Journal Home > Volume 2 , Issue 3

Ammonia plays a crucial role in agriculture and chemical engineering, and acts as a promising carbon-free transportation fuel. Catalysts design is deemed as a key to solve the restriction of energy-intensive Haber–Bosch process of ammonia production. With the development of computational modeling, computation-aided catalyst design serves as one important driving force for material innovation, saving a lot of experimental efforts based on trial and error. Computational modeling not only provides fundamental mechanistic insights into the reaction with great details regarding adsorbate geometries, electronic structures, and elementary-step energies, but also expedites the material discovery with descriptor-based catalyst design, core of which is the establishment of thermo/kinetic scaling relations. In this review, we present firstly the mechanistic understanding of ammonia synthesis and transition state scaling relations developed on pure transition-metal catalysts. We then summarize catalysts design strategies guided by alloy, size, and magnetic effects with the goal of breaking the limitations set by scaling relations to achieve better catalytic performance. Finally, future opportunities and challenges associated with computation design of optimal catalysts for ammonia synthesis are outlined.


menu
Abstract
Full text
Outline
About this article

Computational design of catalysts for ammonia synthesis

Show Author's information Yining Zhang1,2,§Sha Li1,§( )Wei Zheng2Xi Wang1,3( )
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China

§ Yining Zhang and Sha Li contributed equally to this work.

Abstract

Ammonia plays a crucial role in agriculture and chemical engineering, and acts as a promising carbon-free transportation fuel. Catalysts design is deemed as a key to solve the restriction of energy-intensive Haber–Bosch process of ammonia production. With the development of computational modeling, computation-aided catalyst design serves as one important driving force for material innovation, saving a lot of experimental efforts based on trial and error. Computational modeling not only provides fundamental mechanistic insights into the reaction with great details regarding adsorbate geometries, electronic structures, and elementary-step energies, but also expedites the material discovery with descriptor-based catalyst design, core of which is the establishment of thermo/kinetic scaling relations. In this review, we present firstly the mechanistic understanding of ammonia synthesis and transition state scaling relations developed on pure transition-metal catalysts. We then summarize catalysts design strategies guided by alloy, size, and magnetic effects with the goal of breaking the limitations set by scaling relations to achieve better catalytic performance. Finally, future opportunities and challenges associated with computation design of optimal catalysts for ammonia synthesis are outlined.

Keywords: computational modeling, ammonia synthesis, catalyst design, scaling relations

References(78)

[1]

Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

[2]

Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. The evolution and future of earth’s nitrogen cycle. Science 2010, 330, 192–196.

[3]

Chen, Z.; Liu, C. L.; Sun, L. C.; Wang, T. Progress of experimental and computational catalyst design for electrochemical nitrogen fixation. ACS Catal. 2022, 12, 8936–8975.

[4]

Wang, K.; Deng, Z. H.; Xie, S. J.; Zhai, D. D.; Fang, H. Y.; Shi, Z. J. Synthesis of arylamines and N-heterocycles by direct catalytic nitrogenation using N2. Nat. Commun. 2021, 12, 248.

[5]

Zhao, Y.; Setzler, B. P.; Wang, J. H.; Nash, J.; Wang, T.; Xu, B. J.; Yan, Y. S. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 2019, 3, 2472–2484.

[6]

Zhang, Y. N.; Li, S.; Sun, C.; Wang, P.; Yang, Y. J.; Yi, D.; Wang, X.; Yao, J. N. Understanding and modifying the scaling relations for ammonia synthesis on dilute metal alloys: From single-atom alloys to dimer alloys. ACS Catal. 2022, 12, 9201–9212.

[7]

Wang, Q. R.; Guo, J. P.; Chen, P. Recent progress towards mild-condition ammonia synthesis. J. Energy Chem. 2019, 36, 25–36.

[8]

Motagamwala, A. H.; Dumesic, J. A. Microkinetic modeling: A tool for rational catalyst design. Chem. Rev. 2021, 121, 1049–1076.

[9]

Chen, B. W. J.; Xu, L.; Mavrikakis, M. Computational methods in heterogeneous catalysis. Chem. Rev. 2021, 121, 1007–1048.

[10]

Morales-García, Á.; Viñes, F.; Gomes, J. R. B.; Illas, F. Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO2 conversion. WIREs Comput. Mol. Sci. 2021, 11, e1530.

[11]

Hammer, B.; Nørskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

[12]

Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

[13]

Munter, T. R.; Bligaard, T.; Christensen, C. H.; Nørskov, J. K. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. Phys. Chem. Chem. Phys. 2008, 10, 5202–5206.

[14]

Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.; Skúlason, E.; Bligaard, T.; Nørskov, J. K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 2007, 99, 016105.

[15]

Vojvodic, A.; Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl. Sci. Rev. 2015, 2, 140–143.

[16]

Zhao, Z. J.; Liu, S. H.; Zha, S. J.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

[17]

Vojvodic, A.; Medford, A. J.; Studt, F.; Abild-Pedersen, F.; Khan, T. S.; Bligaard, T.; Nørskov, J. K. Exploring the limits: A low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 2014, 598, 108–112.

[18]

Rohr, B. A.; Singh, A. R.; Nørskov, J. K. A theoretical explanation of the effect of oxygen poisoning on industrial Haber–Bosch catalysts. J. Catal. 2019, 372, 33–38.

[19]

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

[20]

Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.; Wu, G. T.; He, T.; Chen, P. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.

[21]

Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Tada, T.; Hosono, H. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391–395.

[22]

Wang, T.; Abild-Pedersen, F. Achieving industrial ammonia synthesis rates at near-ambient conditions through modified scaling relations on a confined dual site. Proc. Natl. Acad. Sci. USA 2021, 118, e2106527118.

[23]

Li, L. L.; Jiang, Y. F.; Zhang, T. H.; Cai, H. F.; Zhou, Y. L.; Lin, B. Y.; Lin, X. Y.; Zheng, Y.; Zheng, L. R.; Wang, X. Y. et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem 2022, 8, 749–768.

[24]

Chang, F.; Tezsevin, I.; de Rijk, J. W.; Meeldijk, J. D.; Hofmann, J. P.; Er, S.; Ngene, P.; de Jongh, P. E. Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nat. Catal. 2022, 5, 222–230.

[25]

Stoltze, P.; Nørskov, J. K. Bridging the “pressure gap” between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 1985, 55, 2502–2505.

[26]

Logadóttir, Á.; Nørskov, J. K. Ammonia synthesis over a Ru (0001) surface studied by density functional calculations. J. Catal. 2003, 220, 273–279.

[27]

Singh, A. R.; Montoya, J. H.; Rohr, B. A.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. Computational design of active site structures with improved transition-state scaling for ammonia synthesis. ACS Catal. 2018, 8, 4017–4024.

[28]

Shi, L.; Yin, Y.; Wang, S. B.; Sun, H. Q. Rational catalyst design for N2 reduction under ambient conditions: Strategies toward enhanced conversion efficiency. ACS Catal. 2020, 10, 6870–6899.

[29]

Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.

[30]

Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.

[31]

Kammert, J.; Moon, J.; Cheng, Y. Q.; Daemen, L.; Irle, S.; Fung, V.; Liu, J.; Page, K.; Ma, X. H.; Phaneuf, V. et al. Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst. J. Am. Chem. Soc. 2020, 142, 7655–7667.

[32]

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

[33]

Mao, C. L.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Loh, J. Y. Y.; Zhang, T. H.; Xia, M. K.; Xu, J.; Deng, F.; Ghoussoub, M. et al. Hydrogen spillover to oxygen vacancy of TiO2−xHy/Fe: Breaking the scaling relationship of ammonia synthesis. J. Am. Chem. Soc. 2020, 142, 17403–17412.

[34]

Gao, W. B.; Wang, P. K.; Guo, J. P.; Chang, F.; He, T.; Wang, Q. R.; Wu, G. T.; Chen, P. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt. ACS Catal. 2017, 7, 3654–3661.

[35]

Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Hosono, H. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 2020, 142, 14374–14383.

[36]

Chang, F.; Guan, Y. Q.; Chang, X. H.; Guo, J. P.; Wang, P. K.; Gao, W. B.; Wu, G. T.; Zheng, J.; Li, X. G.; Chen, P. Alkali and alkaline earth hydrides-driven N2 activation and transformation over Mn nitride catalyst. J. Am. Chem. Soc. 2018, 140, 14799–14806.

[37]

Wang, Q. R.; Pan, J.; Guo, J. P.; Hansen, H. A.; Xie, H.; Jiang, L.; Hua, L.; Li, H. Y.; Guan, Y. Q.; Wang, P. K. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 2021, 4, 959–967.

[38]

Cai, J. M.; Wei, Y. Y.; Cao, A.; Huang, J. J.; Jiang, Z.; Lu, S. Y.; Zang, S. Q. Electrocatalytic nitrate-to-ammonia conversion with ~ 100% Faradaic efficiency via single-atom alloying. Appl. Catal. B: Environ. 2022, 316, 121683.

[39]

Chu, C. H.; Huang, D. H.; Gupta, S.; Weon, S.; Niu, J. F.; Stavitski, E.; Muhich, C.; Kim, J. H. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nat. Commun. 2021, 12, 5179.

[40]

Marcella, N.; Lim, J. S.; Płonka, A. M.; Yan, G.; Owen, C. J.; van der Hoeven, J. E. S.; Foucher, A. C.; Ngan, H. T.; Torrisi, S. B.; Marinkovic, N. S. et al. Decoding reactive structures in dilute alloy catalysts. Nat. Commun. 2022, 13, 832.

[41]

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

[42]

Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 2019, 52, 237–247.

[43]

Ouyang, M. Y.; Papanikolaou, K. G.; Boubnov, A.; Hoffman, A. S.; Giannakakis, G.; Bare, S. R.; Stamatakis, M.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nat. Commun. 2021, 12, 1549.

[44]

Zheng, G. K.; Li, Y. L.; Qian, X.; Yao, G.; Tian, Z. Q.; Zhang, X. W.; Chen, L. High-throughput screening of a single-atom alloy for electroreduction of dinitrogen to ammonia. ACS Appl. Mater. Interfaces 2021, 13, 16336–16344.

[45]

Dai, T. Y.; Wang, Z. L.; Lang, X. Y.; Jiang, Q. “Sabatier principle” of d electron number for describing the nitrogen reduction reaction performance of single-atom alloy catalysts. J. Mater. Chem. A 2022, 10, 16900–16907.

[46]

Gao, D. L.; Yi, D.; Sun, C.; Yang, Y. A.; Wang, X. Breaking the volcano-shaped relationship for highly efficient electrocatalytic nitrogen reduction: A computational guideline. ACS Appl. Mater. Interfaces 2022, 14, 52806–52814.

[47]

Zhou, J.; Chen, X. Y.; Guo, M.; Hu, W. Y.; Huang, B. W.; Yuan, D. W. Enhanced catalytic activity of bimetallic ordered catalysts for nitrogen reduction reaction by perturbation of scaling relations. ACS Catal. 2023, 13, 2190–2201.

[48]

Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555–558.

[49]

Sun, L. B.; Reddu, V.; Wang, X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem. Soc. Rev. 2022, 51, 8923–8956.

[50]

Zeinalipour-Yazdi, C. D.; Hargreaves, J. S. J.; Laassiri, S.; Catlow, C. R. A. A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory. Roy. Soc. Open Sci. 2021, 8, 210952.

[51]

Zhu, H. D.; Aarons, J.; Peng, Q. High spin polarized Fe2 cluster combined with vicinal nonmetallic sites for catalytic ammonia synthesis from a theoretical perspective. Inorg. Chem. Front. 2021, 8, 5299–5311.

[52]

Ma, X. L.; Liu, J. C.; Xiao, H.; Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 2018, 140, 46–49.

[53]

Ma, X. L.; Yang, Y.; Xu, L. M.; Xiao, H.; Yao, W. Z.; Li, J. Theoretical investigation on hydrogenation of dinitrogen triggered by singly dispersed bimetallic sites. J. Mater. Chem. A 2022, 10, 6146–6152.

[54]

Zhang, Y. N.; Li, S.; Sun, C.; Cao, X. R.; Wang, X.; Yao, J. N. Defective g-C3N4 supported Ru3 single-cluster catalyst for ammonia synthesis through parallel reaction pathways. Nano Res. 2023, 16, 3580–3587.

[55]

Qiu, J. Z.; Hu, J. B.; Lan, J. G.; Wang, L. F.; Fu, G. Y.; Xiao, R. J.; Ge, B. H.; Jiang, J. X. Pure siliceous zeolite-supported Ru single-atom active sites for ammonia synthesis. Chem. Mater. 2019, 31, 9413–9421.

[56]

Wang, X. Y.; Li, L. L.; Fang, Z. P.; Zhang, Y. F.; Ni, J.; Lin, B. Y.; Zheng, L. R.; Au, C. T.; Jiang, L. L. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism. ACS Catal. 2020, 10, 9504–9514.

[57]

Pan, L.; Wang, J. N.; Lu, F.; Liu, Q.; Gao, Y. H.; Wang, Y.; Jiang, J. Z.; Sun, C.; Wang, J.; Wang, X. Single-atom or dual-atom in TiO2 nanosheet: Which is the better choice for electrocatalytic urea synthesis? Angew. Chem., Int. Ed. 2023, 62, e202216835.

[58]
Wang, Y. L. ; Yin, H. B. ; Dong, F. ; Zhao, X. G. ; Qu, Y. K. ; Wang, L. X. ; Peng, Y. ; Wang, D. S. ; Fang, W. ; Li, J. H. N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia. Small, in press, https//doi.org/10.1002/smll.202207695
[59]

Peng, X. B.; Liu, H. X.; Zhang, Y. Y.; Huang, Z. Q.; Yang, L. L.; Jiang, Y. F.; Wang, X. Y.; Zheng, L. R.; Chang, C. R.; Au, C. T. et al. Highly efficient ammonia synthesis at low temperature over a Ru-Co catalyst with dual atomically dispersed active centers. Chem. Sci. 2021, 12, 7125–7137.

[60]

Sun, Z. M.; Lin, L.; He, J. L.; Ding, D. J.; Wang, T. Y.; Li, J.; Li, M. X.; Liu, Y. C.; Li, Y. Y.; Yuan, M. W. et al. Regulating the spin state of FeIII enhances the magnetic effect of the molecular catalysis mechanism. J. Am. Chem. Soc. 2022, 144, 8204–8213.

[61]

Zhang, Y. Y.; Guo, P.; Li, S. W.; Sun, J. M.; Wang, W.; Song, B.; Yang, X. X.; Wang, X. J.; Jiang, Z. X.; Wu, G. et al. Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. J. Mater. Chem. A 2022, 10, 1760–1767.

[62]

Wan, T. L.; Liu, J. X.; Tan, X.; Liao, T.; Gu, Y. T.; Du, A. J.; Smith, S.; Kou, L. Z. Rational design of 2D ferroelectric heterogeneous catalysts for controllable hydrogen evolution reaction. J. Mater. Chem. A 2022, 10, 22228–22235.

[63]

Ju, L.; Tan, X.; Mao, X.; Gu, Y. T.; Smith, S.; Du, A. J.; Chen, Z. F.; Chen, C. F.; Kou, L. Z. Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat. Commun. 2021, 12, 5128.

[64]

Cao, A.; Bukas, V. J.; Shadravan, V.; Wang, Z. B.; Li, H.; Kibsgaard, J.; Chorkendorff, I.; Nørskov, J. K. A spin promotion effect in catalytic ammonia synthesis. Nat. Commun. 2022, 13, 2382.

[65]

Xu, G. M.; Cai, C.; Wang, T. Toward sabatier optimal for ammonia synthesis with paramagnetic phase of ferromagnetic transition metal catalysts. J. Am. Chem. Soc. 2022, 144, 23089–23095.

[66]

Shadravan, V.; Cao, A.; Bukas, V. J.; Grønborg, M. K.; Damsgaard, C. D.; Wang, Z. B.; Kibsgaard, J.; Nørskov, J. K.; Chorkendorff, I. Enhanced promotion of Ru-based ammonia catalysts by in situ dosing of Cs. Energy Environ. Sci. 2022, 15, 3310–3320.

[67]

Guo, S. J.; Pan, X. L.; Gao, H. L.; Yang, Z. Q.; Zhao, J. J.; Bao, X. H. Probing the electronic effect of carbon nanotubes in catalysis: NH3 synthesis with Ru nanoparticles. Chem. -Eur. J. 2010, 16, 5379–5384.

[68]

Hu, B.; Wang, B. H.; Bai, Z. J.; Chen, L.; Guo, J. K.; Shen, S.; Xie, T. L.; Au, C. T.; Jiang, L. L.; Yin, S. F. Regulating MoS2 edge site for photocatalytic nitrogen fixation: A theoretical and experimental study. Chem. Eng. J. 2022, 442, 136211.

[69]

Zhang, G. H.; Dai, T. T.; Wang, Y.; Meng, Y.; Xie, B.; Ni, Z. M.; Xia, S. J. Modulation of photo-generated solvated electrons for ammonia synthesis via facet-dependent engineering of heterojunctions. Appl. Catal. B: Environ. 2021, 288, 119990.

[70]

Yang, X. J.; Xu, B. J.; Chen, J. G.; Yang, X. Recent progress in electrochemical nitrogen reduction on transition metal nitrides. ChemSusChem 2023, 16, e202201715.

[71]

Zhu, Q. H.; Xu, Z. H.; Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution. Small 2021, 17, 2101070.

[72]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[73]

Choi, C.; Gu, G. H.; Noh, J.; Park, H. S.; Jung, Y. Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions. Nat. Commun. 2021, 12, 4353.

[74]

Kang, P. L.; Shang, C.; Liu, Z. P. Large-scale atomic simulation via machine learning potentials constructed by global potential energy surface exploration. Acc. Chem. Res. 2020, 53, 2119–2129.

[75]

Behler, J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem., Int. Ed. 2017, 56, 12828–12840.

[76]

Kang, P. L.; Shi, Y. F.; Shang, C.; Liu, Z. P. Artificial intelligence pathway search to resolve catalytic glycerol hydrogenolysis selectivity. Chem. Sci. 2022, 13, 8148–8160.

[77]

Shi, Y. F.; Kang, P. L.; Shang, C.; Liu, Z. P. Methanol synthesis from CO2/CO mixture on Cu-Zn catalysts from microkinetics-guided machine learning pathway search. J. Am. Chem. Soc. 2022, 144, 13401–13414.

[78]

Gu, Y. M.; Zhu, Q.; Liu, Z. T.; Fu, C.; Wu, J. Y.; Zhu, Q.; Jia, Q. Q.; Ma, J. Nitrogen reduction reaction energy and pathways in metal-zeolites: Deep learning and explainable machine learning with local acidity and hydrogen bonding features. J. Mater. Chem. A 2022, 10, 14976–14988.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 January 2023
Revised: 27 March 2023
Accepted: 01 April 2023
Published: 10 May 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91961125 and 22002085). This work was also supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2020A1515110832 and 2023A1515012816), the “Fundamental Research Funds for the Central Universities” (No. 2018JBZ107), “Key Program for International S&T Cooperation Projects of China” from the Ministry of Science and Technology of China (No. 2018YFE0124600), Chemistry and Chemical Engineering Guangdong Laboratory (Nos. 1932004 and 2011003), Science and Technology Project of Guangdong Province (No. 2020B0101370001), and the Project from China Petrochemical Corporation (No. S20L00151).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return