Journal Home > Volume 2 , Issue 2

Borophene, as a rising-star monoelemental two-dimensional (2D) material, has motivated great interest because of its novel properties, such as anisotropic plasmonics, high carrier mobility, mechanical compliance, optical transparency, ultrahigh thermal conductance, and superconductivity. These properties make it an ideal candidate for use in the field of energy, sensors, and information storage. Stimulated by the realization of pioneering experimental works in 2015 and the follow-up synthesis experiments, a series of high-performance borophene-based devices in the fields, including supercapacitors, batteries, hydroelectric generators, humidity sensors, gas sensors, pressure sensors, and memories, have been experimentally reported in recent years, which are beneficial to the transition of borophene-based materials from experimental synthesis to practical application. Therefore, in addition to paying attention to the experimental preparation of borophene, significant efforts are needed to promote the advancement of related applications of borophene. In this review, after providing a brief overview of borophene evolution and synthesis, we mainly summarize the applications of borophene-based materials in energy storage, energy conversion, energy harvesting, sensors, and information storage. Finally, based on the current research status, some rational suggestions and discussions on the issues and challenges in the future research direction are proposed.


menu
Abstract
Full text
Outline
About this article

Borophene-based materials for energy, sensors and information storage applications

Show Author's information Chuang HouGuoan TaiYi LiuZitong WuXinchao LiangXiang Liu
The State Key Laboratory of Mechanics and Control of Mechanical Structures and Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Borophene, as a rising-star monoelemental two-dimensional (2D) material, has motivated great interest because of its novel properties, such as anisotropic plasmonics, high carrier mobility, mechanical compliance, optical transparency, ultrahigh thermal conductance, and superconductivity. These properties make it an ideal candidate for use in the field of energy, sensors, and information storage. Stimulated by the realization of pioneering experimental works in 2015 and the follow-up synthesis experiments, a series of high-performance borophene-based devices in the fields, including supercapacitors, batteries, hydroelectric generators, humidity sensors, gas sensors, pressure sensors, and memories, have been experimentally reported in recent years, which are beneficial to the transition of borophene-based materials from experimental synthesis to practical application. Therefore, in addition to paying attention to the experimental preparation of borophene, significant efforts are needed to promote the advancement of related applications of borophene. In this review, after providing a brief overview of borophene evolution and synthesis, we mainly summarize the applications of borophene-based materials in energy storage, energy conversion, energy harvesting, sensors, and information storage. Finally, based on the current research status, some rational suggestions and discussions on the issues and challenges in the future research direction are proposed.

Keywords: energy storage, sensors, energy, borophene, energy conversion, information storage

References(140)

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[3]

Chen, X. Y.; Fan, K.; Liu, Y.; Li, Y.; Liu, X. Y.; Feng, W.; Wang, X. Recent advances in fluorinated graphene from synthesis to applications: Critical review on functional chemistry and structure engineering. Adv. Mater. 2022, 34, 2101665.

[4]

Urso, M.; Ussia, M.; Novotný, F.; Pumera, M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 2022, 13, 3573.

[5]

Mayorga-Burrezo, P.; Muñoz, J.; Zaoralová, D.; Otyepka, M.; Pumera, M. Multiresponsive 2D Ti3C2Tx MXene via implanting molecular properties. ACS Nano 2021, 15, 10067–10075.

[6]

Vaghasiya, J. V.; Mayorga-Martinez, C. C.; Vyskočil, J.; Sofer, Z.; Pumera, M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-phase WS2 nanosheets. Adv. Funct. Mater. 2020, 30, 2003673.

[7]

Chia, H. L.; Mayorga-Martinez, C. C.; Antonatos, N.; Sofer, Z.; Gonzalez-Julian, J. J.; Webster, R. D.; Pumera, M. MXene titanium carbide-based biosensor: Strong dependence of exfoliation method on performance. Anal. Chem. 2020, 92, 2452–2459.

[8]

Chhowalla, M.; Liu, Z. F.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586.

[9]

Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

[10]

Chen, T. A.; Chuu, C. P.; Tseng, C. C.; Wen, C. K.; Wong, H. S. P.; Pan, S. Y.; Li, R. T.; Chao, T. A.; Chueh, W. C.; Zhang, Y. F. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223.

[11]

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; Del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN, and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

[12]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[13]

Vaghasiya, J. V.; Křípalová, K.; Hermanová, S.; Mayorga-Martinez, C. C.; Pumera, M. Real-time biomonitoring device based on 2D black phosphorus and polyaniline nanocomposite flexible supercapacitors. Small 2021, 17, 2102337.

[14]

Qiu, M.; Ren, W. X.; Jeong, T.; Won, M.; Park, G. Y.; Sang, D. K.; Liu, L. P.; Zhang, H.; Kim, J. S. Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 2018, 47, 5588–5601.

[15]

Gusmao, R.; Sofer, Z.; Pumera, M. Black phosphorus rediscovered: From bulk material to monolayers. Angew. Chem. , Int. Ed. 2017, 56, 8052–8072.

[16]

Ng, S.; Sturala, J.; Vyskocil, J.; Lazar, P.; Martincova, J.; Plutnar, J.; Pumera, M. Two-dimensional functionalized germananes as photoelectrocatalysts. ACS Nano 2021, 15, 11681–11693.

[17]

Chia, H. L.; Sturala, J.; Webster, R. D.; Pumera, M. Functionalized 2D germanene and silicene enzymatic system. Adv. Funct. Mater. 2021, 31, 2011125.

[18]

Maric, T.; Beladi-Mousavi, S. M.; Khezri, B.; Sturala, J.; Nasir, M. Z. M.; Webster, R. D.; Sofer, Z.; Pumera, M. Functional 2D germanene fluorescent coating of microrobots for micromachines multiplexing. Small 2020, 16, 1902365.

[19]

Muñoz, J.; Palacios-Corella, M.; Gómez, I. J.; Zajíčková, L.; Pumera, M. Synthetic nanoarchitectonics of functional organic–inorganic 2D germanane heterostructures via click chemistry. Adv. Mater. 2022, 34, 2206382.

[20]

Rosli, N. F.; Rohaizad, N.; Sturala, J.; Fisher, A. C.; Webster, R. D.; Pumera, M. Siloxene, germanane, and methylgermanane: Functionalized 2D materials of group 14 for electrochemical applications. Adv. Funct. Mater. 2020, 30, 1910186.

[21]

Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

[22]

Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349–1358.

[23]

Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

[24]

Mannix, A. J.; Zhang, Z. H.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444–450.

[25]

Sun, X.; Liu, X. F.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X. C.; Yu, M. L.; Li, J. D.; Tai, G. A. et al. Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 2017, 27, 1603300.

[26]

Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Polyphony in B flat. Nat. Chem. 2016, 8, 525–527.

[27]

Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem. , Int. Ed. 2015, 54, 15473–15477.

[28]

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

[29]

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

[30]

Xie, S. Y.; Wang, Y. L.; Li, X. B. Flat boron: A new cousin of graphene. Adv. Mater. 2019, 31, 1900392.

[31]

Liu, L. R.; Zhang, Z. H.; Liu, X. L.; Xuan, X. Y.; Yakobson, B. I.; Hersam, M. C.; Guo, W. L. Borophene concentric superlattices via self-assembly of twin boundaries. Nano Lett. 2020, 20, 1315–1321.

[32]

Penev, E. S.; Kutana, A.; Yakobson, B. I. Can Two-dimensional boron superconduct?. Nano Lett. 2016, 16, 2522–2526.

[33]

Hou, C.; Tai, G. A.; Wu, Z. H.; Hao, J. Q. Borophene: Current status, challenges and opportunities. ChemPlusChem 2020, 85, 2186–2196.

[34]

Kaneti, Y. V.; Benu, D. P.; Xu, X. T.; Yuliarto, B.; Yamauchi, Y.; Golberg, D. Borophene: Two-dimensional boron monolayer: Synthesis, properties, and potential applications. Chem. Rev. 2022, 122, 1000–1051.

[35]

Nasir, M. Z. M.; Pumera, M. Emerging mono-elemental 2D nanomaterials for electrochemical sensing applications: From borophene to bismuthene. TrAC Trends Anal. Chem. 2019, 121, 115696.

[36]

Wu, X. J.; Dai, J.; Zhao, Y.; Zhuo, Z. W.; Yang, J. L.; Zeng, X. C. Two-dimensional boron monolayer sheets. ACS Nano 2012, 6, 7443–7453.

[37]

Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem. , Int. Ed. 2020, 59, 10819–10825.

[38]

Wu, Z. H.; Tai, G. A.; Shao, W.; Wang, R.; Hou, C. Experimental realization of quasicubic boron sheets. Nanoscale 2020, 12, 3787–3794.

[39]

Wu, Z. H.; Tai, G. A.; Liu, R. S.; Hou, C.; Shao, W.; Liang, X. C.; Wu, Z. T. Van der Waals epitaxial growth of borophene on a mica substrate toward a high-performance photodetector. ACS Appl. Mater. Interfaces 2021, 13, 31808–31815.

[40]

Wu, Z. H.; Tai, G. A.; Liu, R. S.; Shao, W.; Hou, C.; Liang, X. C. Synthesis of borophene on quartz towards hydroelectric generators. J. Mater. Chem. A 2022, 10, 8218–8226.

[41]

Tai, G. A.; Xu, M. P.; Hou, C.; Liu, R. S.; Liang, X. C.; Wu, Z. T. Borophene nanosheets as high-efficiency catalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 60987–60994.

[42]

Jiang, H. R.; Lu, Z. H.; Wu, M. C.; Ciucci, F.; Zhao, T. S. Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 2016, 23, 97–104.

[43]

Huang, T. H.; Tian, B. W.; Guo, J. Y.; Shu, H. B.; Wang, Y.; Dai, J. Semiconducting borophene as a promising anode material for Li-ion and Na-ion batteries. Mater. Sci. Semicond. Process. 2019, 89, 250–255.

[44]

Cheng, T.; Lang, H. F.; Li, Z. Z.; Liu, Z. F.; Liu, Z. R. Anisotropic carrier mobility in two-dimensional materials with tilted Dirac cones: Theory and application. Phys. Chem. Chem. Phys. 2017, 19, 23942–23950.

[45]

Zhang, J. J.; Altalhi, T.; Yang, J. H.; Yakobson, B. I. Semiconducting α'-boron sheet with high mobility and low all-boron contact resistance: A first-principles study. Nanoscale 2021, 13, 8474–8480.

[46]

Shen, J. L.; Yang, Z.; Wang, Y. T.; Xu, L. C.; Liu, R. P.; Liu, X. G. The gas sensing performance of borophene/MoS2 heterostructure. Appl. Surf. Sci. 2020, 504, 144412.

[47]

Shukla, V.; Wärnå, J.; Jena, N. K.; Grigoriev, A.; Ahuja, R. Toward the realization of 2D borophene based gas sensor. J. Phys. Chem. C 2017, 121, 26869–26876.

[48]

Nagarajan, V.; Chandiramouli, R. Borophene nanosheet molecular device for detection of ethanol-a first-principles study. Comput. Theor. Chem. 2017, 1105, 52–60.

[49]

Huang, C. S.; Murat, A.; Babar, V.; Montes, E.; Schwingenschlögl, U. Adsorption of the gas molecules NH3, NO, NO2, and CO on borophene. J. Phys. Chem. C 2018, 122, 14665–14670.

[50]

Chen, Y. L.; Yu, G. T.; Chen, W.; Liu, Y. P.; Li, G. D.; Zhu, P. W.; Tao, Q.; Li, Q. J.; Liu, J. W.; Shen, X. P. et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 12370–12373.

[51]

Shi, L.; Ling, C. Y.; Ouyang, Y. X.; Wang, J. L. High intrinsic catalytic activity of two-dimensional boron monolayers for the hydrogen evolution reaction. Nanoscale 2017, 9, 533–537.

[52]

Li, H. L.; Jing, L.; Liu, W. W.; Lin, J. J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 2018, 12, 1262–1272.

[53]

Chahal, S.; Ranjan, P.; Motlag, M.; Yamijala, S. S. R. K. C.; Late, D. J.; Sadki, E. H. S.; Cheng, G. J.; Kumar, P. Borophene via micromechanical exfoliation. Adv. Mater. 2021, 33, 2102039.

[54]

Liang, X. C.; Hao, J. Q.; Zhang, P. Y.; Hou, C.; Tai, G. A. Freestanding α-rhombohedral borophene nanosheets: Preparation and memory device application. Nanotechnology 2022, 33, 505601.

[55]

Abdi, Y.; Mazaheri, A.; Hajibaba, S.; Darbari, S.; Rezvani, S. J.; Cicco, A. D.; Paparoni, F.; Rahighi, R.; Gholipour, S.; Rashidi, A. et al. A two-dimensional borophene supercapacitor. ACS Materials Lett. 2022, 4, 1929–1936.

[56]

Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Freestanding borophene and its hybrids. Adv. Mater. 2019, 31, 1900353.

[57]

Hou, C.; Tai, G. A.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophene–graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344.

[58]

Hou, C.; Tai, G. A.; Liu, Y.; Wu, Z. T.; Wu, Z. H.; Liang, X. C. Ultrasensitive humidity sensing and the multifunctional applications of borophene–MoS2 heterostructures. J. Mater. Chem. A 2021, 9, 13100–13108.

[59]

Tai, G. A.; Liu, B.; Hou, C.; Wu, Z. T.; Liang, X. C. Ultraviolet photodetector based on p-borophene/n-ZnO heterojunction. Nanotechnology 2021, 32, 505606.

[60]

Liu, R. S.; Hou, C.; Liang, X. C.; Wu, Z. T.; Tai, G. A. Borophene–ZnO heterostructures: Preparation and application as broadband photonic nonvolatile memory. Nano Res., in press, DOI: 10.1007/s12274-022-5185-6.

[61]

Wu, Z. T.; Yin, Y. H.; Hou, C.; Tai, G. A. Borophene reinforcing copper matrix composites: Preparation and mechanical properties. J. Alloys Compd. 2023, 930, 167370.

[62]

Lin, H. J.; Shi, H. D.; Wang, Z.; Mu, Y. W.; Li, S. D.; Zhao, J. J.; Guo, J. W.; Yang, B.; Wu, Z. S.; Liu, F. Scalable production of freestanding few-layer β12-borophene single crystalline sheets as efficient electrocatalysts for lithium-sulfur batteries. ACS Nano 2021, 15, 17327–17336.

[63]

Ding, J. W.; Zheng, H. Y.; Wang, S. W.; Ji, X. Y. Hydrogenated borophene nanosheets based multifunctional quasi-solid-state electrolytes for lithium metal batteries. J. Colloid Interfacs Sci. 2022, 615, 79–86.

[64]

Wang, X. F.; Tai, G. A.; Wu, Z. H.; Hu, T. S.; Wang, R. Ultrathin molybdenum boride films for highly efficient catalysis of the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 23471–23475.

[65]

Xu, M. P.; Wang, R.; Bian, K.; Hou, C.; Wu, Y. X.; Tai, G. A. Triclinic boron nanosheets high-efficient electrocatalysts for water splitting. Nanotechnology 2022, 33, 075601.

[66]

Chen, K.; Wang, Z. M.; Wang, L.; Wu, X. Z.; Hu, B. J.; Liu, Z.; Wu, M. H. Boron nanosheet-supported Rh catalysts for hydrogen evolution: A new territory for the strong metal–support interaction effect. Nano-Micro Lett. 2021, 13, 138.

[67]

Saad, A.; Liu, D. Q.; Wu, Y. C.; Song, Z. Q.; Li, Y.; Najam, T.; Zong, K.; Tsiakaras, P.; Cai, X. K. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B: Environ. 2021, 298, 120529.

[68]

Hou, C.; Tai, G. A.; Liu, Y.; Liu, X. Borophene gas sensor. Nano Res. 2022, 15, 2537–2544.

[69]

Hou, C.; Tai, G. A.; Liu, Y.; Liu, R. S.; Liang, X. C.; Wu, Z. T.; Wu, Z. H. Borophene pressure sensing for electronic skin and human–machine interface. Nano Energy 2022, 97, 107189.

[70]

Ma, D. T.; Wang, R.; Zhao, J. L.; Chen, Q. Y.; Wu, L. M.; Li, D. L.; Su, L. M.; Jiang, X. T.; Luo, Z. Q.; Ge, Y. Q. et al. A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale 2020, 12, 5313–5323.

[71]

Shao, W.; Tai, G. A.; Hou, C.; Wu, Z. H.; Wu, Z. T.; Liang, X. C. Borophene-functionalized magnetic nanoparticles: Synthesis and memory device application. ACS Appl. Electron. Mater. 2021, 3, 1133–1141.

[72]

Boustani, I. Systematic ab initio investigation of bare boron clusters: mDetermination of the geometryand electronic structures of Bn (n = 2–14). Phys. Rev. B 1997, 55, 16426–16438.

[73]

Szwacki, N. G.; Sadrzadeh, A.; Yakobson, B. I. B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 2007, 98, 166804.

[74]

Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.

[75]

Yang, X. B.; Ding, Y.; Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Phys. Rev. B 2008, 77, 041402.

[76]

Penev, E. S.; Artyukhov, V. I.; Ding, F.; Yakobson, B. I. Unfolding the fullerene: Nanotubes, graphene and poly-elemental varieties by simulations. Adv. Mater. 2012, 24, 4956–4976.

[77]

Liu, Y. Y.; Penev, E. S.; Yakobson, B. I. Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. , Int. Ed. 2013, 52, 3156–3159.

[78]

Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 2012, 12, 2441–2445.

[79]

Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. , Int. Ed. 2015, 54, 13022–13026.

[80]

Zhang, Z. H.; Mannix, A. J.; Liu, X. L.; Hu, Z. L.; Guisinger, N. P.; Hersam, M. C.; Yakobson, B. I. Near-equilibrium growth from borophene edges on silver. Sci. Adv. 2019, 5, eaax0246.

[81]

Jiao, Y. L.; Ma, F. X.; Bell, J.; Bilic, A.; Du, A. J. Two-dimensional boron hydride sheets: High stability, massless dirac fermions, and excellent mechanical properties. Angew. Chem. , Int. Ed. 2016, 55, 10292–10295.

[82]

Kou, L. Z.; Ma, Y. D.; Tang, C.; Sun, Z. Q.; Du, A. J.; Chen, C. F. Auxetic and ferroelastic borophane: A novel 2D material with negative Possion's ratio and switchable dirac transport channels. Nano Lett. 2016, 16, 7910–7914.

[83]

Wang, Z. Q.; Lü, T. Y.; Wang, H. Q.; Feng, Y. P.; Zheng, J. C. High anisotropy of fully hydrogenated borophene. Phys. Chem. Chem. Phys. 2016, 18, 31424–31430.

[84]

Xu, Y.; Zhang, P. K.; Xuan, X. Y.; Xue, M. M.; Zhang, Z. H.; Guo, W. L.; Yakobson, B. I. Borophane polymorphs. J. Phys. Chem. Lett. 2022, 13, 1107–1113.

[85]

Xu, Y.; Xuan, X. Y.; Yang, T. F.; Zhang, Z. H.; Li, S. D.; Guo, W. L. Quasi-freestanding bilayer borophene on Ag(111). Nano Lett. 2022, 22, 3488–3494.

[86]

Li, W. B.; Kong, L. J.; Chen, C. Y.; Gou, J.; Sheng, S. X.; Zhang, W. F.; Li, H.; Chen, L.; Cheng, P.; Wu, K. H. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286.

[87]

Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

[88]

Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.

[89]

Vinogradov, N. A.; Lyalin, A.; Taketsugu, T.; Vinogradov, A. S.; Preobrajenski, A. Single-phase borophene on Ir(111): Formation, structure, and decoupling from the support. ACS Nano 2019, 13, 14511–14518.

[90]

Omambac, K. M.; Petrović, M.; Bampoulis, P.; Brand, C.; Kriegel, M. A.; Dreher, P.; Janoschka, D.; Hagemann, U.; Hartmann, N.; Valerius, P. et al. Segregation-enhanced epitaxy of borophene on Ir(111) by thermal decomposition of borazine. ACS Nano 2021, 15, 7421–7429.

[91]

Nishino, H.; Fujita, T.; Cuong, N. T.; Tominaka, S.; Miyauchi, M.; Iimura, S.; Hirata, A.; Umezawa, N.; Okada, S.; Nishibori, E. et al. Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange. J. Am. Chem. Soc. 2017, 139, 13761–13769.

[92]

Kawamura, R.; Cuong, N. T.; Fujita, T.; Ishibiki, R.; Hirabayashi, T.; Yamaguchi, A.; Matsuda, I.; Okada, S.; Kondo, T.; Miyauchi, M. Photoinduced hydrogen release from hydrogen boride sheets. Nat. Commun. 2019, 10, 4880.

[93]

Tao, Y. Q.; Wang, Q.; Ji, S. S.; Wang, Y.; Zhou, Q. Y.; Huang, Z. D.; Li, H.; Huang, X.; Chen, B.; Li, S. Z. A solvent decomposition and explosion approach for boron nanoplate synthesis. Chem. Commun. 2021, 57, 4922–4925.

[94]

Li, Q. C.; Kolluru, V. S. C.; Rahn, M. S.; Schwenker, E.; Li, S. W.; Hennig, R. G.; Darancet, P.; Chan, M. K. Y.; Hersam, M. C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148.

[95]

Liu, X. L.; Hersam, M. C. Borophene–graphene heterostructures. Sci. Adv. 2019, 5, eaax6444.

[96]

Li, Q. C.; Liu, X. L.; Aklile, E. B.; Li, S. W.; Hersam, M. C. Self-assembled borophene/graphene nanoribbon mixed-dimensional heterostructures. Nano Lett. 2021, 21, 4029–4035.

[97]

Liu, X. L.; Li, Q. C.; Ruan, Q. Y.; Rahn, M. S.; Yakobson, B. I.; Hersam, M. C. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. 2022, 21, 35–40.

[98]

Chen, C. Y.; Lv, H. F.; Zhang, P.; Zhuo, Z. W.; Wang, Y.; Ma, C.; Li, W. B.; Wang, X. G.; Feng, B. J.; Cheng, P. et al. Synthesis of bilayer borophene. Nat. Chem. 2022, 14, 25–31.

[99]

Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

[100]

Zhang, P. P.; Wang, F. X.; Yu, M. H.; Zhuang, X. D.; Feng, X. L. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem. Soc. Rev. 2018, 47, 7426–7451.

[101]

Ju, Z. Y.; Zhang, X.; Wu, J. Y.; Yu, G. H. Vertically aligned two-dimensional materials-based thick electrodes for scalable energy storage systems. Nano Res. 2021, 14, 3562–3575.

[102]

Mendoza-Sánchez, B.; Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 2016, 28, 6104–6135.

[103]

Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew. Chem. , Int. Ed. 2022, 61, e202116282.

[104]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size?. Adv. Mater. 2021, 34, 2107836.

[105]

Chen, T. T.; Wang, F. F.; Cao, S.; Bai, Y.; Zheng, S. S.; Li, W. T.; Zhang, S. T.; Hu, S. X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 2022, 34, 2201779.

[106]

Zhu, J. Y.; Childress, A. S.; Karakaya, M.; Dandeliya, S.; Srivastava, A.; Lin, Y.; Rao, A. M.; Podila, R. Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices. Adv. Mater. 2016, 28, 7185–7192.

[107]

Shi, H. D.; Qin, J. Q.; Huang, K.; Lu, P. F.; Zhang, C. F.; Dong, Y. F.; Ye, M.; Liu, Z. M.; Wu, Z. S. A two-dimensional mesoporous polypyrrole–graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem. , Int. Ed. 2020, 59, 12147–12153.

[108]

Li, L.; Chen, L.; Mukherjee, S.; Gao, J.; Sun, H.; Liu, Z. B.; Ma, X. L.; Gupta, T.; Singh, C. V.; Ren, W. C. et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1602734.

[109]

Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388.

[110]

Jiang, H. R.; Shyy, W.; Liu, M.; Ren, Y. X.; Zhao, T. S. Borophene and defective borophene as potential anchoring materials for lithium-sulfur batteries: A first-principles study. J. Mater. Chem. A 2018, 6, 2107–2114.

[111]

Zhang, L.; Liang, P.; Shu, H. B.; Man, X. L.; Li, F.; Huang, J.; Dong, Q. M.; Chao, D. L. Borophene as efficient sulfur hosts for lithium-sulfur batteries: suppressing shuttle effect and improving conductivity. J. Phys. Chem. C 2017, 121, 15549–15555.

[112]

Rao, D. W.; Zhang, L. Y.; Meng, Z. S.; Zhang, X. R.; Wang, Y. H.; Qiao, G. J.; Shen, X. Q.; Xia, H.; Liu, J. H.; Lu, R. F. Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. J. Mater. Chem. A 2017, 5, 2328–2338.

[113]

Chen, Y.; Zhang, X.; Zhang, D. C.; Yu, P.; Ma, Y. W. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 2011, 49, 573–580.

[114]

Lei, Z. B.; Liu, Z. H.; Wang, H. J.; Sun, X. X.; Lu, L.; Zhao, X. S. A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte. J. Mater. Chem. A 2013, 1, 2313–2321.

[115]

Li, C.; Liu, B. W.; Jiang, N. Y.; Ding, Y. Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. Nano Res. Energy, 2022, 1, e9120031.

[116]

Liu, C. W.; Dai, Z. X.; Zhang, J.; Jin, Y. G.; Li, D. S.; Sun, C. H. Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. J. Phys. Chem. C 2018, 122, 19051–19055.

[117]

Xu, X. W.; Si, R. H.; Dong, Y.; Li, L. L.; Zhang, M. H.; Wu, X. Y.; Zhang, J.; Fu, K.; Guo, Y.; He, Y. Y. Borophene-supported single transition metal atoms as potential oxygen evolution/reduction electrocatalysts: A density functional theory study. J. Mol. Model. 2021, 27, 67.

[118]

Singh, Y.; Back, S.; Jung, Y. Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Phys. Chem. Chem. Phys. 2018, 20, 21095–21104.

[119]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009.

[120]

Li, L.; Hu, L. P.; Li, J.; Wei, Z. D. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 2015, 8, 418–440.

[121]

Yan, X. X.; Gu, M. Y.; Wang, Y.; Xu, L.; Tang, Y. W.; Wu, R. B. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Res. 2020, 13, 975–982.

[122]

Zhang, Z.; Li, X. P.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Han, X. P.; Hu, W. B. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem. , Int. Ed. 2020, 59, 7245–7250.

[123]

Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

[124]

Tang, W.; Chen, B. D.; Wang, Z. L. Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 2019, 29, 1901069.

[125]

Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598.

[126]

Liu, J.; Jiang, X. T.; Zhang, R. Y.; Zhang, Y.; Wu, L. M.; Lu, W.; Li, J. Q.; Li, Y. C.; Zhang, H. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019, 29, 1807326.

[127]

Someya, T.; Amagai, M. Toward a new generation of smart skins. Nat. Biotechnol. 2019, 37, 382–388.

[128]

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

[129]

Bediako, D. K.; Rezaee, M.; Yoo, H.; Larson, D. T.; Zhao, S. Y. F.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T. L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425–429.

[130]

Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

[131]

Liu, X. L.; Wei, Z. H.; Balla, I.; Mannix, A. J.; Guisinger, N. P.; Luijten, E.; Hersam, M. C. Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci. Adv. 2017, 3, e1602356.

[132]

Popov, V. I.; Nikolaev, D. V.; Timofeev, V. B.; Smagulova, S. A.; Antonova, I. V. Graphene-based humidity sensors: The origin of alternating resistance change. Nanotechnology 2017, 28, 355501.

[133]

Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z., Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.

[134]

Erande, M. B.; Pawar, M. S.; Late, D. J. Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548–11556.

[135]

Phan, D. T.; Park, I.; Park, A. R.; Park, C. M.; Jeon, K. J. Black P/graphene hybrid: A fast response humidity sensor with good reversibility and stability. Sci. Rep. 2017, 7, 10561.

[136]

Tan, C. L.; Liu, Z. D.; Huang, W.; Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 2615–2628.

[137]

Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544.

[138]

Liu, J. Q.; Zeng, Z. Y.; Cao, X. H.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8, 3517–3522.

[139]

Zhang, P. Y.; Hou, C.; Shao, W.; Liu, R. S.; Wu, Z. T.; Tai, G. A. Crystalline BC2N quantum dots. Nano Res., in press, DOI: 10.1007/s12274-022-5284-4.

[140]

Hao, J. Q.; Tai, G. A.; Zhou, J. X.; Wang, R.; Hou, C.; Guo, W. L. Crystalline semiconductor boron quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 17669–17675.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 November 2022
Revised: 27 December 2022
Accepted: 28 December 2022
Published: 09 February 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61774085), Natural Science Foundation of Jiangsu Province (No. BK20201300), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics (NUAA)) (No. MCMS-I-0420G02), the Fundamental Research Funds for the Central Universities (No. NP2022401), the Fund of Prospective Layout of Scientific Research for NUAA (No. ILA22009), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Funding for Outstanding Doctoral Dissertation in NUAA (No. BCXJ22-02), the Interdisciplinary Innovation Fund for Doctoral Students of Nanjing University of Aeronautics and Astronautics (No. KXKCXJJ202201), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX22_0329).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return