Journal Home > Volume 2 , Issue 3

The performance of perovskite light-emitting diodes (PeLEDs) has been drastically improved recently. Therein, the coexistence of polydisperse perovskite domains has been one worthy subject of study. The crystallization of perovskite is affected by the buried interface character with the bottom contact layer; and the trap states also inherently exist at the buried interface of the perovskite film, which induce the nonradiative recombination and impede the PeLED performance. In this work, we focus on the crystallization modulation of monodisperse perovskite nanodomains toward high-performance PeLEDs. We show that a LiBr pre-modification layer on the bottom substrate induces the formation of monodisperse perovskite phase. In this system, the carrier transferring process deriving from the polydisperse phases is reduced. In addition, the LiBr pre-modification layer at the buried interface minimizes the trap states and enhances the radiative recombination of perovskites. Accordingly, our PeLEDs show a champion external quantum efficiency (EQE) of 25.5% for 4 mm2 device, and 22.9% for 100 mm2 device.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enabling monodisperse perovskite phase with buried interface modification toward efficient light-emitting diodes

Show Author's information Maowei Jiang1,§( )Xiaomeng Zhang1,§Feijiu Wang2( )
Key Laboratory for Special Functional Materials (Ministry of Education of China), National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials Science, Henan University, Kaifeng 475004, China
Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China

§ Maowei Jiang and Xiaomeng Zhang contributed equally to this work.

Abstract

The performance of perovskite light-emitting diodes (PeLEDs) has been drastically improved recently. Therein, the coexistence of polydisperse perovskite domains has been one worthy subject of study. The crystallization of perovskite is affected by the buried interface character with the bottom contact layer; and the trap states also inherently exist at the buried interface of the perovskite film, which induce the nonradiative recombination and impede the PeLED performance. In this work, we focus on the crystallization modulation of monodisperse perovskite nanodomains toward high-performance PeLEDs. We show that a LiBr pre-modification layer on the bottom substrate induces the formation of monodisperse perovskite phase. In this system, the carrier transferring process deriving from the polydisperse phases is reduced. In addition, the LiBr pre-modification layer at the buried interface minimizes the trap states and enhances the radiative recombination of perovskites. Accordingly, our PeLEDs show a champion external quantum efficiency (EQE) of 25.5% for 4 mm2 device, and 22.9% for 100 mm2 device.

Keywords: perovskite light-emitting diode, defect passivation, buried interface, monodisperse phase, large area device

References(58)

[1]

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

[2]

Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

[3]

Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245–248.

[4]

Cao, Y.; Wang, N. N.; Tian, H.; Guo, J. S.; Wei, Y. Q.; Chen, H.; Miao, Y. F.; Zou, W.; Pan, K.; He, Y. R. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253.

[5]

Ma, D. X.; Lin, K. B.; Dong, Y. T.; Choubisa, H.; Proppe, A. H.; Wu, D.; Wang, Y. K.; Chen, B.; Li, P. C.; Fan, J. Z. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 2021, 599, 594–598.

[6]

Jiang, Y. Z.; Sun, C. J.; Xu, J.; Li, S. S.; Cui, M. H.; Fu, X. L.; Liu, Y.; Liu, Y. Q.; Wan, H. Y.; Wei, K. Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 2022, 612, 679–684.

[7]

Kim, J. S.; Heo, J. M.; Park, G. S.; Woo, S. J.; Cho, C.; Yun, H. J.; Kim, D. H.; Park, J.; Lee, S. C.; Park, S. H. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022, 611, 688–694.

[8]

Na Quan, L.; Ma, D. X.; Zhao, Y. B.; Voznyy, O.; Yuan, H. F.; Bladt, E.; Pan, J.; García de Arquer, F. P.; Sabatini, R.; Piontkowski, Z. et al. Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 2020, 11, 170.

[9]

Ban, M. Y.; Zou, Y. T.; Rivett, J. P. H.; Yang, Y. G.; Thomas, T. H.; Tan, Y. S.; Song, T.; Gao, X. Y.; Credgington, D.; Deschler, F. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 2018, 9, 3892.

[10]

Park, M. H.; Park, J.; Lee, J.; So, H. S.; Kim, H.; Jeong, S. H.; Han, T. H.; Wolf, C.; Lee, H.; Yoo, S. et al. Efficient perovskite light-emitting diodes using polycrystalline core-shell-mimicked nanograins. Adv. Funct. Mater. 2019, 29, 1902017.

[11]

Wang, H. R.; Zhang, X. Y.; Wu, Q. Q.; Cao, F.; Yang, D. W.; Shang, Y. Q.; Ning, Z. J.; Zhang, W.; Zheng, W. T.; Yan, Y. F. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 2019, 10, 665.

[12]

Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

[13]

Jiang, M. W.; Hu, Z. H.; Liu, Z. H.; Wu, Z. F.; Ono, L. K.; Qi, Y. B. Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett. 2019, 4, 2731–2738.

[14]

Liu, Y.; Cui, J. Y.; Du, K.; Tian, H.; He, Z. F.; Zhou, Q. H.; Yang, Z. L.; Deng, Y. Z.; Chen, D.; Zuo, X. B. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 2019, 13, 760–764.

[15]

Jiang, Y. Z.; Cui, M. H.; Li, S. S.; Sun, C. J.; Huang, Y. M.; Wei, J. L.; Zhang, L.; Lv, M.; Qin, C. C.; Liu, Y. F. et al. Reducing the impact of auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 336.

[16]

Jiang, M. W.; Hu, Z. H.; Ono, L. K.; Qi, Y. B. CsPbBrxI3–x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 2021, 14, 191–197.

[17]

Xiao, Z. G.; Kerner, R. A.; Tran, N.; Zhao, L. F.; Scholes, G. D.; Rand, B. P. Engineering perovskite nanocrystal surface termination for light-emitting diodes with external quantum efficiency exceeding 15%. Adv. Funct. Mater. 2019, 29, 1807284.

[18]

Meng, F. Y.; Liu, X. Y.; Chen, Y. X.; Cai, X. Y.; Li, M. K.; Shi, T. T.; Chen, Z. M.; Chen, D. C.; Yip, H. L.; Ramanan, C. et al. Co-interlayer engineering toward efficient green quasi-two-dimensional perovskite light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1910167.

[19]

Wang, N. N.; Cheng, L.; Ge, R.; Zhang, S. T.; Miao, Y. F.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 2016, 10, 699–704.

[20]

Kong, L. M.; Zhang, X. Y.; Li, Y. G.; Wang, H. R.; Jiang, Y. Z.; Wang, S.; You, M. Q.; Zhang, C. X.; Zhang, T.; Kershaw, S. V. et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 2021, 12, 1246.

[21]

Jiang, J.; Chu, Z. M.; Yin, Z. G.; Li, J. Z.; Yang, Y. G.; Chen, J. R.; Wu, J. L.; You, J. B.; Zhang, X. W. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv. Mater. 2022, 34, 2204460.

[22]

Zhang, L.; Sun, C. J.; He, T. W.; Jiang, Y. Z.; Wei, J. L.; Huang, Y. M.; Yuan, M. J. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci. Appl. 2021, 10, 61.

[23]

Xing, J.; Zhao, Y. B.; Askerka, M.; Quan, L. N.; Gong, X. W.; Zhao, W. J.; Zhao, J. X.; Tan, H. R.; Long, G. K.; Gao, L. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 2018, 9, 3541.

[24]

Kuang, C. Y.; Hu, Z. J.; Yuan, Z. C.; Wen, K. C.; Qing, J.; Kobera, L.; Abbrent, S.; Brus, J.; Yin, C. Y.; Wang, H. Y. et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 2021, 5, 618–630.

[25]

Zhao, B. D.; Lian, Y. X.; Cui, L. S.; Divitini, G.; Kusch, G.; Ruggeri, E.; Auras, F.; Li, W. W.; Yang, D. X.; Zhu, B. N. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 2020, 3, 704–710.

[26]

Liu, Z. H.; Qiu, L. B.; Ono, L. K.; He, S. S.; Hu, Z. H.; Jiang, M. W.; Tong, G. Q.; Wu, Z. F.; Jiang, Y.; Son, D. Y. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability. Nat. Energy 2020, 5, 596–604.

[27]

Yang, X. L.; Zhang, X. W.; Deng, J. X.; Chu, Z. M.; Jiang, Q.; Meng, J. H.; Wang, P. Y.; Zhang, L. Q.; Yin, Z. G.; You, J. B. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.

[28]

Zhu, C. R.; Yuan, F.; Liu, X. Y.; Li, J. R.; Dong, H.; Zhao, C. J.; Yan, L. H.; Xu, Y. M.; Dai, J. F.; Si, J. H. et al. High triplet energy level molecule enables highly efficient sky-blue perovskite light-emitting diodes. J. Phys. Chem. Lett. 2021, 12, 11723–11729.

[29]

You, M. Q.; Wang, H. R.; Cao, F.; Zhang, C. X.; Zhang, T.; Kong, L. M.; Wang, L.; Zhao, D. W.; Zhang, J. H.; Yang, X. Y. Improving efficiency and stability in quasi-2D perovskite light-emitting diodes by a multifunctional LiF interlayer. ACS Appl. Mater. Interfaces 2020, 12, 43018–43023.

[30]

Xu, L. M.; Li, J. H.; Cai, B.; Song, J. Z.; Zhang, F. J.; Fang, T.; Zeng, H. B. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 2020, 11, 3902.

[31]

Wu, T.; Li, J. N.; Zou, Y. T.; Xu, H.; Wen, K. C.; Wan, S. S.; Bai, S.; Song, T.; McLeod, J. A.; Duhm, S. et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew. Chem., Int. Ed. 2020, 59, 4099–4105.

[32]

Zou, Y. T.; Ban, M. Y.; Yang, Y. G.; Bai, S.; Wu, C.; Han, Y. J.; Wu, T.; Tan, Y. S.; Huang, Q.; Gao, X. Y. et al. Boosting perovskite light-emitting diode performance via tailoring interfacial contact. ACS Appl. Mater. Interfaces 2018, 10, 24320–24326.

[33]

Chu, Z. M.; Ye, Q. F.; Zhao, Y.; Ma, F.; Yin, Z. G.; Zhang, X. W.; You, J. B. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 2021, 33, 2007169.

[34]

Peng, X. F.; Wu, X. Y.; Ji, X. X.; Ren, J.; Wang, Q.; Li, G. Q.; Yang, X. H. Modified conducting polymer hole injection layer for high-efficiency perovskite light-emitting devices: Enhanced hole injection and reduced luminescence quenching. J. Phys. Chem. Lett. 2017, 8, 4691–4697.

[35]

Guo, Y. C.; Zou, B. S.; Yang, F.; Zheng, X.; Peng, H.; Wang, J. P. Dielectric polarization effect and transient relaxation in FAPbBr3 films before and after PMMA passivation. Phys. Chem. Chem. Phys. 2021, 23, 10153–10163.

[36]

Han, D. B.; Imran, M.; Zhang, M. J.; Chang, S.; Wu, X. G.; Zhang, X.; Tang, J. L.; Wang, M. S.; Ali, S.; Li, X. G. et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process. ACS Nano 2018, 12, 8808–8816.

[37]

Si, J. J.; Liu, Y.; He, Z. F.; Du, H.; Du, K.; Chen, D.; Li, J.; Xu, M. M.; Tian, H.; He, H. P. et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 2017, 11, 11100–11107.

[38]

Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.

[39]

Dong, Y. T.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018, 18, 3716–3722.

[40]

Ren, Z. W.; Li, L.; Yu, J. H.; Ma, R. M.; Xiao, X. T.; Chen, R.; Wang, K.; Sun, X. W.; Yin, W. J.; Choy, W. C. H. Simultaneous low-order phase suppression and defect passivation for efficient and stable blue light-emitting diodes. ACS Energy Lett. 2020, 5, 2569–2579.

[41]

Yang, L.; Zhang, Y.; Ma, J. M.; Chen, P.; Yu, Y.; Shao, M. Pure red light-emitting diodes based on quantum confined quasi-two-dimensional perovskites with cospacer cations. ACS Energy Lett. 2021, 6, 2386–2394.

[42]

Wu, Z. F.; Jiang, M. W.; Liu, Z. H.; Jamshaid, A.; Ono, L. K.; Qi, Y. B. Highly efficient perovskite solar cells enabled by multiple ligand passivation. Adv. Energy Mater. 2020, 10, 1903696.

[43]

Jiang, Y. Z.; Qin, C. C.; Cui, M. H.; He, T. W.; Liu, K. K.; Huang, Y. M.; Luo, M. H.; Zhang, L.; Xu, H. Y.; Li, S. S. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 2019, 10, 1868.

[44]

Peng, X. F.; Yang, X. H.; Liu, D. T.; Zhang, T.; Yang, Y.; Qin, C. C.; Wang, F.; Chen, L.; Li, S. B. Targeted distribution of passivator for polycrystalline perovskite light-emitting diodes with high efficiency. ACS Energy Lett. 2021, 6, 4187–4194.

[45]

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

[46]

Zhang, X. M.; Shi, L.; Bai, J. Y.; Wang, F. J.; Jiang, M. W. Heterointerface engineering of perovskite defects and energetics for light-emitting diodes. Nano Res. 2023, 16, 5525–5532.

[47]

Li, M. L.; Zhao, Y. P.; Qin, X. Q.; Ma, Q. S.; Lu, J. X.; Lin, K. B.; Xu, P.; Li, Y. Q.; Feng, W. J.; Zhang, W. H. et al. Conductive phosphine oxide passivator enables efficient perovskite light-emitting diodes. Nano Lett. 2022, 22, 2490–2496.

[48]

Zhao, C. Y.; Wu, W. P.; Zhan, H. M.; Yuan, W.; Li, H. X.; Zhang, D. Z.; Wang, D. P.; Cheng, Y. X.; Shao, S. Y.; Qin, C. J. et al. Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes. Angew. Chem., Int. Ed. 2022, 61, e202117374.

[49]

Lian, Y. X.; Lan, D. C.; Xing, S. Y.; Guo, B. B.; Ren, Z. X.; Lai, R. C.; Zou, C.; Zhao, B. D.; Friend, R. H.; Di, D. W. Ultralow-voltage operation of light-emitting diodes. Nat. Commun. 2022, 13, 3845.

[50]

Lin, X.; Dai, X. L.; Ye, Z. K.; Shu, Y. F.; Song, Z. X.; Peng, X. G. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots. Nano Res. 2022, 15, 9402–9409.

[51]

Warby, J. H.; Wenger, B.; Ramadan, A. J.; Oliver, R. D. J.; Sansom, H. C.; Marshall, A. R.; Snaith, H. J. Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS Nano 2020, 14, 8855–8865.

[52]

Zhang, L.; Yuan, F.; Xi, J.; Jiao, B.; Dong, H.; Li, J. R.; Wu, Z. X. Suppressing ion migration enables stable perovskite light-emitting diodes with all-inorganic strategy. Adv. Funct. Mater. 2020, 30, 2001834.

[53]

Kim, Y. H.; Park, J.; Kim, S.; Kim, J. S.; Xu, H. X.; Jeong, S. H.; Hu, B.; Lee, T. W. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 2022, 17, 590–597.

[54]

Wang, H. R.; Gong, X. W.; Zhao, D. W.; Zhao, Y. B.; Wang, S.; Zhang, J. F.; Kong, L. M.; Wei, B.; Quintero-Bermudez, R.; Voznyy, O. et al. A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 2020, 4, 1977–1987.

[55]

Sun, C. J.; Jiang, Y. Z.; Cui, M. H.; Qiao, L.; Wei, J. L.; Huang, Y. M.; Zhang, L.; He, T. W.; Li, S. S.; Hsu, H. Y. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 2207.

[56]

Kong, L. M.; Sun, C. J.; You, M. Q.; Jiang, Y. Z.; Wang, G. Z.; Wang, L.; Zhang, C. X.; Chen, S.; Wang, S.; Yang, S. A. et al. Universal molecular control strategy for scalable fabrication of perovskite light-emitting diodes. Nano Lett. 2023, 23, 985–992.

[57]

Anaya, M.; Rand, B. P.; Holmes, R. J.; Credgington, D.; Bolink, H. J.; Friend, R. H.; Wang, J. P.; Greenham, N. C.; Stranks, S. D. Best practices for measuring emerging light-emitting diode technologies. Nat. Photonics 2019, 13, 818–821.

[58]

Woo, S. J.; Kim, J. S.; Lee, T. W. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nat. Photonics 2021, 15, 630–634.

File
0069_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 March 2023
Revised: 03 April 2023
Accepted: 04 April 2023
Published: 24 April 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 22105061).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return