Journal Home > Volume 2 , Issue 3

Interstitial doping has been considered as an effective strategy to passivate and immobilize the ionic defects of metal halide perovskites to enhance performance and stability of perovskite solar cells. However, high dopant dosage causes lattice distortion which results in micro-strain and subsequent phase destabilization. This highlight discusses the latest report regarding optimal interstitial doping with a multivalent alkali metal cation for perovskites and awaiting issues associated with it.


menu
Abstract
Full text
Outline
About this article

Towards the optimal interstitial doping for halide perovskites

Show Author's information Sang-Hyun Chin1Jin-Wook Lee1,2( )
Department of Nano Science and Technology and Department of Nanoengineering, Sungkyunkwan University (SKKU) Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
SKKU Institute of Energy Science & Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Interstitial doping has been considered as an effective strategy to passivate and immobilize the ionic defects of metal halide perovskites to enhance performance and stability of perovskite solar cells. However, high dopant dosage causes lattice distortion which results in micro-strain and subsequent phase destabilization. This highlight discusses the latest report regarding optimal interstitial doping with a multivalent alkali metal cation for perovskites and awaiting issues associated with it.

Keywords: stability, perovskites, solar cells, defect passivation, interstitial doping

References(16)

[1]

Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918.

[2]

Fakharuddin, A.; Gangishetty, M. K.; Abdi-Jalebi, M.; Chin, S. H.; Bin Mohd Yusoff, A. R.; Congreve, D. N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H. J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216.

[3]

Lin, Y. H.; Sakai, N.; Da, P. M.; Wu, J. Y.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J. L.; Oliver, R. D. J.; Lim, J. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102.

[4]

Liu, Z. H.; Qiu, L. B.; Ono, L. K.; He, S. S.; Hu, Z. H.; Jiang, M. W.; Tong, G. Q.; Wu, Z. F.; Jiang, Y.; Son, D. Y. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability. Nat. Energy 2020, 5, 596–604.

[5]

Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; García De Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.

[6]

Yuan, Y. B.; Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286–293.

[7]

Tabassum, M.; Zia, Q.; Zhou, Y. F.; Reece, M. J.; Su, L. A review on advances in doping with alkali metals in halide perovskite materials. SN Appl. Sci. 2021, 3, 888.

[8]

Lee, J. W.; Tan, S.; Seok, S. I.; Yang, Y.; Park, N. G. Rethinking the A cation in halide perovskites. Science 2022, 375, eabj1186.

[9]

Son, D. Y.; Kim, S. G.; Seo, J. Y.; Lee, S. H.; Shin, H.; Lee, D.; Park, N. G. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 2018, 140, 1358–1364.

[10]

Cao, J.; Tao, S. X.; Bobbert, P. A.; Wong, C. P.; Zhao, N. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 2018, 30, 1707350.

[11]

Fang, Z. S.; He, H. P.; Gan, L.; Li, J.; Ye, Z. Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv. Sci. 2018, 5, 1800736.

[12]

Yang, B. W.; Bogachuk, D.; Suo, J. J.; Wagner, L.; Kim, H.; Lim, J.; Hinsch, A.; Boschloo, G.; Nazeeruddin, M. K.; Hagfeldt, A. Strain effects on halide perovskite solar cells. Chem. Soc. Rev. 2022, 51, 7509–7530.

[13]

Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.

[14]

Jones, T. W.; Osherov, A.; Alsari, M.; Sponseller, M.; Duck, B. C.; Jung, Y. K.; Settens, C.; Niroui, F.; Brenes, R.; Stan, C. V. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 2019, 12, 596–606.

[15]

Zhao, J. J.; Deng, Y. H.; Wei, H. T.; Zheng, X. P.; Yu, Z. H.; Shao, Y. C.; Shield, J. E.; Huang, J. S. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, eaao5616.

[16]

Zhao, Y. P.; Yavuz, I.; Wang, M. H.; Weber, M. H.; Xu, M. J.; Lee, J. H.; Tan, S.; Huang, T. Y.; Meng, D.; Wang, R. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 2022, 21, 1396–1402.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 March 2023
Accepted: 07 April 2023
Published: 18 May 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency for Defense Development (ADD), funded by the Defense Acquisition Program Administration (DAPA) in 2022 (No. UI220006TD).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return