Journal Home > Volume 2 , Issue 2

Radiative cooling technologies can passively gain lower temperature than that of ambient surroundings without consuming electricity, which has emerged as potential alternatives to traditional cooling methods. However, the limitations in daytime radiation intensity with a net cooling power of less than 150 W·m−2 have hindered progress toward commercial practicality. Here, we report an integrated radiative and evaporative chiller (IREC) based on polyacrylamide hydrogels combined with an upper layer of breathable poly(vinylidene fluoride-co-trifluoroethylene) fibers, which achieves a record high practical average daytime cooling power of 710 W·m−2. The breathable fiber layer has an average emissivity of over 76% in the atmospheric window, while reflecting 90% of visible light. This IREC possesses effective daytime radiative cooling while simultaneously ensuring evaporative cooling capability, enhancing daytime passive cooling effectively. As a result, IREC presents the practicability for both personal cooling managements and industrial auxiliary cooling applications. An IREC-based patch can assist in cooling human body by 13 °C low for a long term and biocompatible use, and IREC can maintain the temperature of industrial storage facilities such as oil tanks at room temperature even under strong sunlight irradiation. This work delivers the highest performance daytime passive cooling by simultaneous infrared radiation and water evaporation, and provides a new perspective for developing highly efficient, scalable, and affordable passive cooling strategy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Integrated radiative and evaporative cooling beyond daytime passive cooling power limit

Show Author's information Houze YaoHuhu ChengQihua LiaoXuanzhang HaoKaixuan ZhuYajie HuLiangti Qu( )
State Key Laboratory of Tribology, Department of Mechanical Engineering, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

Radiative cooling technologies can passively gain lower temperature than that of ambient surroundings without consuming electricity, which has emerged as potential alternatives to traditional cooling methods. However, the limitations in daytime radiation intensity with a net cooling power of less than 150 W·m−2 have hindered progress toward commercial practicality. Here, we report an integrated radiative and evaporative chiller (IREC) based on polyacrylamide hydrogels combined with an upper layer of breathable poly(vinylidene fluoride-co-trifluoroethylene) fibers, which achieves a record high practical average daytime cooling power of 710 W·m−2. The breathable fiber layer has an average emissivity of over 76% in the atmospheric window, while reflecting 90% of visible light. This IREC possesses effective daytime radiative cooling while simultaneously ensuring evaporative cooling capability, enhancing daytime passive cooling effectively. As a result, IREC presents the practicability for both personal cooling managements and industrial auxiliary cooling applications. An IREC-based patch can assist in cooling human body by 13 °C low for a long term and biocompatible use, and IREC can maintain the temperature of industrial storage facilities such as oil tanks at room temperature even under strong sunlight irradiation. This work delivers the highest performance daytime passive cooling by simultaneous infrared radiation and water evaporation, and provides a new perspective for developing highly efficient, scalable, and affordable passive cooling strategy.

Keywords: hydrogel, passive cooling, radiative cooling, evaporation

References(50)

[1]

Omer, A. M. Energy, environment and sustainable development. Renew. Sust. Energy Rev. 2008, 12, 2265–2300.

[2]

Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 2014, 103, 682–703.

[3]

Zhao, H. X.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sust. Energy Rev. 2012, 16, 3586–3592.

[4]

Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy 2011, 85, 3085–3102.

[5]

Raman, A. P.; Anoma, M. A.; Zhu, L. X.; Rephaeli, E.; Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544.

[6]

Chen, Z.; Zhu, L. X.; Raman, A.; Fan, S. H. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 2016, 7, 13729.

[7]

Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.

[8]

Song, J.; Zhang, W.; Sun, Z.; Pan, M.; Tian, F.; Li, X.; Ye, M.; Deng, X. Durable radiative cooling against environmental aging. Nat. Commun. 2022, 13, 4805.

[9]

Zhai, Y.; Ma, Y. G.; David, S. N.; Zhao, D. L.; Lou, R. N.; Tan, G.; Yang, R. G.; Yin, X. B. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066.

[10]

Zhao, B.; Hu, M. K.; Ao, X. Z.; Chen, N.; Pei, G. Radiative cooling: A review of fundamentals, materials, applications, and prospects. Appl. Energy 2019, 236, 489–513.

[11]

Zhu, L. X.; Raman, A. P.; Fan, S. H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. USA 2015, 112, 12282–12287.

[12]

Mandal, J.; Fu, Y. K.; Overvig, A.; Jia, M. X.; Sun, K. R.; Shi, N. N.; Zhou, H.; Xiao, X. H.; Yu, N. F.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319.

[13]

Peng, Y. C.; Chen, J.; Song, A. Y.; Catrysse, P. B.; Hsu, P. C.; Cai, L. L.; Liu, B. F.; Zhu, Y. Y.; Zhou, G. M.; Wu, D. S. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112.

[14]

Li, D.; Liu, X.; Li, W.; Lin, Z. H.; Zhu, B.; Li, Z. Z.; Li, J. L.; Li, B.; Fan, S. H.; Xie, J. W. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153–158.

[15]

Zhou, L. ; Zhao, J. T. ; Huang, H. Y. ; Nan, F. ; Zhou, G. H. ; Ou, Q. D. Flexible polymer photonic films with embedded microvoids for high-performance passive daytime radiative cooling. ACS Photonics 2021, 8, 3301–3307.

[16]

Wang, T. ; Wu, Y. ; Shi, L. ; Hu, X. H. ; Chen, M. ; Wu, L. M. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun 2021, 12, 365.

[17]

Aili, A.; Yin, X. B.; Yang, R. G. Passive sub-ambient cooling: Radiative cooling versus evaporative cooling. Appl. Therm. Eng. 2022, 202, 117909.

[18]

Yin, X. B.; Yang, R. G.; Tan, G.; Fan, S. H. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 2020, 370, 786–791.

[19]

Zhao, D. L.; Aili, A.; Zhai, Y.; Xu, S. Y.; Tan, G.; Yin, X. B.; Yang, R. G. Radiative sky cooling: Fundamental principles, materials, and applications. Appl. Phys. Rev. 2019, 6, 021306.

[20]

Feng, C. Z.; Yang, P. H.; Liu, H. D.; Mao, M. R.; Liu, Y. P.; Xue, T.; Fu, J.; Cheng, T.; Hu, X. J.; Fan, H. J. et al. Bilayer porous polymer for efficient passive building cooling. Nano Energy 2021, 85, 105971.

[21]

Li, J. L.; Wang, X. Y.; Liang, D.; Xu, N.; Zhu, B.; Li, W.; Yao, P. C.; Jiang, Y.; Min, X. Z.; Huang, Z. Z. et al. A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 2022, 8, eabq0411.

[22]

Goldstein, E. A.; Raman, A. P.; Fan, S. H. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2017, 2, 17143.

[23]

Zhao, D. L.; Aili, A.; Zhai, Y.; Lu, J. T.; Kidd, D.; Tan, G.; Yin, X. B.; Yang, R. G. Subambient cooling of water: Toward real-world applications of daytime radiative cooling. Joule 2019, 3, 111–123.

[24]

Yuan, J. C.; Yin, H. L.; Cao, P.; Yuan, D.; Xu, S. Y. Daytime radiative cooling of enclosed water using spectral selective metamaterial based cooling surfaces. Energy Sustain. Dev. 2020, 57, 22–31.

[25]

Aili, A.; Zhao, D. L.; Lu, J. T.; Zhai, Y.; Yin, X. B.; Tan, G.; Yang, R. G. A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Convers. Manage. 2019, 186, 586–596.

[26]

Eicker, U.; Dalibard, A. Photovoltaic-thermal collectors for night radiative cooling of buildings. Solar Energy 2011, 85, 1322–1335.

[27]

Hu, M. K.; Zhao, B.; Suhendri, S.; Cao, J. Y.; Wang, Q. L.; Riffat, S.; Yang, R. G.; Su, Y. H.; Pei, G. Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate. Appl. Energy 2022, 306, 118096.

[28]

Li, W. C.; Liu, X. B.; Deng, Z. S.; Chen, Y. T.; Yu, Q. Q.; Tang, W.; Sun, T. L.; Zhang, Y. S.; Yue, K. Tough bonding, on-demand debonding, and facile rebonding between hydrogels and diverse metal surfaces. Adv. Mater. 2019, 31, 1904732.

[29]

Yuk, H.; Zhang, T.; Lin, S. T.; Parada, G. A.; Zhao, X. H. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196.

[30]
van de Hulst, H. C. Light Scattering by Small Particles; Wiley: New York, 1957.
DOI
[31]
Kerker, M. The Scattering of Light and Other Electromagnetic Radiation; Academic Press: Cambridge, 1969.
DOI
[32]

Yao, H. Z.; Zhang, P. P.; Huang, Y. X.; Cheng, H. H.; Li, C.; Qu, L. T. Highly efficient clean water production from contaminated air with a wide humidity range. Adv. Mater. 2020, 32, 1905875.

[33]

Yao, H. Z.; Zhang, P. P.; Yang, C.; Liao, Q. H.; Hao, X. Z.; Huang, Y. X.; Zhang, M.; Wang, X. B.; Lin, T. Y.; Cheng, H. H. et al. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy Environ. Sci. 2021, 14, 5330–5338.

[34]

Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 2018, 6, 15303–15309.

[35]

Zhang, P. P.; Liu, F.; Liao, Q. H.; Yao, H. Z.; Geng, H. Y.; Cheng, H. H.; Li, C.; Qu, L. T. A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew. Chem., Int. Ed. 2018, 57, 16343–16347.

[36]

Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Direct solar steam generation system for clean water production. Energy Stor. Mater. 2019, 18, 429–446.

[37]

Wei, Z. C.; Wang, J.; Guo, S.; Tan, S. C. Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management. Nano Res. Energy 2022, 1, 9120014.

[38]

Wong, R. Y. M.; Tso, C. Y.; Chao, C. Y. H. Thermo-radiative energy conversion efficiency of a passive radiative fluid cooling system. Renew. Energy 2021, 180, 700–711.

[39]

Wang, H.; Zhang, R. J.; Yuan, D.; Xu, S. Y.; Wang, L. Y. Gas foaming guided fabrication of 3D porous plasmonic nanoplatform with broadband absorption, tunable shape, excellent stability, and high photothermal efficiency for solar water purification. Adv. Funct. Mater. 2020, 30, 2003995.

[40]

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

[41]

Li, X. Y.; Peoples, J.; Yao, P. Y.; Ruan, X. L. Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 2021, 13, 21733–21739.

[42]

Dai, B.; Li, K.; Shi, L. X.; Wan, X. Z.; Liu, X.; Zhang, F. L.; Jiang, L.; Wang, S. T. Bioinspired janus textile with conical micropores for human body moisture and thermal management. Adv. Mater. 2019, 31, 1904113.

[43]

Guan, M. H.; Annaheim, S.; Li, J.; Camenzind, M.; Psikuta, A.; Rossi, R. M. Apparent evaporative cooling efficiency in clothing with continuous perspiration: A sweating manikin study. Int. J. Therm. Sci. 2019, 137, 446–455.

[44]

Peng, Y. C.; Li, W.; Liu, B. F.; Jin, W. L.; Schaadt, J.; Tang, J.; Zhou, G. M.; Wang, G. Y.; Zhou, J. W.; Zhang, C. et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 2021, 12, 6122.

[45]

Havenith, G.; Bröde, P.; den Hartog, E.; Kuklane, K.; Holmer, I.; Rossi, R. M.; Richards, M.; Farnworth, B.; Wang, X. X. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin. J. Appl. Physiol. 2013, 114, 778–785.

[46]

Katić, K.; Li, R. L.; Zeiler, W. Thermophysiological models and their applications: A review. Build. Environ. 2016, 106, 286–300.

[47]

Torii, M. Maximal sweating rate in humans. J. Human Ergol. 1995, 24, 137–152.

[48]

Farzaneh-Gord, M.; Nabati, A.; Niazmand, H. Solar radiation effects on evaporative losses of floating roof storage tanks. Int. J. Oil Gas Coal Technol. 2011, 4, 134–155.

[49]

Song, Z. N.; Zhang, W. D.; Shi, Y. X.; Song, J. R.; Qu, J.; Qin, J.; Zhang, T.; Li, Y. W.; Zhang, H. Q.; Zhang, R. P. Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency. Energy Build. 2013, 63, 49–58.

[50]

Zhang, W. D.; Song, Z. N.; Song, J. R.; Shi, Y. X.; Qu, J.; Qin, J.; Zhang, T.; Li, Y. W.; Zhang, H. Q.; Zhang, R. P. A systematic laboratory study on an anticorrosive cool coating of oil storage tanks for evaporation loss control and energy conservation. Energy 2013, 58, 617–627.

File
0060_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 December 2022
Revised: 01 February 2023
Accepted: 20 February 2023
Published: 09 March 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the financial support from National Natural Science Foundation of China (Nos. 52073159, 22035005, 52022051, 22075165, and 52090030), State Key Laboratory of Tribology (No. SKLT2021B03), Tsinghua-Foshan Innovation Special Fund (No. 2018THFS0412). This work is also supported by a grant (No. 2019GQG1025) from the Institute for Guo Qiang, Tsinghua University.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return