Therefore, a self-powered high-voltage disease prevention system is developed based on the high-performance R-TENG to reduce the risk of disease transmission. This work provides a prospective strategy for the further development of TENGs and expands practical applications of self-powered and high-voltage systems.

Keywords: triboelectric nanogenerator, air-breakdown, theoretical analysis, ferroelectric nanocomposite, high-voltage applications

References(67)

[1]

Cirimotich, C. M.; Dong, Y.; Clayton, A. M.; Sandiford, S. L.; Souza-Neto, J. A.; Mulenga, M.; Dimopoulos, G. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 2011, 332, 855–858.

[2]

Chan, M. Yellow fever: The resurgence of a forgotten disease. Lancet 2016, 387, 2165–2166.

[3]

Benelli, G.; Romano, D. Mosquito vectors of Zika virus. Entomologia Generalis 2017, 36, 309–318.

[4]

Song, L.; Zhou, B.; Zhu, H.; Duan, Q. Outdoor electric mosquito-killing apparatuses for malaria control in a hyperendemic area. Clin. Infect Dis. 2009, 49, 480.

[5]

Kim, K.-H.; Kabir, E.; Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535.

[6]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[7]

Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[8]

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

[9]

Jin, L.; Zhang, B. B.; Zhang, L.; Yang, W. Q. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy 2019, 66, 104086.

[10]

Wu, Z. Y.; Cheng, T. H.; Wang, Z. L. Self-powered sensors and systems based on nanogenerators. Sensors 2020, 20, 2925.

[11]

Pu, X.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as wearable power sources and self-powered sensors. Natl. Sci. Rev. 2023, 10, nwac170.

[12]

Liu, L.; Zhou, L.; Liu, D.; Yuan, W.; Chen, S.; Li, H.; Bian, Z.; Wang, J.; Wang, Z. L. Improved degradation efficiency of Levofloxacin by a self-powered electrochemical system with pulsed direct-current. ACS Nano 2021, 15, 5478–5485.

[13]

Long, Y.; Yu, Y.; Yin, X.; Li, J.; Du, X.; Jiang, Y.; Wang, X. Effective anti-biofouling enabled by surface electric disturbance from water wave-driven nanogenerator. Nano Energy 2019, 57, 558–565.

[14]

Luo, J. J.; Han, K.; Wu, X. Q.; Cai, H. H.; Jiang, T.; Zhou, H. B.; Wang, Z. L. Self-powered mobile sterilization and infection control system. Nano Energy 2021, 88, 106313.

[15]

Zhao, T.; Xu, M.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199.

[16]

Yuan, Z. Q.; Wang, C. F.; Xi, J. G.; Han, X.; Li, J.; Han, S.-T.; Gao, W. C.; Pan, C. F. Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 2021, 6, 2809–2816.

[17]

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

[18]

Tang, S.; Chang, W. X.; Li, G.; Sun, J. F.; Du, Y.; Hui, X. D.; Tang, Q.; Hu, Z. H.; Li, J. Q.; Chen, J.; et al. High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy. Nano Res 2023, 16, 6933–6939.

[19]

Wang, S. H.; Xie, Y.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

[20]

Li, S. Y.; Fan, Y.; Chen, H. Q.; Nie, J. H.; Liang, Y. X.; Tao, X. L.; Zhang, J.; Chen, X. Y.; Fu, E. G.; Wang, Z. L. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 2020, 13, 896–907.

[21]

Fan, Y.; Li, S. Y.; Tao, X. L.; Wang, Y. F.; Liu, Z. Q.; Chen, H. Q.; Wu, Z. F.; Zhang, J.; Ren, F.; Chen, X. Y.; et al. Negative triboelectric polymers with ultrahigh charge density induced by ion implantation. Nano Energy 2021, 90, 106574.

[22]

Seung, W.; Yoon, H.-J.; Kim, T. Y.; Ryu, H.; Kim, J.; Lee, J.-H.; Lee, J. H.; Kim, S.; Park, Y. K.; Park, Y. J.; et al. Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 2017, 7, 1600988.

[23]

Liu, Y. H.; Mo, J. L.; Fu, Q.; Lu, Y. X.; Zhang, N.; Wang, S. F.; Nie, S. X. Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 2020, 30, 2004714.

[24]

Wu, Y.; Wang, X. T.; Wang, Y. Q.; Nan, Y. B.; Xu, H.; Zhou, H.; Ren, M. P.; Duan, J. Z.; Huang, Y. L.; Hou, B. R. Enhancing the performance of triboelectric nanogenerator via facile PDMS surface modification. Adv. Eng. Mater. 2023, 2201442.

[25]

Cheng, G.; Zheng, L.; Lin, Z. H.; Yang, J.; Du, Z. L.; Wang, Z. L. Multilayered-electrode-based triboelectric nanogenerators with managed output voltage and multifold enhanced charge transport. Adv. Energy Mater. 2014, 5, 1401452.

[26]

Chun, J. S.; Ye, B. U.; Lee, J. W.; Choi, D.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 2016, 7, 12985.

[27]

Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient nlue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

[28]

Bai, Y.; Xu, L.; Lin, S. Q.; Luo, J. J.; Qin, H. F.; Han, K.; Wang, Z. L. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 2000605.

[29]

Li, G.; Fu, S. K.; Luo, C. Y.; Wang, P.; Du, Y.; Tang, Y. T.; Wang, Z.; He, W. C.; Liu, W. L.; Guo, H. Y.; et al. Constructing high output performance triboelectric nanogenerator via V-shape stack and self-charge excitation. Nano Energy 2022, 96, 107068.

[30]

Jiang, H. X.; Lei, H.; Wen, Z.; Shi, J. H.; Bao, D. Q.; Chen, C.; Jiang, J. X.; Guan, Q. B.; Sun, X. H.; Lee, S. T. Charge-trapping-blocking layer for enhanced triboelectric nanogenerators. Nano Energy 2020, 75, 105011.

[31]

Feng, Y.; Zheng, Y.; Zhang, G.; Wang, D.; Zhou, F.; Liu, W. A new protocol toward high output TENG with polyimide as charge storage layer. Nano Energy 2017, 38, 467–476.

[32]

Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.

[33]

Liu, Y.; Liu, W.; Wang, Z.; He, W.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H.; Hu, C. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 2020, 11, 1599.

[34]

Park, Y.; Shin, Y.-E.; Park, J.; Lee, Y. Ferroelectric multilayer nanocomposites with polarization and stress concentration structures for enhanced triboelectric performances. ACS Nano 2020, 14, 7101–7110.

[35]

Li, H. Y.; Su, L.; Kuang, S. Y. ; Fan, Y. J.; Wu, Y.; Wang, Z. L.; Zhu, G. Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity. Nano Res 2017, 10, 785–793.

[36]

Fu, J. J.; Xia, X.; Xu, G. Q.; Li, X. Y.; Zi, Y. L. On the maximal output energy density of nanogenerators. ACS Nano 2019, 13, 13257–13263.

[37]

Zi, Y. L.; Wu, C. S.; Ding, W. B.; Wang, Z. L. Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 2017, 27, 1700049.

[38]

Xie, X. K.; Chen, X. P.; Zhao, C.; Liu, Y. N.; Sun, X. H.; Zhao, C. Z.; Wen, Z. Intermediate layer for enhanced triboelectric nanogenerator. Nano Energy 2021, 79, 105439.

[39]

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

[40]

Fu, X. P.; Xu, S. H.; Gao, Y. Y.; Zhang, X. H.; Liu, G. X.; Zhou, H.; Lv, Y.; Zhang, C.; Wang, Z. L. Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification. ACS Energy Lett. 2021, 6, 2343–2350.

[41]

Li, Y. H.; Yu, J.; Wei, Y. C.; Wang, Y. F.; Feng, Z. Y.; Cheng, L. Q.; Huo, Z. W.; Lei, Y. Q.; Sun, Q. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23, 1329.

[42]

Wu, C. X.; Kim, T. W.; Park, J. H.; An, H. Q.; Shao, J. J.; Chen, X. Y.; Wang, Z. L. Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers. ACS Nano 2017, 11, 8356–8363.

[43]

Kim, D. W.; Lee, J. H.; You, I.; Kim, J. K.; Jeong, U. Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators. Nano Energy 2018, 50, 192–200.

[44]

Firdous, I.; Fahim, M.; Daoud, W. A. Performance enhancement of triboelectric nanogenerator through hole and electron blocking layers-based interfacial design. Nano Energy 2021, 82, 105694.

[45]

Tao, X. L.; Li, S. Y.; Shi, Y. X.; Wang, X. L.; Tian, J. W.; Liu, Z. Q.; Yang, P.; Chen, X. Y.; Wang, Z. L. Triboelectric polymer with high thermal charge stability for harvesting energy from 200 °C flowing air. Adv. Funct. Mater. 2021, 31, 2106082.

[46]

Pandey, P.; Jung, D. H.; Choi, G. J.; Seo, M. K.; Lee, S.; Kim, J. M.; Park, I. K.; Sohn, J. I. Nafion-mediated barium titanate-polymer composite nanofibers-based triboelectric nanogenerator for self-powered smart street and home control system. Nano Energy 2023, 107, 108134.

[47]

Shin, S. H.; Kim, Y. H.; Lee, M. H.; Jung, J. Y.; Nah, J. Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 2014, 8, 2766–2773.

[48]

Suo, G. Q.; Yu, Y. H.; Zhang, Z. Y.; Wang, S. F.; Zhao, P.; Li, J. Y.; Wang, X. D. Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl. Mater. Interfaces 2016, 8, 34335–34341.

[49]

Oh, H.; Kwak, S. S.; Kim, B.; Han, E.; Lim, G. H.; Kim, S. W.; Lim, B. Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1904066.

[50]

Li, X. Y.; Chen, M. X.; Yu, R. M.; Zhang, T. P.; Song, D. S.; Liang, R. R.; Zhang, Q. L.; Cheng, S. B.; Dong, L.; Pan, A. L.; et al. Enhancing light emission of ZnO-nanofilm/Si-micropillar heterostructure arrays by piezo-phototronic effect. Adv. Mater. 2015, 27, 4447–4453.

[51]

Ali, D.; Yu, B.; Duan, X. C.; Yu, H.; Zhu, M. F. Enhancement of output performance through post-poling technique on BaTiO3/PDMS-based triboelectric nanogenerator. Nanotechnology 2017, 28, 075203.

[52]

Chai, B.; Shi, K. M.; Zou, H. Y.; Jiang, P. K.; Wu, Z. X.; Huang, X. Y. Conductive interlayer modulated ferroelectric nanocomposites for high performance triboelectric nanogenerator. Nano Energy 2022, 91, 106668.

[53]

Li, Z. H.; Wang, X. L.; Hu, Y. Q.; Li, L. Z.; Wang, C. F. Triboelectric properties of BaTiO3/polyimide nanocomposite film. Appl. Surf. Sci. 2022, 572, 151391.

[54]

Wang, J. Q.; Zi, Y. L.; Li, S. Y.; Chen, X. Y. High-voltage applications of the triboelectric nanogenerator—Opportunities brought by the unique energy technology. MRS Energy & Sustainability 2020, 6, e17.

[55]

Li, C. J.; Yin, Y. Y.; Wang, B.; Zhou, T.; Wang, J. N.; Luo, J. J.; Tang, W.; Cao, R.; Yuan, Z. Q.; Li, N. W.; et al. Self-powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano 2017, 11, 10439–10445.

[56]

Cho, S. M.; Hanif, Z.; Yun, Y.; Khan, Z. A.; Jang, S.; Ra, Y.; Lin, Z. H.; La, M.; Park, S. J.; Choi, D. Triboelectrification-driven microbial inactivation in a conductive cellulose filter for affordable, portable, and efficient water sterilization. Nano Energy 2021, 88, 106228.

[57]

Cai, C. C.; Luo, B.; Liu, T.; Gao, C.; Zhang, W. L.; Chi, M. C.; Meng, X. J.; Nie, S. X. Triboelectric pulsed direct current for self-powered sterilization of cellulose fiber. Cellulose 2022, 29, 7139–7149.

[58]

Tian, J. J.; Feng, H.; Yan, L.; Yu, M.; Ou Yang, H.; Li, H.; Jiang, W.; Jin, Y. M.; Zhu, G.; Li, Z.; et al. A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy 2017, 36, 241–249.

[59]

Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

[60]

Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2014, 8, 722–730.

[61]

Bi, M. Z.; Wang, S. W.; Wang, X. F.; Ye, X. Y. Freestanding-electret rotary generator at an average conversion efficiency of 56%: Theoretical and experimental studies. Nano Energy 2017, 41, 434–442.

[62]

Wu, C. S.; Tetik, H.; Cheng, J.; Ding, W. B.; Guo, H. Y.; Tao, X. T.; Zhou, N. J.; Zi, Y. L.; Wu, Z. Y.; Wu, H. X.; et al. Electrohydrodynamic jet printing driven by a triboelectric nanogenerator. Adv. Funct. Mater. 2019, 29, 1901102.

[63]

Wu, Z. B.; Bi, M. Z.; Cao, Z. Y.; Wang, S. W.; Ye, X. Y. Largely enhanced electrostatic generator based on a bipolar electret charged by patterned contact micro-discharge and optimized substrates. Nano Energy 2020, 71, 104602.

[64]

Jin, X.; Yuan, Z. H.; Shi, Y. P.; Sun, Y. G.; Li, R. N.; Chen, J. H.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Triboelectric nanogenerator based on a rotational magnetic ball for harvesting transmission line magnetic energy. Adv. Funct. Mater. 2021, 32, 2108827.

[65]

Han, K.; Luo, J.; Chen, J.; Chen, B.; Xu, L.; Feng, Y.; Tang, W.; Wang, Z. L. Self-powered ammonia synthesis under ambient conditions via N2 discharge driven by Tesla turbine triboelectric nanogenerators. Microsyst Nanoeng 2021, 7, 7.

[66]

Wang, Y. Q.; Liu, X. Z.; Zheng, Z. H.; Yin, Y. J.; Wang, X. F.; You, Z. Numerical analysis and structural optimization of cylindrical grating-structured triboelectric nanogenerator. Nano Energy 2021, 90, 106570.

[67]

Kim, J.; Cho, H.; Han, M.; Jung, Y.; Kwak, S. S.; Yoon, H. J.; Park, B.; Kim, H.; Kim, H.; Park, J.; et al. Ultrahigh power output from triboelectric nanogenerator based on serrated electrode via spark discharge. Adv. Energy Mater. 2020, 10, 2002312.

Video
0074_Movie_ESM1.mp4
0074_Movie_ESM2.mp4
0074_Movie_ESM3.mp4
0074_Movie_ESM4.mp4
0074_Movie_ESM5.mp4
0074_Movie_ESM6.mp4
0074_Movie_ESM7.mp4
File
0074_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 December 2022
Revised: 16 April 2023
Accepted: 21 April 2023
Published: 23 May 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The research is supported by the National Natural Science Foundation of China (Nos. 52101390, 52125205, U20A20166, 61805015, and 61804011), Natural Science Foundation of Shandong Province, China (No. ZR2021QE043), Fundamental Research Funds for the Central Universities, China (No. 202112011), Open Project of Key Lab of Special Functional Materials of Ministry of Education, Henan University (No. KFKT-2022-11), Natural Science Foundation of Beijing Municipality (No. Z180011), and Joint Funds of National Natural Science Foundation of China (No. U2106216). The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return