Journal Home > Volume 2 , Issue 3

All-inorganic CsPbI3–xBrx perovskite solar cells (PSCs) are advantageous in terms of high thermal stability, while its efficiency lags behind those of organic-inorganic hybrid perovskite counterparts. Defect passivations have been extensively applied for enhancing efficiency of all-inorganic PSCs, which are mainly based on univocal defect passivation of perovskite layer. Herein, we incorporated a bis-dimethylamino-functionalized fullerene derivative (abbreviated as PCBDMAM) as an interlayer between ZnO electron transport layer (ETL) and all-inorganic CsPbI2.25Br0.75 perovskite layer, accomplishing synchronous defect passivations of both layers and consequently dramatic enhancements of efficiency and thermal stability of PSC devices. Upon spin-coating PCBDMAM onto ZnO ETL, the surface defects of ZnO especially oxygen vacancies can be effectively passivated due to the formation of Zn−N ionic bonds. In addition, PCBDMAM incorporation affords effective passivation of PbI and IPb antisite defects within the atop perovskite layer as well via coordination bonding with Pb2+. As a result, the regular-structure planar CsPbI2.25Br0.75 PSC device delivers a champion power conversion efficiency (PCE) of 17.04%, which surpasses that of the control device (15.44%). Moreover, the PCBDMAM-incorporated PSC device maintains ~ 80% of its initial PCE after 600 h heating at 85 °C hot plate in N2 atmosphere, whereas PCE of the control device degrades rapidly to ~ 62% after 460 h heating under identical conditions. Hence, PCBDMAM incorporation benefited dramatic improvement of the thermal stability of PSC device.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synchronous defect passivation of all-inorganic perovskite solar cells enabled by fullerene interlayer

Show Author's information Yanbo Shang1Pu Wang1Lingbo Jia1Xingcheng Li1Weitao Lian1Peisen Qian1Muqing Chen2Tao Chen1Yalin Lu1Shangfeng Yang1( )
CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China

Abstract

All-inorganic CsPbI3–xBrx perovskite solar cells (PSCs) are advantageous in terms of high thermal stability, while its efficiency lags behind those of organic-inorganic hybrid perovskite counterparts. Defect passivations have been extensively applied for enhancing efficiency of all-inorganic PSCs, which are mainly based on univocal defect passivation of perovskite layer. Herein, we incorporated a bis-dimethylamino-functionalized fullerene derivative (abbreviated as PCBDMAM) as an interlayer between ZnO electron transport layer (ETL) and all-inorganic CsPbI2.25Br0.75 perovskite layer, accomplishing synchronous defect passivations of both layers and consequently dramatic enhancements of efficiency and thermal stability of PSC devices. Upon spin-coating PCBDMAM onto ZnO ETL, the surface defects of ZnO especially oxygen vacancies can be effectively passivated due to the formation of Zn−N ionic bonds. In addition, PCBDMAM incorporation affords effective passivation of PbI and IPb antisite defects within the atop perovskite layer as well via coordination bonding with Pb2+. As a result, the regular-structure planar CsPbI2.25Br0.75 PSC device delivers a champion power conversion efficiency (PCE) of 17.04%, which surpasses that of the control device (15.44%). Moreover, the PCBDMAM-incorporated PSC device maintains ~ 80% of its initial PCE after 600 h heating at 85 °C hot plate in N2 atmosphere, whereas PCE of the control device degrades rapidly to ~ 62% after 460 h heating under identical conditions. Hence, PCBDMAM incorporation benefited dramatic improvement of the thermal stability of PSC device.

Keywords: thermal stability, electron transport layer, all-inorganic perovskite solar cells, defect passivation, fullerene derivative

References(46)

[1]
https://www.nrel.gov/pv/cell-efficiency.html (Accessed Feb. 3, 2023).
[2]

Ava, T. T.; Al Mamun, A.; Marsillac, S.; Namkoong, G. A review: Thermal stability of methylammonium lead halide based perovskite solar cells. Appl. Sci. 2019, 9, 188.

[3]

Philippe, B.; Park, B. W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—A photoelectron spectroscopy investigation. Chem. Mater. 2015, 27, 1720–1731.

[4]

Jia, X.; Zuo, C. T.; Tao, S. X.; Sun, K.; Zhao, Y. X.; Yang, S. F.; Cheng, M.; Wang, M. K.; Yuan, Y. B.; Yang, J. L. et al. CsPb(IxBr1–x)3 solar cells. Sci. Bull. 2019, 64, 1532–1539.

[5]

Rong, Y. G.; Hu, Y.; Mei, A. Y.; Tan, H. R.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. W. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235.

[6]

Wu, X.; Ma, J. J.; Qin, M. C.; Guo, X. L.; Li, Y. H.; Qin, Z. T.; Xu, J. B.; Lu, X. H. Control over light soaking effect in all-inorganic perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2101287.

[7]

Mali, S. S.; Patil, J. V.; Rondiya, S. R.; Dzade, N. Y.; Steele, J. A.; Nazeeruddin, M. K.; Patil, P. S.; Hong, C. K. Terbium-doped and dual-passivated γ-CsPb(I1–xBrx)3 inorganic perovskite solar cells with improved air thermal stability and high efficiency. Adv. Mater. 2022, 34, 2203204.

[8]

Fang, Z. M.; Meng, X. Y.; Zuo, C. T.; Li, D.; Xiao, Z.; Yi, C. Y.; Wang, M. K.; Jin, Z. W.; Yang, S. F.; Ding, L. M. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci. Bull. 2019, 64, 1743–1746.

[9]

Wang, Y.; Zhang, T. Y.; Kan, M.; Zhao, Y. X. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 2018, 140, 12345–12348.

[10]

Wang, J.; Zhang, J.; Zhou, Y. Z.; Liu, H. B.; Xue, Q. F.; Li, X. S.; Chueh, C. C.; Yip, H. L.; Zhu, Z. L.; Jen, A. K. Y. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 2020, 11, 177.

[11]

Tian, J. J.; Xue, Q. F.; Tang, X. F.; Chen, Y. X.; Li, N.; Hu, Z. C.; Shi, T. T.; Wang, X.; Huang, F.; Brabec, C. J. et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 2019, 31, 1901152.

[12]

Zhao, H.; Yang, S. M.; Han, Y.; Yuan, S. H.; Jiang, H.; Duan, C. Y.; Liu, Z. K.; Liu, S. Z. A high mobility conjugated polymer enables air and thermally stable CsPbI2Br perovskite solar cells with an efficiency exceeding 15%. Adv. Mater. Technol. 2019, 4, 1900311.

[13]

Yuan, Q.; Tang, X. X.; Shu, Q. W.; Zhu, B. T.; Cai, J. H.; He, Y. P.; Zhou, D. Y.; Feng, L. Double-side healing at CsPbI2Br/ZnO interface by bipyrimidine hydroiodide enables inverted solar cells with enhanced efficiency and stability. Chem. Eng. J. 2022, 435, 134760.

[14]

Ye, Q. F.; Zhao, Y.; Mu, S. Q.; Ma, F.; Gao, F.; Chu, Z. M.; Yin, Z. G.; Gao, P. Q.; Zhang, X. W.; You, J. B. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 2019, 31, 1905143.

[15]

Zheng, Y. F.; Yang, X. Y.; Su, R.; Wu, P.; Gong, Q. H.; Zhu, R. High-performance CsPbIxBr3–x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation. Adv. Funct. Mater. 2020, 30, 2000457.

[16]

Yang, S. M.; Liu, W. D.; Han, Y.; Liu, Z. K.; Zhao, W. J.; Duan, C. Y.; Che, Y. H.; Gu, H. S.; Li, Y. B.; Liu, S. Z. 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability. Adv. Energy Mater. 2020, 10, 2002882.

[17]

Yao, W. L.; Fang, S. Y.; Wang, Y. Y.; Hu, Z. Y.; Huang, L. K.; Liu, X. H.; Jiang, T.; Zhang, J.; Wang, J.; Zhu, Y. J. Suppression of hysteresis in all-inorganic perovskite solar cells by the incorporation of PCBM. Appl. Phys. Lett. 2021, 118, 123502.

[18]

Duan, C. H.; Li, J.; Liu, Z. D.; Wen, Q. Y.; Tang, H. L.; Yan, K. Y. Highly electroluminescent and stable inorganic CsPbI2Br perovskite solar cell enabled by balanced charge transfer. Chem. Eng. J. 2021, 417, 128053.

[19]

Liu, C.; Yang, Y. Z.; Zhang, C. L.; Wu, S. H.; Wei, L. Y.; Guo, F.; Arumugam, G. M.; Hu, J. L.; Liu, X. Y.; Lin, J. et al. Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules. Adv. Mater. 2020, 32, 1907361.

[20]

Liu, C.; Li, W. Z.; Zhang, C. L.; Ma, Y. P.; Fan, J. D.; Mai, Y. H. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828.

[21]

Jia, L. B.; Li, B. R.; Shang, Y. B.; Chen, M. Q.; Wang, G. W.; Yang, S. F. Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells. Org. Electron. 2020, 82, 105726.

[22]

Shang, Y. B.; Fang, Z. M.; Hu, W. P.; Zuo, C. T.; Li, B. R.; Li, X. C.; Wang, M. T.; Ding, L. M.; Yang, S. F. Efficient and photostable CsPbI2Br solar cells realized by adding PMMA. J. Semicond. 2021, 42, 050501.

[23]

Zhou, W. R.; Zhen, J. M.; Liu, Q.; Fang, Z. M.; Li, D.; Zhou, P. C.; Chen, T.; Yang, S. F. Successive surface engineering of TiO2 compact layers via dual modification of fullerene derivatives affording hysteresis-suppressed high-performance perovskite solar cells. J. Mater. Chem. A 2017, 5, 1724–1733.

[24]

Fang, Z. M.; Liu, L.; Zhang, Z. M.; Yang, S. F.; Liu, F. Y.; Liu, M. Z.; Ding, L. M. CsPbI2.25Br0.75 solar cells with 15.9% efficiency. Sci. Bull. 2019, 64, 507–510.

[25]

Wang, H. X. ; Cao, S. L. ; Yang, B. ; Li, H. Y. ; Wang, M. ; Hu, X. F. ; Sun, K. ; Zang, Z. G. NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process. Sol. RRL 2020, 1900363.

[26]

Zuo, L. J.; Gu, Z. W.; Ye, T.; Fu, W. F.; Wu, G.; Li, H. Y.; Chen, H. Z. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 2015, 137, 2674–2679.

[27]

Auret, F. D.; Goodman, S. A.; Hayes, M.; Legodi, M. J.; Van Laarhoven, H. A.; Look, D. C. Electrical characterization of 1.8 MeV proton-bombarded ZnO. Appl. Phys. Lett. 2001, 79, 3074–3076.

[28]

Gai, Y. Q.; Yao, B.; Li, Y. F.; Lu, Y. M.; Shen, D. Z.; Zhang, J. Y.; Zhao, D. X.; Fan, X. W.; Cui, T. Influence of hydrostatic pressure on the native point defects in wurtzite ZnO: Ab initio calculation. Phys. Lett. A 2008, 372, 5077–5082.

[29]

Ke, W. J.; Zhao, D. W.; Xiao, C. X.; Wang, C. L.; Cimaroli, A. J.; Grice, C. R.; Yang, M. J.; Li, Z.; Jiang, C. S.; Al-Jassim, M. et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 14276–14283.

[30]

Li, B. R.; Zhen, J. M.; Wan, Y. Y.; Lei, X. Y.; Liu, Q.; Liu, Y. J.; Jia, L. B.; Wu, X. J.; Zeng, H. L.; Zhang, W. F. et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl. Mater. Interfaces 2018, 10, 32471–32482.

[31]

Xiao, Q.; Tian, J. J.; Xue, Q. F.; Wang, J.; Xiong, B. J.; Han, M. M.; Li, Z.; Zhu, Z. L.; Yip, H. L.; Li, Z. A. Dopant-free squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells. Angew. Chem. , Int. Ed. 2019, 58, 17724–17730.

[32]

Zhang, M. Y.; Chen, Q.; Xue, R. M.; Zhan, Y.; Wang, C.; Lai, J. Q.; Yang, J.; Lin, H. Z.; Yao, J. L.; Li, Y. W. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 2019, 10, 4593.

[33]

Hu, W. P.; Wen, Z. L.; Yu, X.; Qian, P. S.; Lian, W. T.; Li, X. C.; Shang, Y. B.; Wu, X. J.; Chen, T; Lu, Y. L. et al. In situ surface fluorination of TiO2 nanocrystals reinforces interface binding of perovskite layer for highly efficient solar cells with dramatically enhanced ultraviolet-light stability. Adv. Sci. 2021, 8, 2004662.

[34]

Yao, Z.; Xu, Z.; Zhao, W. G.; Zhang, J. R.; Bian, H.; Fang, Y. K.; Yang, Y.; Liu, S. Z. Enhanced efficiency of inorganic CsPbI3–xBrx perovskite solar cell via self-regulation of antisite defects. Adv. Energy Mater. 2021, 11, 2100403.

[35]

Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746–751.

[36]

Li, N.; Zhu, Z. L.; Li, J. W.; Jen, A. K. Y.; Wang, L. D. Inorganic CsPb1–xSnxIBr2 for efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 2018, 8, 1800525.

[37]

Zhou, W. R.; Jia, L. B.; Chen, M. Q.; Li, X. C.; Su, Z. H.; Shang, Y. B.; Jiang, X. F.; Gao, X. Y.; Chen, T.; Wang, M. T. et al. An improbable amino-functionalized fullerene spacer enables 2D/3D hybrid perovskite with enhanced electron transport in solar cells. Adv. Funct. Mater. 2022, 32, 2201374.

[38]

Shang, Y. B.; Li, X. C.; Lian, W. T.; Jiang, X. F.; Wang, X.; Chen, T.; Xiao, Z. G.; Wang, M. T.; Lu, Y. L.; Yang, S. F. Lead acetate as a superior lead source enables highly efficient and stable all-inorganic lead-tin perovskite solar cells. Chem. Eng. J. 2023, 457, 141246.

[39]

Zhen, J. M.; Zhou, W. R.; Chen, M. Q.; Li, B. R.; Jia, L. B.; Wang, M. T.; Yang, S. F. Pyridine-functionalized fullerene additive enabling coordination interactions with CH3NH3PbI3 perovskite towards highly efficient bulk heterojunction solar cells. J. Mater. Chem. A 2019, 7, 2754–2763.

[40]

Luo, Y. X.; Chen, J. D.; Hou, H. Y.; Ye, Y. C.; Shen, K. C.; Lu, L. Y.; Li, Y. Q.; Song, F.; Gao, X. Y.; Tang, J. X. Hierarchically manipulated charge recombination for mitigating energy loss in CsPbI2Br solar cells. ACS Appl. Mater. Interfaces 2020, 12, 41596–41604.

[41]

Hu, W. P.; Zhou, W. R.; Lei, X. Y.; Zhou, P. C.; Zhang, M. M.; Chen, T.; Zeng, H. L.; Zhu, J.; Dai, S. Y.; Yang, S. H. et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater. 2019, 31, 1806095.

[42]

Chen, W. T.; Zhang, S. S.; Liu, Z. H.; Wu, S. H.; Chen, R.; Pan, M.; Yang, Z. C.; Zhu, H. M.; Liu, S. W.; Tang, J. et al. A tailored nickel oxide hole-transporting layer to improve the long-term thermal stability of inorganic perovskite solar cells. Sol. RRL 2019, 3, 1900346.

[43]

Li, Y. W.; Zhao, Y.; Chen, Q.; Yang, Y.; Liu, Y. S.; Hong, Z. R.; Liu, Z. H.; Hsieh, Y. T.; Meng, L.; Li, Y. F. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 15540–15547.

[44]

Yang, J. L.; Siempelkamp, B. D.; Mosconi, E.; De Angelis, F.; Kelly, T. L. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 2015, 27, 4229–4236.

[45]

Shen, E. C.; Chen, J. D.; Tian, Y.; Luo, Y. X.; Shen, Y.; Sun, Q.; Jin, T. Y.; Shi, G. Z.; Li, Y. Q.; Tang, J. X. Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells. Adv. Sci. 2020, 7, 1901952.

[46]

Mali, S. S.; Patil, J. V.; Hong, C. K. Simultaneous improved performance and thermal stability of planar metal ion incorporated CsPbI2Br all-inorganic perovskite solar cells based on MgZnO nanocrystalline electron transporting layer. Adv. Energy Mater. 2020, 10, 1902708.

File
0073_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 February 2023
Revised: 01 April 2023
Accepted: 18 April 2023
Published: 16 May 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Nos. 51925206, U1932214, and 52172053). We acknowledge Xunyun Lei and Prof. Hualin Zeng for help with TRPL measurements.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return