Journal Home > Volume 2 , Issue 2

The development of an ideal cathode for Li-O2 battery (LOB) has been a great challenge in achieving high discharge capacity, enhanced stability, and longevity. The formation of undesired and irreversible discharge products on the surface of current cathode materials limit the life span of the LOB. In this study, we report the systematic electrochemical study to compare the performance of LOB employing a unique graphitic nanostructured carbon architecture, i.e., vertically aligned carbon nanofiber (VACNF) arrays, as the cathode materials. Transition metal (Ni) and noble metal alloy (PtRu) are further deposited on the VACNF array as electrocatalysts to improve the discharge/charge processes at the cathode. The structure of as-prepared electrodes was examined with the field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS). The LOB with VACNF-Ni electrode delivered the highest specific and areal discharge capacities (14.92 Ah·g−1, 4.32 mAh·cm−2) at 0.1 mA·cm−2 current density as compared with VACNF-PtRu (9.07 Ah·g−1, 2.62 mAh·cm−2), bare VACNF (5.55 Ah·g−1, 1.60 mAh·cm−2) and commercial Vulcan XC (3.83 Ah·g−1, 1.91 mAh·cm−2). Cycling stability tests revealed the superior performance of VACNF-PtRu with 27 cycles as compared with VACNF-Ni (13 cycles), VACNF (8 cycles), and Vulcan XC (3 cycles). The superior cycling stability of VACNF-PtRu can be attributed to its ability to suppress the formation of Li2CO3 during the discharge cycle, as elucidated by XPS analysis of discharged samples. We also investigated the impact of carbon cloth and carbon fiber as cathode electrode substrate on the performance of LOB.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Binder-free Li-O2 battery cathodes using Ni- and PtRu-coated vertically aligned carbon nanofibers as electrocatalysts for enhanced stability

Show Author's information Syed Shoaib Hassan Zaidi1Sabari Rajendran2Archana Sekar2Ayyappan Elangovan2Jun Li2Xianglin Li1,3( )
Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA

Abstract

The development of an ideal cathode for Li-O2 battery (LOB) has been a great challenge in achieving high discharge capacity, enhanced stability, and longevity. The formation of undesired and irreversible discharge products on the surface of current cathode materials limit the life span of the LOB. In this study, we report the systematic electrochemical study to compare the performance of LOB employing a unique graphitic nanostructured carbon architecture, i.e., vertically aligned carbon nanofiber (VACNF) arrays, as the cathode materials. Transition metal (Ni) and noble metal alloy (PtRu) are further deposited on the VACNF array as electrocatalysts to improve the discharge/charge processes at the cathode. The structure of as-prepared electrodes was examined with the field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS). The LOB with VACNF-Ni electrode delivered the highest specific and areal discharge capacities (14.92 Ah·g−1, 4.32 mAh·cm−2) at 0.1 mA·cm−2 current density as compared with VACNF-PtRu (9.07 Ah·g−1, 2.62 mAh·cm−2), bare VACNF (5.55 Ah·g−1, 1.60 mAh·cm−2) and commercial Vulcan XC (3.83 Ah·g−1, 1.91 mAh·cm−2). Cycling stability tests revealed the superior performance of VACNF-PtRu with 27 cycles as compared with VACNF-Ni (13 cycles), VACNF (8 cycles), and Vulcan XC (3 cycles). The superior cycling stability of VACNF-PtRu can be attributed to its ability to suppress the formation of Li2CO3 during the discharge cycle, as elucidated by XPS analysis of discharged samples. We also investigated the impact of carbon cloth and carbon fiber as cathode electrode substrate on the performance of LOB.

Keywords: stability, cathodes, Ni, lithium oxygen battery, vertically aligned carbon nanofibers, PtRu

References(60)

[1]

Zaidi, S. S. H.; Li, X. L. Comparing the electrochemical performance of organic and ionic liquid-based electrolytes in lithium-oxygen battery. ECS Meet. Abstr. 2021, MA2021-02, 144.

[2]

Wang, F. Z.; Li, X. L.; Hao, X. W.; Tan, J. Y. Review and recent advances in mass transfer in positive electrodes of aprotic Li-O2 batteries. ACS Appl. Energy Mater. 2020, 3, 2258–2270.

[3]

Wang, F. Z.; Kahol, P. K.; Gupta, R.; Li, X. L. Experimental studies of carbon electrodes with various surface area for Li-O2 batteries. J. Electrochem. Energy Convers. Storage 2019, 16, 041007.

[4]

Zhou, Y.; Yan, D. F.; Gu, Q. F.; Zhu, S. H.; Wang, L.; Peng, H. G.; Zhao, Y. Implanting cation vacancies in Ni-Fe LDHs for efficient oxygen evolution reactions of lithium-oxygen batteries. Appl. Catal. B: Environ. 2021, 285, 119792.

[5]

Zou, X. H.; Lu, Q.; Liao, K. M.; Shao, Z. P. Towards practically accessible aprotic Li-air batteries: Progress and challenges related to oxygen-permeable membranes and cathodes. Energy Storage Mater. 2022, 45, 869–902.

[6]

Dong, Y.; Li, S. W.; Hong, S. S.; Wang, L.; Wang, B. Metal-organic frameworks and their derivatives for Li-air batteries. Chin. Chem. Lett. 2020, 31, 635–642.

[7]

Balaish, M.; Jung, J. W.; Kim, I. D.; Ein-Eli, Y. A critical review on functionalization of air-cathodes for nonaqueous Li-O2 Batteries. Adv. Funct. Mater. 2020, 30, 1808303.

[8]

Ren, Y. X.; Zhao, T. S.; Tan, P.; Wei, Z. H.; Zhou, X. L. Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions. Appl. Energy 2017, 187, 706–716.

[9]

Bae, Y.; Ko, D. H.; Lee, S.; Lim, H. D.; Kim, Y. J.; Shim, H. S.; Park, H. J.; Ko, Y.; Park, S. K.; Kwon, H. J. et al. Enhanced stability of coated carbon electrode for Li-O2 batteries and its limitations. Adv. Energy Mater. 2018, 8, 1702661.

[10]

Ren, M. Q.; Zhang, J. B.; Zhang, C. H.; Stanford, M. G.; Chyan, Y.; Yao, Y.; Tour, J. M. Quasi-solid-state Li-O2 batteries with laser-induced graphene cathode catalysts. ACS Appl. Energy Mater. 2020, 3, 1702–1709.

[11]

Hegde, G. S.; Ghosh, A.; Badam, R.; Matsumi, N.; Sundara, R. Role of defects in low-cost perovskite catalysts toward ORR and OER in lithium-oxygen batteries. ACS Appl. Energy Mater. 2020, 3, 1338–1348.

[12]

Ding, M. J.; Wang, P.; Zhang, Z. W.; Yin, L. W. Metal-organic framework-derived porous NiCo-layered double hydroxide@MnO2 hierarchical nanostructures as catalytic cathodes for long-life Li-O2 batteries. ACS Appl. Energy Mater. 2021, 4, 61–71.

[13]

Zhou, W.; Zhang, H. Z.; Nie, H. J.; Ma, Y. W.; Zhang, Y. N.; Zhang, H. M. Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery. ACS Appl. Mater. Interfaces 2015, 7, 3389–3397.

[14]

Yan, X. N.; Huang, J.; Guo, L. M.; Liu, C. T.; Dong, S. J.; Peng, Z. Q. Interrogating lithium-oxygen battery reactions and chemistry with isotope-labeling techniques: A mini review. Energy Fuels 2021, 35, 4743–4750.

[15]

Nam, J. S.; Jung, J. W.; Youn, D. Y.; Cho, S. H.; Cheong, J. Y.; Kim, M. S.; Song, S. W.; Kim, S. J.; Kim, I. D. Free-standing carbon nanofibers protected by a thin metallic iridium layer for extended life-cycle Li-oxygen batteries. ACS Appl. Mater. Interfaces 2020, 12, 55756–55765.

[16]

Jung, C. Y.; Zhao, T. S.; Zeng, L.; Tan, P. Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries. J. Power Sources 2016, 331, 82–90.

[17]

Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J.; Zhang, J. G. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487.

[18]
Zaidi, S. S. H.; Sigdel, S.; Sorensen, C. M.; Kwon, G.; Li, X. L. Incorporation of novel graphene nanosheet materials as cathode catalysts in Li-O2 battery. J. Electrochem. Energy Convers. Storage, in press, DOI: 10.1115/1.4056937.
DOI
[19]

Yu, R. M.; Fan, W. G.; Guo, X. X.; Dong, S. M. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries. J. Power Sources 2016, 306, 402–407.

[20]

Song, M. J.; Kim, I. T.; Kim, Y. B.; Shin, M. W. Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries. Electrochim. Acta 2015, 182, 289–296.

[21]

Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958.

[22]

Song, M. J.; Shin, M. W. Fabrication and characterization of carbon nanofiber@mesoporous carbon core-shell composite for the Li-air battery. Appl. Surf. Sci. 2014, 320, 435–440.

[23]

Rahman, M. A.; Wang, X. J.; Wen, C. E. A review of high energy density lithium-air battery technology. J. Appl. Electrochem. 2014, 44, 5–22.

[24]

Ding, Y. J.; Li, Y. J.; Wu, M.; Zhao, H.; Li, Q.; Wu, Z. S. Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries. Energy Storage Mater. 2020, 31, 470–491.

[25]

Jung, W. B.; Park, H.; Jang, J. S.; Kim, D. Y.; Kim, D. W.; Lim, E.; Kim, J. Y.; Choi, S. Suk, J.; Kang. Y. K. et al. Polyelemental nanoparticles as catalysts for a Li-O2 battery. ACS Nano 2021, 15, 4235–4244.

[26]

Qin, Y.; Lu, J.; Du, P.; Chen, Z. H.; Ren, Y.; Wu, T. P.; Miller, J. T.; Wen, J. G.; Miller, D. J.; Zhang, Z. C. et al. In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries. Energy Environ. Sci. 2013, 6, 519–531.

[27]

Li, Y. J.; Qin, J. Q.; Ding, Y. J.; Ma, J. X.; Das, P.; Liu, H. Q.; Wu, Z. S.; Bao, X. H. Two-dimensional Mn3O4 nanosheets with dominant (101) crystal planes on graphene as efficient oxygen catalysts for ultrahigh capacity and long-life Li-O2 batteries. ACS Catal. 2022, 12, 12765–12773.

[28]

Shui, J. L.; Du, F.; Xue, C. M.; Li, Q.; Dai, L. M. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries. ACS Nano 2014, 8, 3015–3022.

[29]

Chang, Z. W.; Xu, J. J.; Zhang, X. B. Recent progress in electrocatalyst for Li‐O2 batteries. Adv. Energy Mater. 2017, 7, 1700875.

[30]

Ko, B. K.; Kim, M. K.; Kim, S. H.; Lee, M. A.; Shim, S. E.; Baeck, S. H. Synthesis and electrocatalytic properties of various metals supported on carbon for lithium-air battery. J. Mol. Catal. A:Chem. 2013, 379, 9–14.

[31]

Wu, F.; Xing, Y.; Bi, X. X.; Yuan, Y. F.; Wang, H. H.; Shahbazian-Yassar, R.; Li, L.; Chen, R. J.; Lu, J.; Amine, K. Systematic study on the discharge product of Pt-based lithium oxygen batteries. J. Power Sources 2016, 332, 96–102.

[32]

Yang, Y.; Liu, W.; Wang, Y. M.; Wang, X. C.; Xiao, L.; Lu, J. T.; Zhuang, L. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: Performance improvement through Li2O2 morphology control. Phys. Chem. Chem. Phys. 2014, 16, 20618–20623.

[33]

Li, J. X.; Chen, L.; Ye, R. L.; Gao, J. G.; Huang, W. J.; Lin, Y. B.; Huang, Z. G. Improved lithium-O2 battery performance enabled by catalysts of yolk-shell Fe3O4@C mixed with Pt-Ru nanoparticles. Appl. Surf. Sci. 2020, 507, 145103.

[34]

Huang, J. Q.; Zhang, B.; Xie, Y. Y.; Lye, W. W. K.; Xu, Z. L.; Abouali, S.; Akbari Garakani, M.; Huang, J. Q.; Zhang, T. Y.; Huang, B. L. et al. Electrospun graphitic carbon nanofibers with in-situ encapsulated Co-Ni nanoparticles as freestanding electrodes for Li-O2 batteries. Carbon 2016, 100, 329–336.

[35]

Chen, Y. Z.; Elangovan, A.; Zeng, D. L.; Zhang, Y. F.; Ke, H. Z.; Li, J.; Sun, Y. B.; Cheng, H. S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries. Adv. Funct. Mater. 2020, 30, 1906444.

[36]

Li, J.; Pandey, G. P. Advanced physical chemistry of carbon nanotubes. Annu. Rev. Phys. Chem. 2015, 66, 331–356.

[37]

Shu, C. Z.; Liu, Y. H.; Long, J. P.; Chen, X. F.; Su, Y. 3D array of Bi2S3 nanorods supported on Ni foam as a highly efficient integrated oxygen electrode for the lithium-oxygen battery. Part. Part. Syst. Charact. 2018, 35, 1700433.

[38]

Li, J. X.; Zhao, Y.; Zou, M. Z.; Wu, C. X.; Huang, Z. G.; Guan, L. H. An effective integrated design for enhanced cathodes of Ni foam-supported Pt/carbon nanotubes for Li-O2 batteries. ACS Appl. Mater. Interfaces 2014, 6, 12479–12485.

[39]

Zhu, T. J.; Li, X. Y.; Zhang, Y.; Yuan, M. W.; Sun, Z. M.; Ma, S. L.; Li, H. F.; Sun, G. B. Three-dimensional reticular material NiO/Ni-graphene foam as cathode catalyst for high capacity lithium-oxygen battery. J. Electroanal. Chem. 2018, 823, 73–79.

[40]

Radhakrishnan, V.; Haridoss, P. Differences in structure and property of carbon paper and carbon cloth diffusion media and their impact on proton exchange membrane fuel cell flow field design. Mater. Des. 2011, 32, 861–868.

[41]

Jiang, H. R.; Zeng, Y. K.; Wu, M. C.; Shyy, W.; Zhao, T. S. A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries. Appl. Energy 2019, 240, 226–235.

[42]

Forner-Cuenca, A.; Penn, E. E.; Oliveira, A. M.; Brushett, F. R. Exploring the role of electrode microstructure on the performance of non-aqueous redox flow batteries. J. Electrochem. Soc. 2019, 166, A2230–A2241.

[43]

Wang, F. Z.; Li, X. L. Effects of the electrode wettability on the deep discharge capacity of Li-O2 batteries. ACS Omega 2018, 3, 6006–6012.

[44]

Mohazabrad, F.; Wang, F. Z.; Li, X. L. In fluence of the oxygen electrode open ratio and electrolyte evaporation on the performance of Li-O2 batteries. ACS Appl. Mater. Interfaces 2017, 9, 15459–15469.

[45]

Elangovan, A.; Xu, J. Y.; Brown, E.; Liu, B.; Li, J. Fundamental electrochemical insights of vertically aligned carbon nanofiber architecture as a catalyst support for ORR. J. Electrochem. Soc. 2020, 167, 066523.

[46]

Elangovan, A.; Xu, J. Y.; Sekar, A.; Liu, B.; Li, J. Enhancing methanol oxidation reaction with platinum-based catalysts using a N-doped three-dimensional graphitic carbon support. ChemCatChem 2020, 12, 6000–6012.

[47]

Xu, W.; Hu, J. Z.; Engelhard, M. H.; Towne, S. A.; Hardy, J. S.; Xiao, J.; Feng, J.; Hu, M. Y.; Zhang, J.; Ding, F. et al. The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries. J. Power Sources 2012, 215, 240–247.

[48]

Holade, Y.; Morais, C.; Servat, K.; Napporn, T. W.; Kokoh, K. B. Enhancing the available specific surface area of carbon supports to boost the electroactivity of nanostructured Pt catalysts. Phys. Chem. Chem. Phys. 2014, 16, 25609–25620.

[49]

El-Kharouf, A.; Mason, T. J.; Brett, D. J. L.; Pollet, B. G. Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells. J. Power Sources 2012, 218, 393–404.

[50]

Allioux, F. M.; Kapruwan, P.; Milne, N.; Kong, L. X.; Fattaccioli, J.; Chen, Y.; Dumée, L. F. Electro-capture of heavy metal ions with carbon cloth integrated microfluidic devices. Sep. Purif. Technol. 2018, 194, 26–32.

[51]

Ribadeneyra, M. C.; Grogan, L.; Au, H.; Schlee, P.; Herou, S.; Neville, T.; Cullen, P. L.; Kok, M. D. R.; Hosseinaei, O.; Danielsson, S. et al. Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries. Carbon 2020, 157, 847–856.

[52]

Park, S.; Popov, B. N. Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance. Fuel 2011, 90, 436–440.

[53]

Zaidi, S. S. H.; Li, X. L. Effects of oxygen cathode substrates with various carbon catalysts on the discharge capacity of lithium-oxygen battery. ECS Meet. Abstr. 2021, MA2021-01, 350.

[54]

Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries. J. Power Sources 2016, 329, 247–254.

[55]

Tenny, K. M.; Forner-Cuenca, A.; Chiang, Y. M.; Brushett, F. R. Comparing physical and electrochemical properties of different weave patterns for carbon cloth electrodes in redox flow batteries. J. Electrochem. Energy Convers. Storage 2020, 17, 041010.

[56]

Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

[57]

Schroeder, M. A.; Pearse, A. J.; Kozen, A. C.; Chen, X. Y.; Gregorczyk, K.; Han, X. G.; Cao, A. Y.; Hu, L. B.; Lee, S. B.; Rubloff, G. W. et al. Investigation of the cathode-catalyst-electrolyte interface in aprotic Li-O2 batteries. Chem. Mater. 2015, 27, 5305–5313.

[58]

Wood, K. N.; Teeter, G. XPS on Li-battery-related compounds: Analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 2018, 1, 4493–4504.

[59]

Wong, R. A.; Dutta, A.; Yang, C. Z.; Yamanaka, K.; Ohta, T.; Nakao, A.; Waki, K.; Byon, H. R. Structurally tuning Li2O2 by controlling the surface properties of carbon electrodes: Implications for Li-O2 batteries. Chem. Mater. 2016, 28, 8006–8015.

[60]

Yue, K.; Zhai, C. X.; Gu, S. N.; Yeo, J.; Zhou, G. W. The effect of ionic liquid-based electrolytes for dendrite-inhibited and performance-boosted lithium metal batteries. Electrochim. Acta 2022, 401, 139527.

File
0055_ESM.pdf (386 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 January 2023
Revised: 10 February 2023
Accepted: 11 February 2023
Published: 24 February 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

S. S. H. Z. and X. L. L. highly appreciate the support from the National Science Foundation (Nos. 1833048 and 1941083). The work by J. L.’s group is partially supported by the National Science Foundation under grant (No. CBET-2054754).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return