Journal Home > Volume 2 , Issue 2

Due to its remarkable electrical and optical capabilities, optoelectronic devices based on the semiconducting single-walled carbon nanotube (s-SWCNT) have been studied extensively in the last two decades. First, s-SWCNT is a direct bandgap semiconductor with a high infrared absorption coefficient and high electron/hole mobility. In addition, as a typical one-dimensional material, there is no lattice mismatch between s-SWCNT and any substrates. Another advantage is that the optoelectronic devices of s-SWCNT can be processed at low temperatures. s-SWCNT has intriguing potential and applications in solar cells, light-emitting diodes (LEDs), photodetectors, and three-dimensional (3D) optoelectronic integration. In recent years, along with the advancement of solution purification technology, the high-purity s-SWCNTs film has laid the foundation for constructing large-area, homogenous, and high-performance optoelectronic devices. In this review, optoelectronic devices based on s-SWCNTs film and related topics are reviewed, including the preparation of high purity s-SWCNTs film, the progress of photodetectors based on the s-SWCNTs film, and challenges of s-SWCNTs film photodetectors.


menu
Abstract
Full text
Outline
About this article

Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration

Show Author's information Xiang Cai1,2Sheng Wang1,2( )Lian-Mao Peng1( )
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics, Peking University, Beijing 100871, China

Abstract

Due to its remarkable electrical and optical capabilities, optoelectronic devices based on the semiconducting single-walled carbon nanotube (s-SWCNT) have been studied extensively in the last two decades. First, s-SWCNT is a direct bandgap semiconductor with a high infrared absorption coefficient and high electron/hole mobility. In addition, as a typical one-dimensional material, there is no lattice mismatch between s-SWCNT and any substrates. Another advantage is that the optoelectronic devices of s-SWCNT can be processed at low temperatures. s-SWCNT has intriguing potential and applications in solar cells, light-emitting diodes (LEDs), photodetectors, and three-dimensional (3D) optoelectronic integration. In recent years, along with the advancement of solution purification technology, the high-purity s-SWCNTs film has laid the foundation for constructing large-area, homogenous, and high-performance optoelectronic devices. In this review, optoelectronic devices based on s-SWCNTs film and related topics are reviewed, including the preparation of high purity s-SWCNTs film, the progress of photodetectors based on the s-SWCNTs film, and challenges of s-SWCNTs film photodetectors.

Keywords: carbon nanotube, photodetectors, optoelectronic integration, high purity semiconducting single-walled carbon nanotubes (s-SWCNTs) film

References(173)

[1]

Shu, H. W.; Chang, L.; Tao, Y. S.; Shen, B. T.; Xie, W. Q.; Jin, M.; Netherton, A.; Tao, Z. H.; Zhang, X. G.; Chen, R. X. et al. Microcomb-driven silicon photonic systems. Nature 2022, 605, 457–463.

[2]

Chen, H. W.; Lee, J. H.; Lin, B. Y.; Chen, S.; Wu, S. T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light Sci. Appl. 2018, 7, 17168.

[3]

Kenry; Duan, Y. K.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1802394.

[4]

Nayak, P. K.; Mahesh, S.; Snaith, H. J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285.

[5]
Norton, P. R. Infrared detectors in the next millennium. In Proceedings of SPIE 3698, Infrared Technology and Applications XXV. Orlando, USA, 1999; pp 652–665.
DOI
[6]
Martin, T.; Brubaker, R.; Dixon, P.; Gagliardi, M. A.; Sudol, T. 640 × 512 InGaAs focal plane array camera for visible and SWIR imaging. In Proceedings of SPIE 5783, Infrared Technology and Applications XXXI. Orlando, USA, 2005; pp 12–20.
DOI
[7]

Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.

[8]
Hansen, M. P.; Malchow, D. S. Overview of SWIR detectors, cameras, and applications. In Proceedings of SPIE 6939, Thermosense XXX. Orlando, USA, 2008; pp 94–104.
DOI
[9]
Tan, W.; He, H. Y.; Chen, X.; Qi, W. W. Analyzing the influence of atmosphere on optical remote sensing in 400 to 2500 nm wavelength spectrum. In Proceedings of SPIE 11566, AOPC 2020: Optical Spectroscopy and Imaging; and Biomedical Optics. Beijing, China, 2020; pp 103–108.
DOI
[10]

Krieg, J. Influence of moon and clouds on night illumination in two different spectral ranges. Sci. Rep. 2021, 11, 20642.

[11]

Habib, M. S.; Markos, C.; Amezcua-Correa, R. Impact of cladding elements on the loss performance of hollow-core anti-resonant fibers. Opt. Express 2021, 29, 3359–3374.

[12]

Tang, X.; Ackerman, M. M.; Chen, M. L.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13, 277–282.

[13]

Rogalski, A. Progress in focal plane array technologies. Prog. Quant. Electron. 2012, 36, 342–473.

[14]

Arslan, Y.; Oguz, F.; Besikci, C. Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations. Infrared Phys. Technol. 2015, 70, 134–137.

[15]

Wan, L. H.; Cao, G. Q.; Shao, X. M.; Deng, S. Y.; Cheng, J. F.; Gu, Y.; Li, X. High performance In0.83Ga0.17As SWIR photodiode passivated by Al2O3/SiNx stacks with low-stress SiNx films. J. Appl. Phys. 2019, 126, 033101.

[16]
Manda, S.; Matsumoto, R.; Saito, S.; Maruyama, S.; Minari, H.; Hirano, T.; Takachi, T.; Fujii, N.; Yamamoto, Y.; Zaizen, Y. et al. High-definition visible-SWIR InGaAs image sensor using Cu–Cu bonding of III–V to silicon wafer. In Proceedings of 2019 IEEE International Electron Devices Meeting, San Francisco, USA, 2019, pp 16.17. 11–16.17. 14.
DOI
[17]

Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 091101.

[18]

Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 2016, 10, 81–92.

[19]

He, X. W.; Léonard, F.; Kono, J. Uncooled carbon nanotube photodetectors. Adv. Opt. Mater. 2015, 3, 989–1011.

[20]

Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci. Appl. 2021, 10, 123.

[21]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[22]
Léonard, F. Physics of Carbon Nanotube Devices; William Andrew: New York, 2008.
[23]

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

[24]

McCann, E.; Fal’ko, V. I. Degeneracy breaking and intervalley scattering due to short-ranged impurities in finite single-wall carbon nanotubes. Phys. Rev. B 2005, 71, 085415.

[25]

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

[26]

Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350.

[27]

Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.

[28]

Zhao, H. B.; Mazumdar, S. Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 2004, 93, 157402.

[29]

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 2007, 58, 719–747.

[30]

Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 2005, 308, 838–841.

[31]

Tayo, B. O.; Rotkin, S. V. Charge impurity as a localization center for singlet excitons in single-wall nanotubes. Phys. Rev. B 2012, 86, 125431.

[32]

Miyauchi, Y.; Oba, M.; Maruyama, S. Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 2006, 74, 205440.

[33]

Snyder, S. E.; Rotkin, S. V. Optical identification of a DNA-wrapped carbon nanotube: Signs of helically broken symmetry. Small 2008, 4, 1284–1286.

[34]

Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. G.; Kikkawa, J. M. Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 2004, 93, 037404.

[35]

Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413–416.

[36]

Yang, Z. P.; Ci, L. J.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451.

[37]
Decoster, D.; Harari, J. Optoelectronic Sensors; ISTE Ltd. : London, 2009.
DOI
[38]

Fang, Y. J.; Armin, A.; Meredith, P.; Huang, J. S. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 2019, 13, 1–4.

[39]

Liu, H.; Lhuillier, E.; Guyot-Sionnest, P. 1/f noise in semiconductor and metal nanocrystal solids. J. Appl. Phys. 2014, 115, 154309.

[40]

Lu, R. T.; Li, Z. Z.; Xu, G. W.; Wu, J. Z. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 2009, 94, 163110.

[41]

Zhang, Q. M.; Yan, R. Y.; Peng, X. Y.; Wang, Y. S.; Feng, S. L. TiO2−x films for bolometer applications: Recent progress and perspectives. Mater. Res. Express. 2022, 9, 012002.

[42]

Tarasov, M.; Svensson, J.; Kuzmin, L.; Campbell, E. E. B. Carbon nanotube bolometers. Appl. Phys. Lett. 2007, 90, 163503.

[43]

Fernandes, G. E.; Kim, J. H.; Sood, A. K.; Xu, J. Giant temperature coefficient of resistance in carbon nanotube/phase-change polymer nanocomposites. Adv. Funct. Mater. 2013, 23, 4678–4683.

[44]

Fernandes, G. E.; Kim, J. H.; Chin, M.; Dhar, N.; Xu, J. Carbon nanotube microbolometers on suspended silicon nitride via vertical fabrication procedure. Appl. Phys. Lett. 2014, 104, 201115.

[45]

John, J.; Muthee, M.; Yogeesh, M.; Yngvesson, S. K.; Carter, K. R. Suspended multiwall carbon nanotube-based infrared sensors via roll-to-roll fabrication. Adv. Opt. Mater. 2014, 2, 581–587.

[46]

Mahjouri-Samani, M.; Zhou, Y. S.; He, X. N.; Xiong, W.; Hilger, P.; Lu, Y. F. Plasmonic-enhanced carbon nanotube infrared bolometers. Nanotechnology 2013, 24, 035502.

[47]

Vera-Reveles, G.; Simmons, T. J.; Bravo-Sánchez, M.; Vidal, M. A.; Navarro-Contreras, H.; González, F. J. High-sensitivity bolometers from self-oriented single-walled carbon nanotube composites. ACS Appl. Mater. Interfaces 2011, 3, 3200–3204.

[48]

He, X. W.; Wang, X.; Nanot, S.; Cong, K. K.; Jiang, Q. J.; Kane, A. A.; Goldsmith, J. E. M.; Hauge, R. H.; Léonard, F.; Kono, J. Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano 2013, 7, 7271–7277.

[49]

He, X. W.; Fujimura, N.; Lloyd, J. M.; Erickson, K. J.; Talin, A. A.; Zhang, Q.; Gao, W. L.; Jiang, Q. J.; Kawano, Y.; Hauge, R. H. et al. Carbon nanotube terahertz detector. Nano Lett. 2014, 14, 3953–3958.

[50]

Hu, C. H.; Liu, C. H.; Chen, L. Z.; Meng, C. Z.; Fan, S. S. A demo opto-electronic power source based on single-walled carbon nanotube sheets. ACS Nano 2010, 4, 4701–4706.

[51]

St-Antoine, B. C.; Ménard, D.; Martel, R. Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments. Nano Res. 2012, 5, 73–81.

[52]

St-Antoine, B. C.; Ménard, D.; Martel, R. Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 2009, 9, 3503–3508.

[53]

St-Antoine, B. C.; Menard, D.; Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 2011, 11, 609–613.

[54]

He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.

[55]

Pradhan, B.; Setyowati, K.; Liu, H. Y.; Waldeck, D. H.; Chen, J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 2008, 8, 1142–1146.

[56]

Levitsky, I. A.; Euler, W. B. Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination. Appl. Phys. Lett. 2003, 83, 1857–1859.

[57]

Fujiwara, A.; Matsuoka, Y.; Suematsu, H.; Ogawa, N.; Miyano, K.; Kataura, H.; Maniwa, Y.; Suzuki, S.; Achiba, Y. Photoconductivity of single-walled carbon nanotubes. AIP Conf. Proc. 2001, 590, 189–192.

[58]

Lu, R. T.; Christianson, C.; Kirkeminde, A.; Ren, S. Q.; Wu, J. Extraordinary photocurrent harvesting at type-II heterojunction interfaces: Toward high detectivity carbon nanotube infrared detectors. Nano Lett. 2012, 12, 6244–6249.

[59]

Park, S.; Kim, S. J.; Nam, J. H.; Pitner, G.; Lee, T. H.; Ayzner, A. L.; Wang, H. L.; Fong, S. W.; Vosgueritchian, M.; Park, Y. J. et al. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv. Mater. 2015, 27, 759–765.

[60]

De Sanctis, A.; Jones, G. F.; Wehenkel, D. J.; Bezares, F.; Koppens, F. H. L.; Craciun, M. F.; Russo, S. Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Sci. Adv. 2017, 3, e1602617.

[61]

Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

[62]

Yang, M. H.; Teo, K. B. K.; Milne, W. I.; Hasko, D. G. Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts. Appl. Phys. Lett. 2005, 87, 253116.

[63]

Chen, H. Z.; Xi, N.; Lai, K. W. C.; Fung, C. K. M.; Yang, R. G. Development of infrared detectors using single carbon-nanotube-based field-effect transistors. IEEE Trans. Nanotechnol. 2010, 9, 582–589.

[64]

Biswas, C.; Lee, S. Y.; Ly, T. H.; Ghosh, A.; Dang, Q. N.; Lee, Y. H. Chemically doped random network carbon nanotube p-n junction diode for rectifier. ACS Nano 2011, 5, 9817–9823.

[65]

Dhakras, P.; Lee, J. U. Zero dark leakage current single-walled carbon nanotube diodes. Appl. Phys. Lett. 2016, 109, 203114.

[66]

Huo, T. T.; Yin, H.; Zhou, D. Y.; Sun, L. J.; Tian, T.; Wei, H.; Hu, N. T.; Yang, Z.; Zhang, Y. F.; Su, Y. J. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem. Eng. 2020, 8, 15532–15539.

[67]

Zhou, C. W.; Kong, J.; Yenilmez, E.; Dai, H. J. Modulated chemical doping of individual carbon nanotubes. Science 2000, 290, 1552–1555.

[68]

Chen, C. X.; Liao, C. H.; Wei, L. M.; Zhong, H. Q.; He, R.; Liu, Q. R.; Liu, X. D.; Lai, Y. F.; Song, C. J.; Jin, T. N. et al. Carbon nanotube intramolecular p-i-n junction diodes with symmetric and asymmetric contacts. Sci. Rep. 2016, 6, 22203.

[69]

Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 2005, 87, 073101.

[70]

Gabor, N. M.; Zhong, Z. H.; Bosnick, K.; Park, J.; McEuen, P. L. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 2009, 325, 1367–1371.

[71]

Lee, J. U. Band-gap renormalization in carbon nanotubes: Origin of the ideal diode behavior in carbon nanotube p–n structures. Phys. Rev. B 2007, 75, 075409.

[72]

Shahrjerdi, D.; Franklin, A. D.; Oida, S.; Ott, J. A.; Tulevski, G. S.; Haensch, W. High-performance air-stable n-type carbon nanotube transistors with erbium contacts. ACS Nano 2013, 7, 8303–8308.

[73]

Liu, X. H.; Wu, Z. Q.; Hong, D. L.; Wu, W. F.; Xue, C. Q.; Cai, X.; Ding, S. J.; Yao, F. F.; Jin, C. H.; Wang, S. Hf-contacted high-performance air-stable n-type carbon nanotube transistors. ACS Appl. Electron. Mater. 2021, 3, 4623–4629.

[74]

Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

[75]

Ding, L.; Wang, S.; Zhang, Z. Y.; Zeng, Q. S.; Wang, Z. X.; Pei, T.; Yang, L. J.; Liang, X. L.; Shen, J.; Chen, Q. et al. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: Scaling and comparison with Sc-contacted devices. Nano Lett. 2009, 9, 4209–4214.

[76]

Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 2003, 3, 1541–1544.

[77]

Peng, L. M.; Zhang, Z. Y.; Wang, S.; Liang, X. L. A doping-free approach to carbon nanotube electronics and optoelectronics. AIP Adv. 2012, 2, 15547.

[78]

Wang, S.; Zhang, L. H.; Zhang, Z. Y.; Ding, L.; Zeng, Q. S.; Wang, Z. X.; Liang, X. L.; Gao, M.; Shen, J.; Xu, H. L. et al. Photovoltaic effects in asymmetrically contacted CNT barrier-free bipolar diode. J. Phys. Chem. C 2009, 113, 6891–6893.

[79]

Yang, L. J.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Pei, T.; Li, Y.; Peng, L. M. Efficient photovoltage multiplication in carbon nanotubes. Nat. Photonics 2011, 5, 672–676.

[80]

Xu, H. T.; Wang, S.; Zhang, Z. Y.; Peng, L. M. Length scaling of carbon nanotube electric and photo diodes down to sub-50 nm. Nano Lett. 2014, 14, 5382–5389.

[81]

Wei, N.; Liu, Y.; Xie, H. H.; Wei, F.; Wang, S.; Peng, L. M. Carbon nanotube light sensors with linear dynamic range of over 120 dB. Appl. Phys. Lett. 2014, 105, 073107.

[82]

Wang, F. L.; Wang, S.; Yao, F. R.; Xu, H. T.; Wei, N.; Liu, K. H.; Peng, L. M. High conversion efficiency carbon nanotube-based barrier-free bipolar-diode photodetector. ACS Nano 2016, 10, 9595–9601.

[83]

Zhou, C. J.; Wang, S.; Sun, J. L.; Wei, N.; Yang, L. J.; Zhang, Z. Y.; Liao, J. H.; Peng, L. M. Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles. Appl. Phys. Lett. 2013, 102, 103102.

[84]

Huang, H. X.; Zhang, D. H.; Wei, N.; Wang, S.; Peng, L. M. Plasmon-induced enhancement of infrared detection using a carbon nanotube diode. Adv. Opt. Mater. 2017, 5, 1600865.

[85]

Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 1995, 243, 49–54.

[86]

Endo, M.; Takeuchi, K.; Kobori, K.; Takahashi, K.; Kroto, H. W.; Sarkar, A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 1995, 33, 873–881.

[87]

Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; de la Chapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756–758.

[88]

Dai, H. J.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 260, 471–475.

[89]

Kitiyanan, B.; Alvarez, W. E.; Harwell, J. H.; Resasco, D. E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett. 2000, 317, 497–503.

[90]

Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

[91]

Zeng, Q. S.; Wang, S.; Yang, L. J.; Wang, Z. X.; Pei, T.; Zhang, Z. Y.; Peng, L. M.; Zhou, W. W.; Liu, J.; Zhou, W. Y. et al. Carbon nanotube arrays based high-performance infrared photodetector [Invited]. Opt. Mater. Express 2012, 2, 839–848.

[92]

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

[93]

Tanaka, T.; Jin, H. H.; Miyata, Y.; Kataura, H. High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl. Phys. Express 2008, 1, 114001.

[94]

Tanaka, T.; Jin, H. H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett. 2009, 9, 1497–1500.

[95]

Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.

[96]

Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545–1548.

[97]

Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.

[98]

Ao, G. Y.; Khripin, C. Y.; Zheng, M. DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems. J. Am. Chem. Soc. 2014, 136, 10383–10392.

[99]

Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, 1800750.

[100]

Wei, X. J.; Li, S. L.; Wang, W. K.; Zhang, X.; Zhou, W. Y.; Xie, S. S.; Liu, H. P. Recent advances in structure separation of single-wall carbon nanotubes and their application in optics, electronics, and optoelectronics. Adv. Sci. 2022, 9, 2200054.

[101]

Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541.

[102]

Wang, H. L.; Mei, J. G.; Liu, P.; Schmidt, K.; Jiménez-Osés, G.; Osuna, S.; Fang, L.; Tassone, C. J.; Zoombelt, A. P.; Sokolov, A. N. et al. Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors. ACS Nano 2013, 7, 2659–2668.

[103]

Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: The power of polymer wrapping. Acc. Chem. Res. 2014, 47, 2446–2456.

[104]

Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

[105]

Gomulya, W.; Costanzo, G. D.; De Carvalho, E. J. F.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A. et al. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 2013, 25, 2948–2956.

[106]

Jakubka, F.; Schießl, S. P.; Martin, S.; Englert, J. M.; Hauke, F.; Hirsch, A.; Zaumseil, J. Effect of polymer molecular weight and solution parameters on selective dispersion of single-walled carbon nanotubes. ACS Macro Lett. 2012, 1, 815–819.

[107]

Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231–2239.

[108]

Lemasson, F. A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M. M.; Mayor, M. Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole). J. Am. Chem. Soc. 2011, 133, 652–655.

[109]

Rice, N. A.; Adronov, A. Supramolecular interactions of high molecular weight poly(2,7-carbazole)s with single-walled carbon nanotubes. Macromolecules 2013, 46, 3850–3860.

[110]

Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 2016, 12, 4993–4999.

[111]

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

[112]

Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382–5388.

[113]

Liyanage, L. S.; Lee, H.; Patil, N.; Park, S.; Mitra, S.; Bao, Z. N.; Wong, H. S. P. Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks. ACS Nano 2012, 6, 451–458.

[114]

Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 2009, 21, 3210–3216.

[115]

Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M. High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 2012, 6, 9737–9744.

[116]

Zhou, Y. X.; Hu, L. B.; Grüner, G. A method of printing carbon nanotube thin films. Appl. Phys. Lett. 2006, 88, 123109.

[117]

Cao, X.; Lau, C.; Liu, Y. H.; Wu, F. Q.; Gui, H.; Liu, Q. Z.; Ma, Y. Q.; Wan, H. C.; Amer, M. R.; Zhou, C. W. Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors. ACS Nano 2016, 10, 9816–9822.

[118]

Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

[119]

Tian, B. Y.; Liang, X. L.; Yan, Q. P.; Zhang, H.; Xia, J. Y.; Dong, G. D.; Peng, L. M.; Xie, S. S. Wafer scale fabrication of carbon nanotube thin film transistors with high yield. J. Appl. Phys. 2016, 120, 034501.

[120]

Yu, X. Q.; Liu, D.; Kang, L. X.; Yang, Y.; Zhang, X. P.; Lv, Q. J.; Qiu, S.; Jin, H. H.; Song, Q. J.; Zhang, J. et al. Recycling strategy for fabricating low-cost and high-performance carbon nanotube TFT devices. ACS Appl. Mater. Interfaces 2017, 9, 15719–15726.

[121]

Dong, G. D.; Zhao, J.; Shen, L. J.; Xia, J. Y.; Meng, H.; Yu, W. H.; Huang, Q.; Han, H.; Liang, X. L.; Peng, L. M. Large-area and highly uniform carbon nanotube film for high-performance thin film transistors. Nano Res. 2018, 11, 4356–4367.

[122]

An, Y. B.; Rao, H.; Bosman, G.; Ural, A. Characterization of carbon nanotube film-silicon Schottky barrier photodetectors. J. Vac. Sci. Technol. B 2012, 30, 021805.

[123]

Jung, Y.; Li, X. K.; Rajan, N. K.; Taylor, A. D.; Reed, M. A. Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 2013, 13, 95–99.

[124]

Wang, F. J.; Kozawa, D.; Miyauchi, Y.; Hiraoka, K.; Mouri, S.; Ohno, Y.; Matsuda, K. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 2015, 6, 6305.

[125]

Zhang, T. F.; Li, Z. P.; Wang, J. Z.; Kong, W. Y.; Wu, G. A.; Zheng, Y. Z.; Zhao, Y. W.; Yao, E. X.; Zhuang, N. X.; Luo, L. B. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci. Rep. 2016, 6, 38569.

[126]

Cao, J.; Zou, Y. X.; Gong, X.; Gou, P.; Qian, J.; Qian, R. J.; An, Z. H. Double-layer heterostructure of graphene/carbon nanotube films for highly efficient broadband photodetector. Appl. Phys. Lett. 2018, 113, 061112.

[127]
Su, Y. J. High-Performance Carbon-Based Optoelectronic Nanodevices; Springer: Singapore, 2022.
DOI
[128]

Arnold, M. S.; Zimmerman, J. D.; Renshaw, C. K.; Xu, X.; Lunt, R. R.; Austin, C. M.; Forrest, S. R. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett. 2009, 9, 3354–3358.

[129]

Bindl, D. J.; Wu, M. Y.; Prehn, F. C.; Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2011, 11, 455–460.

[130]

Bindl, D. J.; Arnold, M. S. Efficient exciton relaxation and charge generation in nearly monochiral (7, 5) carbon nanotube/C60 thin-film photovoltaics. J. Phys. Chem. C 2013, 117, 2390–2395.

[131]

Simmons, J. M.; In, I.; Campbell, V. E.; Mark, T. J.; Léonard, F.; Gopalan, P.; Eriksson, M. A. Optically modulated conduction in chromophore-functionalized single-wall carbon nanotubes. Phys. Rev. Lett. 2007, 98, 086802.

[132]

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

[133]

Yang, Z. Y.; Hong, H.; Liu, F.; Liu, Y.; Su, M.; Huang, H.; Liu, K. H.; Liang, X. L.; Yu, W. J.; Vu, Q. A. et al. High-performance photoinduced memory with ultrafast charge transfer based on MoS2/SWCNTs network van der Waals heterostructure. Small 2019, 15, 1804661.

[134]

Liu, C. K.; Loi, H. L.; Cao, J. P.; Tang, G. Q.; Liu, F.; Huang, Q.; Liang, X. L.; Yan, F. High-performance quasi-2D perovskite/single-walled carbon nanotube phototransistors for low-cost and sensitive broadband photodetection. Small Struct. 2021, 2, 2000084.

[135]

Zhou, S. Y.; Wang, Y.; Deng, C. J.; Liu, P. L.; Zhang, J. B.; Wei, N.; Zhang, Z. Y. Highly sensitive SWIR photodetector using carbon nanotube thin film transistor gated by quantum dots heterojunction. Appl. Phys. Lett. 2022, 120, 193103.

[136]

Zhu, Q. B.; Li, B.; Yang, D. D.; Liu, C.; Feng, S.; Chen, M. L.; Sun, Y.; Tian, Y. N.; Su, X.; Wang, X. M. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.

[137]

Lu, S. X.; Ahir, S. V.; Terentjev, E. M.; Panchapakesan, B. Alignment dependent mechanical responses of carbon nanotubes to light. Appl. Phys. Lett. 2007, 91, 103106.

[138]

Suri, A.; Misra, A. Coupling of photomechanical and electromechanical actuations in carbon nanotubes. Nanotechnology 2013, 24, 105501.

[139]

Liu, Y.; Han, J.; Wei, N.; Qiu, S.; Li, H. B.; Li, Q. W.; Wang, S.; Peng, L. M. Contact-dominated transport in carbon nanotube thin films: Toward large-scale fabrication of high performance photovoltaic devices. Nanoscale 2016, 8, 17122–17130.

[140]

Liu, Y.; Wei, N.; Zeng, Q. S.; Han, J.; Huang, H. X.; Zhong, D. L.; Wang, F. L.; Ding, L.; Xia, J. Y.; Xu, H. T. et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016, 4, 238–245.

[141]

Huang, H. X.; Wang, F. L.; Liu, Y.; Wang, S.; Peng, L. M. Plasmonic enhanced performance of an infrared detector based on carbon nanotube films. ACS Appl. Mater. Interfaces 2017, 9, 12743–12749.

[142]

Ma, Z.; Yang, L. J.; Liu, L. J.; Wang, S.; Peng, L. M. Silicon-waveguide-integrated carbon nanotube optoelectronic system on a single chip. ACS Nano 2020, 14, 7191–7199.

[143]

Cummings, A. W.; Varennes, J.; Léonard, F. Electrical contacts to three-dimensional arrays of carbon nanotubes. IEEE Trans. Nanotechnol. 2013, 12, 1166–1172.

[144]

Lei, T.; Chen, X. Y.; Pitner, G.; Wong, H. S. P.; Bao, Z. N. Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes. J. Am. Chem. Soc. 2016, 138, 802–805.

[145]

Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, 1601240.

[146]

Ma, Z.; Han, J.; Yao, S.; Wang, S.; Peng, L. M. Improving the performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating. ACS Appl. Mater. Interfaces 2019, 11, 11736–11742.

[147]

Yao, J.; Li, Y. J.; Li, Y. H.; Sui, Q. C.; Wen, H. J.; Cao, L. T.; Cao, P.; Kang, L. X.; Tang, J. S.; Jin, H. H. et al. Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors. Carbon 2021, 184, 764–771.

[148]

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

[149]

Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H. et al. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.

[150]

Ho, X.; Ye, L. N.; Rotkin, S. V.; Cao, Q.; Unarunotai, S.; Salamat, S.; Alam, M. A.; Rogers, J. A. Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2010, 10, 499–503.

[151]

Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

[152]

Ran, W. H.; Ren, Z. H.; Wang, P.; Yan, Y. X.; Zhao, K.; Li, L. L.; Li, Z. X.; Wang, L. L.; Yang, J. H.; Wei, Z. M. et al. Integrated polarization-sensitive amplification system for digital information transmission. Nat. Commun. 2021, 12, 6476.

[153]

Tong, L.; Huang, X. Y.; Wang, P.; Ye, L.; Peng, M.; An, L. C.; Sun, Q. D.; Zhang, Y.; Yang, G. M.; Li, Z. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.

[154]

Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72.

[155]

Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.

[156]

Tang, J. S.; Cao, Q.; Farmer, D. B.; Tulevski, G.; Han, S. J. High-performance carbon nanotube complementary logic with end-bonded contacts. IEEE Trans. Electron Devices 2017, 64, 2744–2750.

[157]

Fang, N.; Otsuka, K.; Ishii, A.; Taniguchi, T.; Watanabe, K.; Nagashio, K.; Kato, Y. K. Hexagonal boron nitride as an ideal substrate for carbon nanotube photonics. ACS Photonics 2020, 7, 1773–1779.

[158]

Caldwell, J. D.; Aharonovich, I.; Cassabois, G.; Edgar, J. H.; Gil, B.; Basov, D. N. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 2019, 4, 552–567.

[159]

Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104.

[160]

Yamaoka, S.; Diamantopoulos, N. P.; Nishi, H.; Nakao, R.; Fujii, T.; Takeda, K.; Hiraki, T.; Tsurugaya, T.; Kanazawa, S.; Tanobe, H. et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat. Photonics 2020, 15, 28–35.

[161]

Waldrop, M. M. The chips are down for Moore’s law. Nature 2016, 530, 144–147.

[162]

Aly, M. M. S.; Gao, M. Y.; Hills, G.; Lee, C. S.; Pitner, G.; Shulaker, M. M.; Wu, T. F.; Asheghi, M.; Bokor, J.; Franchetti, F. et al. Energy-efficient abundant-data computing: The N3XT 1, 000x. Computer 2015, 48, 24–33.

[163]

Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.

[164]

Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T. et al. Broadband image sensor array based on grapheme-CMOS integration. Nat. Photonics 2017, 11, 366–371.

[165]

Liu, J.; Liu, P. L.; Chen, D. Y.; Shi, T. L.; Qu, X. X.; Chen, L.; Wu, T.; Ke, J. P.; Xiong, K.; Li, M. Y. et al. A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat. Electron. 2022, 5, 443–451.

[166]

Park, Y.; Ryu, B.; Ki, S. J.; McCracken, B.; Pennington, A.; Ward, K. R.; Liang, X. G.; Kurabayashi, K. Few-layer MoS2 photodetector arrays for ultrasensitive on-chip enzymatic colorimetric analysis. ACS Nano 2021, 15, 7722–7734.

[167]

Kim, Y. L.; Jung, H. Y.; Park, S.; Li, B.; Liu, F. Z.; Hao, J.; Kwon, Y. K.; Jung, Y. J.; Kar, S. Voltage-switchable photocurrents in single-walled carbon nanotube-silicon junctions for analog and digital optoelectronics. Nat. Photonics 2014, 8, 239–243.

[168]

Liu, Y.; Wang, S.; Liu, H. P.; Peng, L. M. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat. Commun. 2017, 8, 15649.

[169]

Liu, Y.; Zhang, J. S.; Liu, H. P.; Wang, S.; Peng, L. M. Electrically driven monolithic subwavelength plasmonic interconnect circuits. Sci. Adv. 2017, 3, e1701456.

[170]

Liu, Y.; Zhang, J. S.; Peng, L. M. Three-dimensional integration of plasmonics and nanoelectronics. Nat. Electron. 2018, 1, 644–651.

[171]

Yang, J.; Xiao, X.; Hu, C.; Zhang, W. W.; Zhou, S. X.; Zhang, J. S. Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair. Nano Lett. 2014, 14, 704–709.

[172]

Tran, H.; Pham, T.; Margetis, J.; Zhou, Y. Y.; Dou, W.; Grant, P. C.; Grant, J. M.; Al-Kabi, S.; Sun, G.; Soref, R. A. et al. Si-based GeSn photodetectors toward mid-infrared imaging applications. ACS Photonics 2019, 6, 2807–2815.

[173]

Lischke, S.; Peczek, A.; Morgan, J. S.; Sun, K.; Steckler, D.; Yamamoto, Y.; Korndörfer, F.; Mai, C.; Marschmeyer, S.; Fraschke, M. et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics 2021, 15, 925–931.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 December 2022
Revised: 03 February 2023
Accepted: 15 February 2023
Published: 16 March 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Key Research & Development Program (No. 2020YFA0714703), National Science Foundation of China (Nos. 62071008 and U21A6004), and Ji Hua Laboratory (No. 2021B0301030003).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return