Journal Home > Volume 2 , Issue 3

Imposing phase engineering to porous materials is promising to realize outperforming electrocatalytic performances by taking advantages of the merits of porous nanoarchitecture and heterophase structure. In this work, amorphous/crystalline ruthenium oxide (RuO2) porous particles with rationally regulated heterophases are successfully prepared by integrating the phase engineering into the porous material synthesis. The resultant defect-rich amorphous/crystalline RuO2 porous particles exhibit excellent electrocatalytic performance toward the oxygen evolution reaction, achieving a low overpotential of 165 mV at a current density of 10 mA·cm−2 and a high mass activity up to 133.8 mA·cm−2 at a low overpotential of 200 mV. This work indicates that the synergistic effect of amorphous/crystalline heterophase and porous structural characteristics enables RuO2 to trigger a superior electrocatalytic activity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phase engineering oriented defect-rich amorphous/crystalline RuO2 nanoporous particles for boosting oxygen evolution reaction in acid media

Show Author's information Chengming Wang1Qinghong Geng1Longlong Fan1Jun-Xuan Li1Lian Ma1Cuiling Li1,2,3( )
Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Binzhou Institute of Technology, Binzhou 256600, China

Abstract

Imposing phase engineering to porous materials is promising to realize outperforming electrocatalytic performances by taking advantages of the merits of porous nanoarchitecture and heterophase structure. In this work, amorphous/crystalline ruthenium oxide (RuO2) porous particles with rationally regulated heterophases are successfully prepared by integrating the phase engineering into the porous material synthesis. The resultant defect-rich amorphous/crystalline RuO2 porous particles exhibit excellent electrocatalytic performance toward the oxygen evolution reaction, achieving a low overpotential of 165 mV at a current density of 10 mA·cm−2 and a high mass activity up to 133.8 mA·cm−2 at a low overpotential of 200 mV. This work indicates that the synergistic effect of amorphous/crystalline heterophase and porous structural characteristics enables RuO2 to trigger a superior electrocatalytic activity.

Keywords: electrocatalysis, porous material, oxygen evolution reaction (OER), phase engineering, ruthenium oxide (RuO2)

References(62)

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

[3]

Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492–517.

[4]

Cheng, Z. H.; Fu, Q.; Han, Q.; Xiao, Y. K.; Liang, Y.; Zhao, Y.; Qu, L. T. A type of 1 nm molybdenum carbide confined within carbon nanomesh as highly efficient bifunctional electrocatalyst. Adv. Funct. Mater. 2018, 28, 1705967.

[5]

Peng, W. F.; Deshmukh, A.; Chen, N.; Lv, Z. X.; Zhao, S. J.; Li, J.; Yan, B. M.; Gao, X.; Shang, L.; Gong, Y. T. et al. Deciphering the dynamic structure evolution of Fe- and Ni-codoped CoS2 for enhanced water oxidation. ACS Catal. 2022, 12, 3743–3751.

[6]

Chen, S. M.; Ma, L. T.; Huang, Z. D.; Liang, G. J.; Zhi, C. Y. In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts. Cell Rep. Phys. Sci. 2022, 3, 100729.

[7]

Cao, X. J.; Huo, J. J.; Li, L.; Qu, J. P.; Zhao, Y. F.; Chen, W. H.; Liu, C. T.; Liu, H.; Wang, G. X. Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions. Adv. Energy Mater. 2022, 12, 2202119.

[8]

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

[9]

Xie, M. W.; Xiong, X. L.; Yang, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. An Fe(TCNQ)2 nanowire array on Fe foil: An efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chem. Commun. 2018, 54, 2300–2303.

[10]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[11]

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

[12]

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

[13]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[14]

Chen, H.; Shi, L.; Liang, X.; Wang, L. N.; Asefa, T.; Zou, X. X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts. Angew. Chem., Int. Ed. 2020, 59, 19654–19658.

[15]

Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

[16]

Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.

[17]

Yu, T. Q.; Xu, Q. L.; Qian, G. F.; Chen, J. L.; Zhang, H.; Luo, L.; Yin, S. B. Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustain. Chem. Eng. 2020, 8, 17520–17526.

[18]

Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.

[19]

Huang, H. W.; Kim, H.; Lee, A.; Kim, S.; Lim, W. G.; Park, C. Y.; Kim, S.; Kim, S. K.; Lee, J. Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy 2021, 88, 106276.

[20]

Choi, K. S.; McFarland, E. W.; Stucky, G. D. Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly. Adv. Mater. 2003, 15, 2018–2021.

[21]

Li, C. L.; Jiang, B.; Wang, Z. L.; Li, Y. Q.; Hossain, S. A.; Kim, J. H.; Takei, T.; Henzie, J.; Dag, Ö.; Bando, Y. et al. First synthesis of continuous mesoporous copper films with uniformly sized pores by electrochemical soft templating. Angew. Chem., Int. Ed. 2016, 55, 12746–12750.

[22]

Li, C. L.; Dag, Ö.; Dao, T. D.; Nagao, T.; Sakamoto, Y.; Kimura, T.; Terasaki, O.; Yamauchi, Y. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties. Nat. Commun. 2015, 6, 6608.

[23]

Jiang, B.; Li, C. L.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, S. A.; Islam, T.; Wood, K.; Henzie, J. et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 2017, 8, 15581.

[24]

Li, C. L.; Jiang, B.; Miyamoto, N.; Kim, J. H.; Malgras, V.; Yamauchi, Y. Surfactant-directed synthesis of mesoporous Pd films with perpendicular mesochannels as efficient electrocatalysts. J. Am. Chem. Soc. 2015, 137, 11558–11561.

[25]

Jo, C.; Hwang, J.; Lim, W. G.; Lim, J.; Hur, K.; Lee, J. Multiscale phase separations for hierarchically ordered macro/mesostructured metal oxides. Adv. Mater. 2018, 30, 1703829.

[26]

Du, D. W.; Geng, Q. H.; Ma, L.; Ren, S. Y.; Li, J. X.; Dong, W. K.; Hua, Q. F.; Fan, L. L.; Shao, R. W.; Wang, X. M. et al. Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation. Chem. Sci. 2022, 13, 3819–3825.

[27]

Li, J. X.; Yin, H. X.; Geng, Q. H.; Du, D. W.; Ma, L. A.; Fan, L. L.; Hua, Q. F.; Li, C. L. Nanoporous trimetallic PdCuAg alloys as efficient electrocatalysts by all-direction accessibility and synergetic effects. J. Mater. Chem. A 2022, 10, 6569–6575.

[28]

Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 2015, 137, 14834–14837.

[29]

McCoy, D. E.; Feo, T.; Harvey, T. A.; Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 2018, 9, 1.

[30]

Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.

[31]

Yonemoto, B. T.; Hutchings, G. S.; Jiao, F. A general synthetic approach for ordered mesoporous metal sulfides. J. Am. Chem. Soc. 2014, 136, 8895–8898.

[32]

He, R. Z.; Wang, C. Y.; Feng, L. G. Amorphous FeCoNi-S as efficient bifunctional electrocatalysts for overall water splitting reaction. Chin. Chem. Lett. 2023, 34, 107241.

[33]

Wang, X.; Xing, C. C.; Liang, Z. F.; Guardia, P.; Han, X.; Zuo, Y.; Llorca, J.; Arbiol, J.; Li, J. S.; Cabot, A. Activating the lattice oxygen oxidation mechanism in amorphous molybdenum cobalt oxide nanosheets for water oxidation. J. Mater. Chem. A 2022, 10, 3659–3666.

[34]

Zhou, B. H.; Gao, R. J.; Zou, J. J.; Yang, H. M. Surface design strategy of catalysts for water electrolysis. Small 2022, 18, 2202336.

[35]

Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.

[36]

Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

[37]

Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K.; Yin, S. Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photocatalytic hydrogen evolution performance of graphitic carbon nitride: Efficient interfacial charge transfer. ACS Appl. Mater. Interfaces 2019, 11, 26898–26908.

[38]

Wang, J.; Hu, J.; Niu, S. Q.; Li, S. W.; Du, Y. C.; Xu, P. Crystalline-amorphous Ni2P4O12/NiMoOx nanoarrays for alkaline water electrolysis: Enhanced catalytic activity via in situ surface reconstruction. Small 2022, 18, 2105972.

[39]

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

[40]

Liang, Y. X.; Sun, Y. J.; Wang, X. Y.; Fu, E. G.; Zhang, J.; Du, J. L.; Wen, X. D.; Guo, S. J. High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate. Nanoscale 2018, 10, 11357–11364.

[41]

Cheng, H. F.; Yang, N. L.; Liu, X. Z.; Yun, Q. B.; Goh, M. H.; Chen, B.; Qi, X. Y.; Lu, Q. P.; Chen, X. P.; Liu, W. et al. Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. Natl. Sci. Rev. 2019, 6, 955–961.

[42]

Gao, F.; Zhang, Y. P.; You, H. M.; Li, Z. L.; Zou, B.; Du, Y. K. Solvent-mediated shell dimension reconstruction of core@shell PdAu@Pd nanocrystals for robust C1 and C2 alcohol electrocatalysis. Small 2021, 17, 2101428.

[43]

Xu, X. J.; Hou, X. B.; Du, P. Y.; Zhang, C. H.; Zhang, S. C.; Wang, H. L.; Toghan, A.; Huang, M. H. Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Res. 2022, 15, 7124–7133.

[44]

Zhang, Y. P.; Gao, F.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K. Engineering spiny PtFePd@PtFe/Pt core@multishell nanowires with enhanced performance for alcohol electrooxidation. ACS Appl. Mater. Interfaces 2019, 11, 30880–30886.

[45]

Sa, Y. J.; Seo, D. J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S. et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056.

[46]

Zhang, X.; Zhao, Y. F.; Jia, X. D.; Zhao, Y. X.; Shang, L.; Wang, Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Silica-protected ultrathin Ni3FeN nanocatalyst for the efficient hydrolytic dehydrogenation of NH3BH3. Adv. Energy Mater. 2018, 8, 1702780.

[47]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[48]

Kang, X. C.; Liu, H. Z.; Hou, M. Q.; Sun, X. F.; Han, H. L.; Jiang, T.; Zhang, Z. F.; Han, B. X. Synthesis of supported ultrafine non-noble subnanometer-scale metal particles derived from metal-organic frameworks as highly efficient heterogeneous catalysts. Angew. Chem., Int. Ed. 2016, 55, 1080–1084.

[49]

Malonzo, C. D.; Shaker, S. M.; Ren, L. M.; Prinslow, S. D.; Platero-Prats, A. E.; Gallington, L. C.; Borycz, J.; Thompson, A. B.; Wang, T. C.; Farha, O. K. et al. Thermal stabilization of metal-organic framework-derived single-site catalytic clusters through nanocasting. J. Am. Chem. Soc. 2016, 138, 2739–2748.

[50]

Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

[51]

Zhang, Y. P.; Gao, F.; Wang, D. Q.; Li, Z. L.; Wang, X. M.; Wang, C. Q.; Zhang, K. W.; Du, Y. K. Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting. Coord. Chem. Rev. 2023, 475, 214916.

[52]

Zhang, Y. P.; Li, Z. L.; Zhang, K. W.; Wu, Z. Y.; Gao, F.; Du, Y. K. Heterogeneous interface engineering for boosting electron transfer induced by MOF-derived yolk-shell trimetallic phosphide nanospindles for robust water oxidation electrocatalysis. Appl. Surf. Sci. 2022, 590, 153102.

[53]

Hong, H.; Liu, J. L.; Huang, H. W.; Atangana Etogo, C.; Yang, X. F.; Guan, B. Y.; Zhang, L. Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries. J. Am. Chem. Soc. 2019, 141, 14764–14771.

[54]

Wang, F. L.; Hou, T. T.; Zhao, X.; Yao, W.; Fang, R. Q.; Shen, K.; Li, Y. W. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, 2102690.

[55]

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

[56]

Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O’Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.

[57]

Jang, H.; Jin, W.; Nam, G.; Yoo, Y.; Jeon, J. S.; Park, J.; Kim, M. G.; Cho, J. Exploring the artificially induced nonstoichiometric effect of Li2RuO3 as a reactive promoter on electrocatalytic behavior. Energy Environ. Sci. 2020, 13, 2167–2177.

[58]

Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–13844.

[59]

Zhang, Y. J.; Xu, Z. F.; Li, G. Y.; Huang, X. J.; Hao, W. C.; Bi, Y. P. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 14229–14233.

[60]

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

[61]

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

[62]

Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust ph-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

File
0070_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 March 2023
Revised: 05 April 2023
Accepted: 08 April 2023
Published: 15 May 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors acknowledge the Analysis and Testing Center in Beijing Institute of Technology for technical support.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return