Journal Home > Volume 2 , Issue 1

Li metal has been recognized as the most promising anode materials for next-generation high-energy-density batteries, however, the inherent issues of dendrite growth and huge volume fluctuations upon Li plating/stripping normally result in fast capacity fading and safety concerns. Functionalized Cu current collectors have so far exhibited significant regulatory effects on stabilizing Li metal anodes (LMAs), and hold a great practical potential owing to their easy fabrication, low-cost and good compatibility with the existing battery technology. In this review, a comprehensive overview of Cu-based current collectors, including planar modified Cu foil, 3D architectured Cu foil and nanostructured 3D Cu substrates, for Li metal batteries is provided. Particularly, the design principles and strategies of functionalized Cu current collectors associated with their functionalities in optimizing Li plating/stripping behaviors are discussed. Finally, the critical issues where there is incomplete understanding and the future research directions of Cu current collectors in practical LMAs are also prospected. This review may shed light on the critical understanding of current collector engineering for high-energy-density Li metal batteries.


menu
Abstract
Full text
Outline
About this article

Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes

Show Author's information Yuhang Liu1,§Yifan Li1,§Jinmeng Sun1Zhuzhu Du1Xiaoqi Hu1Jingxuan Bi1Chuntai Liu4Wei Ai1( )Qingyu Yan2,3( )
Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Institute of Materials Research and Engineering, A*STAR, 138634 Singapore
Key Laboratory of Materials Processing and Mold Ministry of Education, Zhengzhou University, Zhengzhou 450002, China

§ Yuhang Liu and Yifan Li contributed equally to this work.

Abstract

Li metal has been recognized as the most promising anode materials for next-generation high-energy-density batteries, however, the inherent issues of dendrite growth and huge volume fluctuations upon Li plating/stripping normally result in fast capacity fading and safety concerns. Functionalized Cu current collectors have so far exhibited significant regulatory effects on stabilizing Li metal anodes (LMAs), and hold a great practical potential owing to their easy fabrication, low-cost and good compatibility with the existing battery technology. In this review, a comprehensive overview of Cu-based current collectors, including planar modified Cu foil, 3D architectured Cu foil and nanostructured 3D Cu substrates, for Li metal batteries is provided. Particularly, the design principles and strategies of functionalized Cu current collectors associated with their functionalities in optimizing Li plating/stripping behaviors are discussed. Finally, the critical issues where there is incomplete understanding and the future research directions of Cu current collectors in practical LMAs are also prospected. This review may shed light on the critical understanding of current collector engineering for high-energy-density Li metal batteries.

Keywords: functionalization, Li metal batteries, Cu current collectors, lithiophilic modification, Li plating/stripping

References(291)

[1]

Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278.

[2]

Chi, X. W.; Li, M. L.; Di, J. C.; Bai, P.; Song, L. N.; Wang, X. X.; Li, F.; Liang, S.; Xu, J. J.; Yu, J. H. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021, 592, 551–557.

[3]

Ma, X. T.; Azhari, L.; Wang, Y. Li-ion battery recycling challenges. Chem 2021, 7, 2843–2847.

[4]

Yuan, S. Y.; Kong, T. Y.; Zhang, Y. Y.; Dong, P.; Zhang, Y. J.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem., Int. Ed. 2021, 60, 25624–25638.

[5]

Ai, W.; Huang, Z. N.; Wu, L. S.; Du, Z. Z.; Zou, C. J.; He, Z. Y.; Shahbazian-Yassar, R.; Huang, W.; Yu, T. High-rate, long cycle-life Li-ion battery anodes enabled by ultrasmall tin-based nanoparticles encapsulation. Energy Storage Mater. 2018, 14, 169–178.

[6]

Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-Ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186–6192.

[7]

Yoon, K.; Lee, S.; Oh, K.; Kang, K. Challenges and strategies towards practically feasible solid-state lithium metal batteries. Adv. Mater. 2022, 34, 2104666.

[8]

Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv. Mater. 2021, 33, 2004959.

[9]

Zhang, Y. J.; Wu, Y.; Li, H. Y.; Chen, J. H.; Lei, D. N.; Wang, C. X. A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nat. Commun. 2022, 13, 1297.

[10]

Sun, J. M.; Du, Z. Z.; Liu, Y. H.; Ai, W.; Wang, K.; Wang, T.; Du, H. F.; Liu, L.; Huang, W. State-of-the-art and future challenges in high energy lithium-selenium batteries. Adv. Mater. 2021, 33, 2003845.

[11]

Xia, C.; Kwok, C. Y.; Nazar, L. F. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 2018, 361, 777–781.

[12]

Sun, J. M.; Liu, Y. H.; Liu, L.; He, S.; Du, Z. Z.; Wang, K.; Xie, L. H.; Du, H. F.; Ai, W. Expediting sulfur reduction/evolution reactions with integrated electrocatalytic network: A comprehensive kinetic map. Nano Lett. 2022, 22, 3728–3736.

[13]
Whittingham, M. S. Chalcogenide battery. [Li/LiClO4 in tetrahydrofuran + dimethoxyethane/TiS2/ is preferred embodiment]. U.S. Patent US 4009052, February 22, 1977.
[14]

Whittingham, M. S. Lithium titanium disulfide cathodes. Nat. Energy 2021, 6, 214.

[15]

Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

[16]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[17]

Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

[18]

Wang, Q. Y.; Liu, B.; Shen, Y. H.; Wu, J. K.; Zhao, Z. Q.; Zhong, C.; Hu, W. B. Confronting the challenges in lithium anodes for lithium metal batteries. Adv. Sci. 2021, 8, 2101111.

[19]

Li, J. W.; Kong, Z.; Liu, X. X.; Zheng, B. C.; Fan, Q. H.; Garratt, E.; Schuelke, T.; Wang, K. L.; Xu, H.; Jin, H. Strategies to anode protection in lithium metal battery: A review. InfoMat 2021, 3, 1333–1363.

[20]

Wei, C. L.; Zhang, Y. C.; Tian, Y.; Tan, L. W.; An, Y. L.; Qian, Y.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Mater. 2021, 38, 157–189.

[21]

Liu, Y. C.; Gao, D.; Xiang, H. F.; Feng, X. Y.; Yu, Y. Research progress on copper-based current collector for lithium metal batteries. Energy Fuels 2021, 35, 12921–12937.

[22]

Choudhury, R.; Wild, J.; Yang, Y. Engineering current collectors for batteries with high specific energy. Joule 2021, 5, 1301–1305.

[23]

Wang, S. H.; Yue, J. P.; Dong, W.; Zuo, T. T.; Li, J. Y.; Liu, X. L.; Zhang, X. D.; Liu, L.; Shi, J. L.; Yin, Y. X. et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 2019, 10, 4930.

[24]

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

[25]

Guan, X. Z.; Wang, A. X.; Liu, S.; Li, G. J.; Liang, F.; Yang, Y. W.; Liu, X. L.; Luo, J. Y. Controlling nucleation in lithium metal anodes. Small 2018, 14, 1801423.

[26]

Jäckle, M.; Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 2014, 141, 174710.

[27]

Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.

[28]

Ely, D. R.; García, R. E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 2013, 160, A662–A668.

[29]

Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

[30]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[31]

Liu, Y. H.; Sun, J. M.; Hu, X. Q.; Li, Y. F.; Du, H. F.; Wang, K.; Du, Z. Z.; Gong, X.; Ai, W.; Huang, W. Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy 2022, 94, 106883.

[32]

Deng, Y. L.; Gao, J.; Wang, M.; Luo, C. S.; Zhou, C. J. Y.; Wu, M. Q. Homogenizing the Li-ion flux by multi-element alloying modified for 3D dendrite-free lithium anode. Energy Storage Mater. 2022, 48, 114–122.

[33]

Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210.

[34]

Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G. Jr.; Li, H.; Harris, S. J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012, 134, 15476–15487.

[35]

Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 2017, 32, 271–279.

[36]

Zeng, Z. Y.; Liang, W. I.; Liao, H. G.; Xin, H. L.; Chu, Y. H.; Zheng, H. M. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 2014, 14, 1745–1750.

[37]

Shen, X.; Zhang, R.; Shi, P.; Chen, X.; Zhang, Q. How does external pressure shape Li dendrites in Li metal batteries? Adv. Energy Mater. 2021, 11, 2003416.

[38]

Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

[39]

Jin, C. B.; Liu, T. F.; Sheng, O. W.; Li, M.; Liu, T. C.; Yuan, Y. F.; Nai, J. W.; Ju, Z. J.; Zhang, W. K.; Liu, Y. J. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 2021, 6, 378–387.

[40]

Yuan, H. D.; Ding, X. F.; Liu, T. F.; Nai, J. W.; Wang, Y.; Liu, Y. J.; Liu, C. T.; Tao, X. Y. A review of concepts and contributions in lithium metal anode development. Mater. Today 2022, 53, 173–196.

[41]

Boyle, D. T.; Huang, W.; Wang, H. S.; Li, Y. Z.; Chen, H.; Yu, Z. A.; Zhang, W. B.; Bao, Z. N.; Cui, Y. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 2021, 6, 487–494.

[42]

Liu, F.; Xu, R.; Wu, Y. C.; Boyle, D. T.; Yang, A. K.; Xu, J. W.; Zhu, Y. Y.; Ye, Y. S.; Yu, Z. A.; Zhang, Z. W. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 2021, 600, 659–663.

[43]

Gao, R. M.; Yang, H.; Wang, C. Y.; Ye, H.; Cao, F. F.; Guo, Z. P. Fatigue-resistant interfacial layer for safe lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 25508–25513.

[44]

Huang, L.; Lu, T.; Xu, G. J.; Zhang, X. H.; Jiang, Z. X.; Zhang, Z. Q.; Wang, Y. T.; Han, P. X.; Cui, G. L.; Chen, L. Q. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries. Joule 2022, 6, 906–922.

[45]

Johnson, B. A.; White, R. E. Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70, 48–54.

[46]

Zhu, P. C.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. J. Power Sources 2021, 485, 229321.

[47]

Lain, M. J.; Brandon, J.; Kendrick, E. Design strategies for high power vs. High energy lithium ion cells. Batteries 2019, 5, 64.

[48]

Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

[49]

Gu, Y.; Xu, H. Y.; Zhang, X. G.; Wang, W. W.; He, J. W.; Tang, S.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F. et al. Lithiophilic faceted Cu(100) surfaces: High utilization of host surface and cavities for lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 3092–3096.

[50]

Kim, Y. J.; Kwon, S. H.; Noh, H.; Yuk, S.; Lee, H.; Jin, H. S.; Lee, J.; Zhang, J. G.; Lee, S. G.; Guim, H. et al. Facet selectivity of Cu current collector for Li electrodeposition. Energy Storage Mater. 2019, 19, 154–162.

[51]

Ishikawa, K.; Harada, S.; Tagawa, M.; Ujihara, T. Effect of crystal orientation of Cu current collectors on cycling stability of Li metal anodes. ACS Appl. Mater. Interfaces 2020, 12, 9341–9346.

[52]

Zhao, Q.; Deng, Y.; Utomo, N. W.; Zheng, J. X.; Biswal, P.; Yin, J. F.; Archer, L. A. On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nat. Commun. 2021, 12, 6034.

[53]

Kim, J. Y.; Chae, O. B.; Wu, M.; Lim, E.; Kim, G.; Hong, Y. J.; Jung, W. B.; Choi, S.; Kim, D. Y.; Gereige, I. et al. Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy 2021, 82, 105736.

[54]

Røe, I. T.; Schnell, S. K. Slow surface diffusion on Cu substrates in Li metal batteries. J. Mater. Chem. A 2021, 9, 11042–11048.

[55]

Qin, L. G.; Wu, Y. C.; Shen, M. Y.; Song, B. R.; Li, Y. H.; Sun, S. Q.; Zhang, H. Y.; Liu, C. F.; Chen, J. Straining copper foils to regulate the nucleation of lithium for stable lithium metal anode. Energy Storage Mater. 2022, 44, 278–284.

[56]

Zou, P. C.; Wang, Y.; Chiang, S. W.; Wang, X. Y.; Kang, F. Y.; Yang, C. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 2018, 9, 464.

[57]

Park, S.; Ahn, K.; Lim, H. K.; Jin, H. J.; Han, S.; Yun, Y. S. Intagliated Cu substrate containing multifunctional lithiophilic trenches for Li metal anodes. Chem. Eng. J. 2022, 428, 130939.

[58]

Lim, G. J. H.; Lyu, Z.; Zhang, X.; Koh, J. J.; Zhang, Y.; He, C. B.; Adams, S.; Wang, J.; Ding, J. Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 2020, 8, 9058–9067.

[59]

Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 2017, 29, 1703729.

[60]

Jiang, J. M.; Pan, Z. H.; Kou, Z. K.; Nie, P.; Chen, C. L.; Li, Z. W.; Li, S. P.; Zhu, Q.; Dou, H.; Zhang, X. G. et al. Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Mater. 2020, 29, 84–91.

[61]

Liu, Y. M.; Yin, X. G.; Shen, X.; Zou, P. C.; Qin, X. Y.; Yang, C.; Zhang, Q.; Kang, F. Y.; Chen, G. H.; Li, B. H. Horizontal stress release for protuberance-free Li metal anode. Adv. Funct. Mater. 2020, 30, 2002522.

[62]

Dong, W.; Wang, K.; Han, J. L.; Yu, Y.; Liu, G. H.; Li, C.; Tong, P. F.; Li, W. J.; Yang, C. L.; Lu, Z. H. Regulating lithium electrodeposition with laser-structured current collectors for stable lithium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 8417–8425.

[63]

Wang, Y. Y.; Zhao, Z. X.; Zeng, W.; Liu, X. B.; Wang, L.; Zhu, J.; Lu, B. A. Hierarchically porous Cu current collector with lithiophilic CuxO interphase towards high-performance lithium metal batteries. J. Energy Chem. 2021, 58, 292–299.

[64]

Jang, T.; Kang, J. H.; Kim, S.; Shim, M.; Lee, J.; Song, J.; Kim, W.; Ryu, K.; Byon, H. R. Nanometer-scale surface roughness of a 3-D Cu substrate promoting Li nucleation in Li-metal batteries. ACS Appl. Energy Mater. 2021, 4, 2644–2651.

[65]

Li, Z. Q.; Huang, X. L.; Kong, L.; Qin, N.; Wang, Z. Y.; Yin, L. H.; Li, Y. Z.; Gan, Q. M.; Liao, K. M.; Gu, S. et al. Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries. Energy Storage Mater. 2022, 45, 40–47.

[66]

Cipollone, D.; Yang, H.; Yang, F.; Bright, J.; Liu, B.T.; Winch, N.; Wu, N. Q.; Sierros, K. A. 3D printing of an anode scaffold for lithium batteries guided by mixture design-based sequential learning. J. Mater. Process. Technol. 2021, 295, 117159.

[67]

Wang, Y.; Tan, J.; Li, Z. H.; Ma, L. L.; Liu, Z.; Ye, M. X.; Shen, J. F. Recent progress on enhancing the Lithiophilicity of hosts for dendrite-free lithium metal batteries. Energy Storage Mater. 2022, 53, 156–182.

[68]

Heine, J.; Krüger, S.; Hartnig, C.; Wietelmann, U.; Winter, M.; Bieker, P. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 2014, 4, 1300815.

[69]

Cao, Z. J.; Li, B.; Yang, S. B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 2019, 31, 1901310.

[70]

Zhu, M. G.; Xu, K. L.; Li, D. Y.; Xu, T.; Sun, W.; Zhu, Y. C.; Qian, Y. T. Guiding smooth Li plating and stripping by a spherical island model for lithium metal anodes. ACS Appl. Mater. Interfaces 2020, 12, 38098–38105.

[71]

Du, J. M.; Wang, W. Y.; Wan, M. T.; Wang, X. C.; Li, G. C.; Tan, Y. C.; Li, C. H.; Tu, S. B.; Sun, Y. M. Doctor-blade casting fabrication of ultrathin Li metal electrode for high-energy-density batteries. Adv. Energy Mater. 2021, 11, 2102259.

[72]

Jung, W. B.; Chae, O. B.; Kim, M.; Kim, Y.; Hong, Y. J.; Kim, J. Y.; Choi, S.; Kim, D. Y.; Moon, S.; Suk, J. et al. Effect of highly periodic Au nanopatterns on dendrite suppression in lithium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 60978–60986.

[73]

Cui, S. Q.; Zhai, P. B.; Yang, W. W.; Wei, Y.; Xiao, J.; Deng, L. B.; Gong, Y. J. Large-scale modification of commercial copper foil with lithiophilic metal layer for Li metal battery. Small 2020, 16, 1905620.

[74]

Hou, Z.; Yu, Y. K.; Wang, W. H.; Zhao, X. X.; Di, Q.; Chen, Q. W.; Chen, W.; Liu, Y. L.; Quan, Z. W. Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode. ACS Appl. Mater. Interfaces 2019, 11, 8148–8154.

[75]

Cho, K. Y.; Hong, S. H.; Kwon, J.; Song, H. Y.; Kim, S.; Jo, S.; Eom, K. Effects of a nanometrically formed lithiophilic silver@copper current collector on the electrochemical nucleation and growth behaviors of lithium metal anodes. Appl. Surf. Sci. 2021, 554, 149578.

[76]

Fan, M.; Chen, B.; Wang, K.; Yu, Q.; Ding, Y.; Lei, Z.; Liu, F.; Shen, Y.; He, G. Robust silver nanowire membrane with high porosity to construct stable Li metal anodes. Mater. Today Energy 2021, 21, 100751.

[77]

Zhang, N.; Yu, S. H.; Abruña, H. D. Regulating lithium nucleation and growth by zinc modified current collectors. Nano Res. 2020, 13, 45–51.

[78]

He, D. Q.; Cui, W. J.; Liao, X. B.; Xie, X. F.; Mao, M. H.; Sang, X. H.; Zhai, P. C.; Zhao, Y.; Huang, Y. H.; Zhao, W. Y. Electronic localization derived excellent stability of Li metal anode with ultrathin alloy. Adv. Sci. 2022, 9, 2105656.

[79]

Zhang, S. M.; Yang, G. J.; Liu, Z. P.; Weng, S. T.; Li, X. Y.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett. 2021, 6, 4118–4126.

[80]

Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, S. Y.; Wang, H. Y. A facile annealing strategy for achieving in situ controllable Cu2O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes. J. Mater. Chem. A 2018, 6, 18444–18448.

[81]

Li, Q.; Pan, H. Y.; Li, W. J.; Wang, Y.; Wang, J. Y.; Zheng, J. Y.; Yu, X. Q.; Li, H.; Chen, L. Q. Homogeneous interface conductivity for lithium dendrite-free anode. ACS Energy Lett. 2018, 3, 2259–2266.

[82]

Jin, D.; Roh, Y.; Jo, T.; Shin, D. O.; Song, J.; Kim, J. Y.; Lee, Y. G.; Lee, H.; Ryou, M. H.; Lee, Y. M. Submicron interlayer for stabilizing thin Li metal powder electrode. Chem. Eng. J. 2021, 406, 126834.

[83]

Yin, D. M.; Wang, Z. M.; Li, Q.; Xue, H. J.; Cheng, Y.; Wang, L. M.; Huang, G. In situ growth of lithiophilic MOF layer enabling dendrite-free lithium deposition. iScience 2020, 23, 101869.

[84]

Um, J. H.; Kim, K.; Park, J.; Sung, Y.; Yu, S. H. Revisiting the strategies for stabilizing lithium metal anodes. J. Mater. Chem. A 2020, 8, 13874–13895.

[85]

Ghazi, Z. A.; Sun, Z. H.; Sun, C. G.; Qi, F. L.; An, B. G.; Li, F.; Cheng, H. M. Key aspects of lithium metal anodes for lithium metal batteries. Small 2019, 15, 1900687.

[86]

Chen, Y. Q.; Xu, X. Y.; Gao, L. W.; Yu, G. Y.; Kapitanova, O. O.; Xiong, S. Z.; Volkov, V. S.; Song, Z.X.; Liu, Y. Y. Two birds with one stone: Using indium oxide surficial modification to tune inner helmholtz plane and regulate nucleation for dendrite-free lithium anode. Small Methods 2022, 6, 2200113.

[87]

Oyakhire, S. T.; Zhang, W. B.; Shin, A.; Xu, R.; Boyle, D. T.; Yu, Z. A.; Ye, Y. S.; Yang, Y. F.; Raiford, J. A.; Huang, W. et al. Electrical resistance of the current collector controls lithium morphology. Nat. Commun. 2022, 13, 3986.

[88]

Zhuang, D. M.; Huang, X. L.; Chen, Z. H.; Gong, H.; Sheng, L.; Song, L.; Wang, T.; He, J. P. The synergistic effect of Cu2O and boric acid forming solid electrolyte interphase layer to restrain the dendritic growth. J. Power Sources 2020, 458, 228055.

[89]

Schönherr, K.; Schumm, B.; Hippauf, F.; Lissy, R.; Althues, H.; Leyens, C.; Kaskel, S. Liquid lithium metal processing into ultrathin metal anodes for solid state batteries. Chem. Eng. J. Adv. 2022, 9, 100218.

[90]

Hu, M. F.; Yuan, Y.; Guo, M.; Pan, Y. K.; Long, D. H. A substrate-influenced three-dimensional unoriented dispersion pathway for dendrite-free lithium metal anodes. J. Mater. Chem. A 2018, 6, 14910–14918.

[91]

Oyakhire, S. T.; Huang, W.; Wang, H. S.; Boyle, D. T.; Schneider, J. R.; de Paula, C.; Wu, Y. C.; Cui, Y.; Bent, S. F. Revealing and elucidating ALD-derived control of lithium plating microstructure. Adv. Energy Mater. 2020, 10, 2002736.

[92]

Tan, L.; Li, X. L.; Liu, T. C.; Li, X. H. Atomic layer deposition-strengthened lithiophilicity of ultrathin TiO2 film decorated Cu foil for stable lithium metal anode. J. Power Sources 2020, 463, 228157.

[93]

Zhu, Y.; Meng, F. P.; Sun, N. N.; Huai, L. Y.; Wang, M. Q.; Ren, F. H.; Li, Z. D.; Peng, Z.; Huang, F.; Gu, H. et al. Suppressing sponge-like Li deposition via AlN-modified substrate for stable Li metal anode. ACS Appl. Mater. Interfaces 2019, 11, 42261–42270.

[94]

Ma, Y. T.; Li, L.; Wang, L. L.; Qian, J.; Hu, X.; Qu, W. J.; Wang, Z. H.; Luo, R.; Fu, S. Y.; Wu, F. et al. A mixed modified layer formed in situ to protect and guide lithium plating/stripping behavior. ACS Appl. Mater. Interfaces 2020, 12, 31411–31418.

[95]

Ye, H.; Xin, S.; Yin, Y. X.; Guo, Y. G. Advanced porous carbon materials for high-efficient lithium metal anodes. Adv. Energy Mater. 2017, 7, 1700530.

[96]

Zhang, S. S.; Fan, X. L.; Wang, C. S. Efficient and stable cycling of lithium metal enabled by a conductive carbon primer layer. Sustainable Energy Fuels 2018, 2, 163–168.

[97]

Sun, J. M.; Liu, Y. H.; Du, H. F.; He, S.; Liu, L.; Fu, Z. Q.; Xie, L. H.; Ai, W.; Huang, W. Molecularly designed N, S co-doped carbon nanowalls decorated on graphene as a highly efficient sulfur reservoir for Li-S batteries: A supramolecular strategy. J. Mater. Chem. A 2020, 8, 5449–5457.

[98]

Chen, M. X.; Cheng, L. W.; Chen, J. C.; Zhou, Y.; Liang, J. D.; Dong, S.; Chen, M.; Wang, X. T.; Wang, H. Facile and scalable modification of a Cu current collector toward uniform li deposition of the Li metal anode. ACS Appl. Mater. Interfaces 2020, 12, 3681–3687.

[99]

Luan, X. Y.; Wang, C. G.; Wang, C. S.; Gu, X.; Yang, J.; Qian, Y. T. Stable lithium deposition enabled by an acid-treated g-C3N4 interface layer for a lithium metal anode. ACS Appl. Mater. Interfaces 2020, 12, 11265–11272.

[100]

Wang, K.; Li, X. D.; Wang, N.; Yang, Z.; Gao, J.; He, J. J.; Zhang, Y. L.; Huang, C. S. Lithiophilicity acetylene bonds induced nucleation and deposition of dendrite-free lithium metal anode. ACS Appl. Energy Mater. 2020, 3, 2623–2633.

[101]

Fan, Y. C.; Zhao, Y.; Li, S.; Liu, Y.; Lv, Y.; Zhu, Y.; Xiang, R.; Maruyama, S.; Zhang, H.; Zhang, Q. F. Altering polythiophene derivative substrates to explore the mechanism of heterogeneous lithium nucleation for dendrite-free lithium metal anodes. J. Energy Chem. 2021, 59, 63–68.

[102]

Wen, Z. X.; Fang, W. Q.; Chen, L.; Guo, Z. W.; Zhang, N.; Liu, X. H.; Chen, G. Anticorrosive copper current collector passivated by self-assembled porous membrane for highly stable lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2104930.

[103]

Ni, X. Y.; Liu, J.; Ji, H. Q.; Chen, L. B.; Qian, T.; Yan, C. L. Ordered lithium ion channels of covalent organic frameworks with lithiophilic groups enable uniform and efficient Li plating/stripping. J. Energy Chem. 2021, 61, 135–140.

[104]

Jiang, Z. G.; Liu, T. F.; Yan, L. J.; Liu, J.; Dong, F. F.; Ling, M.; Liang, C. D.; Lin, Z. Metal-organic framework nanosheets-guided uniform lithium deposition for metallic lithium batteries. Energy Storage Mater. 2018, 11, 267–273.

[105]

Chen, H.; Yang, Y. F.; Boyle, D. T.; Jeong, Y. K.; Xu, R.; de Vasconcelos, L. S.; Huang, Z. J.; Wang, H. S.; Wang, H. X.; Huang, W. X. et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 2021, 6, 790–798.

[106]

Park, S. H.; Jun, D.; Lee, G. H.; Lee, S. G.; Lee, Y. J. Toward high-performance anodeless batteries based on controlled lithium metal deposition: A review. J. Mater. Chem. A 2021, 9, 14656–14681.

[107]

Li, X. C.; Jiang, H. L.; Liu, Y.; Guo, X. L.; He, G. H.; Chu, Z.; Yu, G. H. Hierarchically porous membranes for lithium rechargeable batteries: Recent progress and opportunities. EcoMat 2022, 4, e12162.

[108]

Su, T. T.; Le, J. B.; Ren, W. F.; Zhang, S. J.; Yuan, J. M.; Wang, K.; Shao, C. Y.; Li, J. T.; Sun, S. G.; Sun, R. C. Heteroatom-rich polymers as a protective film to control lithium growth for high-performance lithium-metal batteries. J. Power Sources 2022, 521, 230949.

[109]

Han, Z. Y.; Zhang, C.; Lin, Q. W.; Zhang, Y. B.; Deng, Y. Q.; Han, J. W.; Wu, D. C.; Kang, F. Y.; Yang, Q. H.; Lv, W. A protective layer for lithium metal anode: Why and how. Small Methods 2021, 5, 2001035.

[110]

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

[111]

Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

[112]

Liu, X. Y.; Liu, Z. J.; Yang, H.; Qing, P.; Wei, W. F.; Ji, X. B.; Chen, Y. J.; Chen, L. B. Uniform lithium deposition induced by double lithiophobic sandwich structure for stable lithium metal anode. Adv. Mater. Interfaces 2022, 9, 2200011.

[113]

Xie, J.; Liao, L.; Gong, Y. J.; Li, Y. B.; Shi, F. F.; Pei, A.; Sun, J.; Zhang, R. F.; Kong, B.; Subbaraman, R. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 2017, 3, eaao3170.

[114]

Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.

[115]

Tamwattana, O.; Park, H.; Kim, J.; Hwang, I.; Yoon, G.; Hwang, T. H.; Kang, Y. S.; Park, J.; Meethong, N.; Kang, K. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 2021, 6, 4416–4425.

[116]

Li, J. H.; Cai, Y. F.; Wu, H. M.; Yu, Z. A.; Yan, X. Z.; Zhang, Q. H.; Gao, T. Z.; Liu, K.; Jia, X. D.; Bao, Z. A. Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003239.

[117]

Zheng, G. Y.; Wang, C.; Pei, A.; Lopez, J.; Shi, F. F.; Chen, Z.; Sendek, A. D.; Lee, H. W.; Lu, Z. D.; Schneider, H. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 2016, 1, 1247–1255.

[118]

Zhou, H. Y.; Yu, S. C.; Liu, H. D.; Liu, P. Protective coatings for lithium metal anodes: Recent progress and future perspectives. J. Power Sources 2020, 450, 227632.

[119]

Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

[120]

Xu, B. Q.; Zhai, H. W.; Liao, X. B.; Qie, B. Y.; Mandal, J.; Gong, T. Y.; Tan, L. Y.; Yang, X. J.; Sun, K. R.; Cheng, Q. et al. Porous insulating matrix for lithium metal anode with long cycling stability and high power. Energy Storage Mater. 2019, 17, 31–37.

[121]

Yan, Y.; Shu, C. Z.; Zheng, R. X.; Li, M. L.; Ran, Z. Q.; He, M.; Hu, A. J.; Zeng, T.; Xu, H. Y.; Zeng, Y. Modulating Sand's time by ion-transport-enhancement toward dendrite-free lithium metal anode. Nano Res. 2022, 15, 3150–3160.

[122]

Chen, A. L.; Shang, N.; Ouyang, Y.; Mo, L. L.; Zhou, C. Y.; Tjiu, W. W.; Lai, F. L.; Miao, Y. E.; Liu, T. X. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. eScience 2022, 2, 192–200.

[123]

Jeon, Y.; Kang, S. J.; Joo, S. H.; Cho, M.; Park, S. O.; Liu, N.; Kwak, S. K.; Lee, H. W.; Song, H. K. Pyridinic-to-graphitic conformational change of nitrogen in graphitic carbon nitride by lithium coordination during lithium plating. Energy Storage Mater. 2020, 31, 505–514.

[124]

Xiong, X. S.; Yan, W. Q.; Zhu, Y. S.; Liu, L. L.; Fu, L. J.; Chen, Y. H.; Yu, N. F.; Wu, Y. P.; Wang, B.; Xiao, R. Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Adv. Energy Mater. 2022, 12, 2103112.

[125]

Yang, D.; Li, J.; Yang, F.; Li, J.; He, L.; Zhao, H. N.; Wei, L. Y.; Wang, Y. Z.; Wang, X. D.; Wei, Y. J. A rigid-flexible protecting film with surface pits structure for dendrite-free and high-performance lithium metal anode. Nano Lett. 2021, 21, 7063–7069.

[126]

Huang, M. S.; Yao, Z. G.; Wu, Q. P.; Zheng, Y. J.; Liu, J. J.; Li, C. L. Robustness-heterogeneity-induced ultrathin 2D structure in Li plating for highly reversible Li-metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 46132–46145.

[127]

Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

[128]

Zhou, S.; Zhang, Y. F.; Chai, S. M.; Usman, I.; Qiao, Y.; Luo, S. Z.; Xie, X. F.; Chen, J.; Liang, S. Q.; Pan, A. Q. et al. Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chem. Eng. J. 2021, 404, 126508.

[129]

He, Y.; Xu, H. W.; Shi, J. L.; Liu, P. Y.; Tian, Z. Q.; Dong, N.; Luo, K.; Zhou, X. F.; Liu, Z. P. Polydopamine coating layer modified current collector for dendrite-free Li metal anode. Energy Storage Mater. 2019, 23, 418–426.

[130]

Sun, X.R.; Yang, S. H.; Zhang, T.; Shi, Y. B.; Dong, L.; Ai, G.; Li, D. J.; Mao, W. F. Regulating Li-ion flux with a high-dielectric hybrid artificial SEI for stable Li metal anodes. Nanoscale 2022, 14, 5033–5043.

[131]

Lang, J. L.; Song, J. A.; Qi, L. H.; Luo, Y. Z.; Luo, X. Y.; Wu, H. Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode. ACS Appl. Mater. Interfaces 2017, 9, 10360–10365.

[132]

Shen, F.; Wang, K. M.; Yin, Y. T.; Shi, L.; Zeng, D. Y.; Han, X. G. PAN/PI functional double-layer coating for dendrite-free lithium metal anodes. J. Mater. Chem. A 2020, 8, 6183–6189.

[133]

Sahalie, N. A.; Wondimkun, Z. T.; Su, W. N.; Weret, M. A.; Fenta, F. W.; Berhe, G. B.; Huang, C. J.; Hsu, Y. C.; Hwang, B. J. Multifunctional properties of Al2O3/polyacrylonitrile composite coating on Cu to suppress dendritic growth in anode-free Li-metal battery. ACS Appl. Energy Mater. 2020, 3, 7666–7679.

[134]

Weng, Y. T.; Liu, H. W.; Pei, A.; Shi, F. F.; Wang, H. S.; Lin, C. Y.; Huang, S. S.; Su, L. Y.; Hsu, J. P.; Fang, C. C. et al. An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte. Nat. Commun. 2019, 10, 5824.

[135]

Nan, Y.; Li, S. M.; Han, C.; Yan, H. B.; Ma, Y. X.; Liu, J. H.; Yang, S. B.; Li, B. Interlamellar lithium-ion conductor reformed interface for high performance lithium metal anode. Adv. Funct. Mater. 2021, 31, 2102336.

[136]

Dong, Q. Y.; Hong, B.; Fan, H. L.; Gao, C. H.; Huang, X. J.; Bai, M. H.; Zhou, Y. G.; Lai, Y. Q. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode. Energy Storage Mater. 2022, 45, 1220–1228.

[137]

Fan, L. S.; Guo, Z. K.; Zhang, Y.; Wu, X.; Zhao, C. Y.; Sun, X.; Yang, G. Y.; Feng, Y. J.; Zhang, N. Q. Stable artificial solid electrolyte interphase films for lithium metal anode via metal-organic frameworks cemented by polyvinyl alcohol. J. Mater. Chem. A 2020, 8, 251–258.

[138]

Cui, X. M.; Chu, Y.; Wang, X. H.; Zhang, X. Z.; Li, Y. X.; Pan, Q. M. Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer. ACS Appl. Mater. Interfaces 2021, 13, 44983–44990.

[139]

Wang, W. B.; Yang, Z. H.; Zhang, Y. T.; Wang, A. P.; Zhang, Y. R.; Chen, L. L.; Li, Q.; Qiao, S. L. Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Mater. 2022, 46, 374–383.

[140]

Li, Z. H.; Ji, W. Y.; Wang, T. X.; Zhang, Y. R.; Li, Z.; Ding, X. S.; Han, B. H.; Feng, W. Guiding uniformly distributed Li-ion flux by lithiophilic covalent organic framework interlayers for high-performance lithium metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 22586–22596.

[141]

Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.

[142]

Li, C. F.; Lu, R. C.; Amin, K.; Zhang, B. B.; Liu, H.; Zheng, W.; Guo, J. Z.; Du, P. Y.; Mao, L. J.; Lu, X. Q. et al. Robust anion-shielding metal-organic frameworks based composite interlayers to achieve uniform Li deposition for stable Li-metal anode. ChemElectroChem 2022, 9, e202101596.

[143]

Qian, J.; Li, Y.; Zhang, M. L.; Luo, R.; Wang, F. J.; Ye, Y. S.; Xing, Y.; Li, W. L.; Qu, W. J.; Wang, L. L. et al. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy 2019, 60, 866–874.

[144]

Zeng, T.; Yan, Y.; He, M.; Zheng, R. X.; Du, D. Y.; Ren, L. F.; Zhou, B.; Shu, C. Z. Boosted Li+ transference number enabled via interfacial engineering for dendrite-free lithium metal anodes. Chem. Commun. 2021, 57, 12687–12690.

[145]

Wu, J. Y.; Rao, Z. X.; Liu, X. T.; Shen, Y.; Fang, C.; Yuan, L. X.; Li, Z.; Zhang, W. X.; Xie, X. L.; Huang, Y. H. Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes. Adv. Mater. 2021, 33, 2007428.

[146]

Zhang, K.; Liu, W.; Gao, Y. L.; Wang, X. W.; Chen, Z. X.; Ning, R. Q.; Yu, W.; Li, R. L.; Li, L.; Li, X. et al. A high-performance lithium metal battery with ion-selective nanofluidic transport in a conjugated microporous polymer protective layer. Adv. Mater. 2021, 33, 2006323.

[147]

Stalin, S.; Chen, P. Y.; Li, G. J.; Deng, Y.; Rouse, Z.; Cheng, Y. F.; Zhang, Z. Y.; Biswal, P.; Jin, S.; Baker, S. P. et al. Ultrathin zwitterionic polymeric interphases for stable lithium metal anodes. Matter 2021, 4, 3753–3773.

[148]

Jin, T.; Liu, M.; Su, K.; Lu, Y.; Cheng, G.; Liu, Y.; Li, N. W.; Yu, L. Polymer zwitterion-based artificial interphase layers for stable lithium metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 57489–57496.

[149]

Park, S.; Jin, H. J.; Yun, Y. S. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv. Mater. 2020, 32, 2002193.

[150]

Cheng, Y. F.; Chen, J. B.; Chen, Y. M.; Ke, X.; Li, J.; Yang, Y.; Shi, Z. C. Lithium host: Advanced architecture components for lithium metal anode. Energy Storage Mater. 2021, 38, 276–298.

[151]

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

[152]

Qiu, H. L.; Tang, T. Y.; Asif, M.; Huang, X. X.; Hou, Y. L. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Adv. Funct. Mater. 2019, 29, 1808468.

[153]

Zhang, Z. G.; Xu, X. Y.; Wang, S. W.; Peng, Z.; Liu, M.; Zhou, J. J.; Shen, C.; Wang, D. Y. Li2O-reinforced Cu nanoclusters as porous structure for dendrite-free and long-lifespan lithium metal anode. ACS Appl. Mater. Interfaces 2016, 8, 26801–26808.

[154]

Li, S. B.; He, Q. Q.; Chen, K.; Huang, S. S.; Wu, F.; Wang, G. Q.; Sun, W. F.; Fu, S. Q.; Feng, X. X.; Zhou, Y. et al. Facile chemical fabrication of a three-dimensional copper current collector for stable lithium metal anodes. J. Electrochem. Soc. 2021, 168, 070502.

[155]

Guan, R. Z.; Liu, S.; Wang, C.; Yang, Y. H.; Lu, D. J.; Bian, X. F. Lithiophilic Sn sites on 3D Cu current collector induced uniform lithium plating/stripping. Chem. Eng. J. 2021, 425, 130177.

[156]

Yin, D. M.; Huang, G.; Wang, S. H.; Yuan, D. X.; Wang, X. X.; Li, Q.; Sun, Q. J.; Xue, H. J.; Wang, L. M.; Ming, J. Free-standing 3D nitrogen-carbon anchored Cu nanorod arrays: In situ derivation from a metal-organic framework and strategy to stabilize lithium metal anodes. J. Mater. Chem. A 2020, 8, 1425–1431.

[157]

Ma, X. T.; Liu, Z. T.; Chen, H. L. Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy 2019, 59, 500–507.

[158]

Kim, Y.; Jeong, S.; Bae, H. E.; Tron, A.; Sung, Y. E.; Mun, J.; Kwon, O. J. Electrochemical behavior of residual salts and an effective method to remove impurities in the formation of porous copper electrode for lithium metal batteries. Int. J. Energy Res. 2021, 45, 10738–10745.

[159]

Choi, B. N.; Seo, J. Y.; Kim, B.; Kim, Y. S.; Chung, C. H. Electro-deposition of the lithium metal anode on dendritic copper current collectors for lithium battery application. Appl. Surf. Sci. 2020, 506, 144884.

[160]

Wang, R.; Shi, F. X.; He, X.; Shi, J. Q.; Ma, T.; Jin, S.; Tao, Z. L. Three-dimensional lithiophilic Cu@Sn nanocones for dendrite-free lithium metal anodes. Sci. China Mater. 2021, 64, 1087–1094.

[161]

Tang, Y. P.; Shen, K.; Lv, Z. Y.; Xu, X.; Hou, G. Y.; Cao, H. Z.; Wu, L. K.; Zheng, G. Q.; Deng, Y. D. Three-dimensional ordered macroporous Cu current collector for lithium metal anode: Uniform nucleation by seed crystal. J. Power Sources 2018, 403, 82–89.

[162]

Chen, K. H.; Sanchez, A. J.; Kazyak, E.; Davis, A. L.; Dasgupta, N. P. Synergistic effect of 3D current collectors and ALD surface modification for high Coulombic efficiency lithium metal anodes. Adv. Energy Mater. 2019, 9, 1802534.

[163]

Shi, Y. J.; Wang, Z. B.; Gao, H.; Niu, J. Z.; Ma, W. S.; Qin, J. Y.; Peng, Z. Q.; Zhang, Z. H. A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries. J. Mater. Chem. A 2019, 7, 1092–1098.

[164]

Zhang, D.; Dai, A.; Wu, M.; Shen, K.; Xiao, T.; Hou, G. Y.; Lu, J.; Tang, Y. P. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries. ACS Energy Lett. 2020, 5, 180–186.

[165]

Wu, X.; He, G.; Ding, Y. Dealloyed nanoporous materials for rechargeable lithium batteries. Electrochem. Energy Rev. 2020, 3, 541–580.

[166]

Zhang, W. Y.; Jin, H. X.; Xu, C.; Zhao, S. M.; Du, Y. Q.; Zhang, J. X. Diffusion couples Cu-X (X=Sn, Zn, Al) derived 3D porous current collector for dendrite-free lithium metal battery. J. Power Sources 2019, 440, 227142.

[167]

Chi, S. S.; Wang, Q. R.; Han, B.; Luo, C.; Jiang, Y. D.; Wang, J.; Wang, C. Y.; Yu, Y.; Deng, Y. H. Lithiophilic Zn sites in porous CuZn alloy induced uniform li nucleation and dendrite-free Li metal deposition. Nano Lett. 2020, 20, 2724–2732.

[168]

Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

[169]

An, Y. L.; Fei, H. F.; Zeng, G. F.; Xu, X. Y.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries. Nano Energy 2018, 47, 503–511.

[170]

Liu, H.; Wang, E. R.; Zhang, Q.; Ren, Y. B.; Guo, X. W.; Wang, L.; Li, G. Y.; Yu, H. J. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Mater. 2019, 17, 253–259.

[171]

Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

[172]

Chang, X. S.; Liu, H.; Yang, H.; Di, J.; Tang, W. H.; Fu, H. D.; Li, M. Y.; Liu, R. P. Co-guiding the dendrite-free plating of lithium on lithiophilic ZnO and fluoride modified 3D porous copper for stable Li metal anode. J. Materiomics 2020, 6, 54–61.

[173]

Luo, Y.; He, G. Q. Clusters of CuO nanorods arrays for stable lithium metal anode. J. Mater. Sci. 2020, 55, 9048–9056.

[174]

Qiu, X. G.; Yu, M.; Fan, G. L.; Liu, J. D.; Wang, Y. L.; Zhao, K.; Ding, J. Y.; Cheng, F. Y. Growing nanostructured CuO on copper foil via chemical etching to upgrade metallic lithium anode. ACS Appl. Mater. Interfaces 2021, 13, 6367–6374.

[175]

Gong, Z.; Lian, C.; Wang, P. D.; Huang, K.; Zhu, K.; Ye, K.; Yan, J.; Wang, G. L.; Cao, D. X. Lithiophilic Cu-Li2O matrix on a Cu collector to stabilize lithium deposition for lithium metal batteries. Energy Environ. Mater. 2022, 5, 1270–1277.

[176]

Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 2018, 8, 1703404.

[177]

Luan, J. Y.; Zhang, Q.; Yuan, H. Y.; Sun, D.; Peng, Z. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Plasma-strengthened lithiophilicity of copper oxide nanosheet-decorated Cu foil for stable lithium metal anode. Adv. Sci. 2019, 6, 1901433.

[178]

Wang, X. Y.; Xu, K.; Ke, L. W.; Zhang, Q.; Jin, D. Q.; Shang, H.; Rui, K.; Yan, Y.; Lin, H. J.; Zhu, J. X. Ultrafast microwave polarizing electrons to form vertically aligned metal hybrids as lithiophilic buffer for lithium-metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 16594–16601.

[179]

Sun, C. Y.; Yang, Y. H.; Bian, X. F.; Guan, R. Z.; Wang, C.; Lu, D. J.; Gao, L.; Zhang, D. M. Uniform deposition of Li-metal anodes guided by 3D current collectors with in situ modification of the lithiophilic matrix. ACS Appl. Mater. Interfaces 2021, 13, 48691–48699.

[180]

Wei, L.; Li, L.; Zhao, T.; Zhang, N. X.; Zhao, Y. Y.; Wu, F.; Chen, R. J. MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes. Nanoscale 2020, 12, 9416–9422.

[181]

Shen, H. R.; Qi, F. L.; Li, H. C.; Tang, P.; Gao, X. N.; Yang, S.; Hu, Z. C.; Li, Z. B.; Tan, J.; Bai, S. et al. Ultrafast electrochemical growth of lithiophilic nano-flake arrays for stable lithium metal anode. Adv. Funct. Mater. 2021, 31, 2103309.

[182]

Zhao, M. M.; Huang, X. L.; Zhuang, D. M.; Sheng, L.; Xie, X.; Cao, M.; Pan, J. J.; Fan, H. Y.; He, J. P. Constructing porous nanosphere structure current collector by nitriding for lithium metal batteries. J. Energy Storage 2022, 47, 103665.

[183]

Sun, C. Z.; Lin, A. M.; Li, W. W.; Jin, J.; Sun, Y. Y.; Yang, J. H.; Wen, Z. Y. In situ conversion of Cu3P nanowires to mixed ion/electron-conducting skeleton for homogeneous lithium deposition. Adv. Energy Mater. 2020, 10, 1902989.

[184]

Luo, Z.; Li, S.; Yang, L.; Tian, Y.; Xu, L. Q.; Zou, G. Q.; Hou, H. S.; Wei, W. F.; Chen, L. B.; Ji, X. B. Interfacially redistributed charge for robust lithium metal anode. Nano Energy 2021, 87, 106212.

[185]

Xu, Y. L.; Menon, A. S.; Harks, P. P. R. M. L.; Hermes, D. C.; Haverkate, L. A.; Unnikrishnan, S.; Mulder, F. M. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Mater. 2018, 12, 69–78.

[186]

Li, S. W.; Ma, Y.; Ren, J.; Liu, H. Y.; Zhang, K.; Zhang, Y. Y.; Tang, X. Y.; Wu, W. W.; Sun, C. C.; Wei, B. Q. Integrated, flexible lithium metal battery with improved mechanical and electrochemical cycling stability. ACS Appl. Energy Mater. 2019, 2, 3642–3650.

[187]

Chen, Q. L.; Yang, Y. F.; Zheng, H. F.; Xie, Q. S.; Yan, X. L.; Ma, Y. T.; Wang, L. S.; Peng, D. L. Electrochemically induced highly ion conductive porous scaffolds to stabilize lithium deposition for lithium metal anodes. J. Mater. Chem. A 2019, 7, 11683–11689.

[188]

Gan, R. Y.; Liu, Y. L.; Yang, N.; Tong, C.; Deng, M. M.; Dong, Q.; Tang, X. Y.; Fu, N.; Li, C. P.; Wei, Z. D. Lithium electrodeposited on lithiophilic LTO/Ti3C2 substrate as a dendrite-free lithium metal anode. J. Mater. Chem. A 2020, 8, 20650–20657.

[189]

Huang, Z. Y.; Li, Z.; Zhu, M.; Wang, G. Y.; Yu, F. F.; Wu, M. H.; Xu, G.; Dou, S. X.; Liu, H. K.; Wu, C. Highly stable lithium/sodium metal batteries with high utilization enabled by a holey two-dimensional N-doped TiNb2O7 host. Nano Lett. 2021, 21, 10453–10461.

[190]

Guan, W. Q.; Hu, X. Q.; Liu, Y. H.; Sun, J. M.; He, C.; Du, Z. Z.; Bi, J. X.; Wang, K.; Ai, W. Advances in the emerging gradient designs of Li metal hosts. Research 2022, 2022, 9846537.

[191]

Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Gradient design for high-energy and high-power batteries. Adv. Mater. 2022, 34, 2202780.

[192]

Zhang, L.; Zheng, H. F.; Liu, B.; Xie, Q. S.; Chen, Q. L.; Lin, L.; Lin, J.; Qu, B. H.; Wang, L. S.; Peng, D. L. Homogeneous bottom-growth of lithium metal anode enabled by double-gradient lithiophilic skeleton. J. Energy Chem. 2021, 57, 392–400.

[193]

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

[194]

Ran, Q. W.; Wang, L. P.; Li, L.; Zhao, Y. L.; Lu, Z. G.; Chen, S. Y.; Zou, J.; Chen, P. Y.; Gao, J.; Niu, X. B. 3D oxidized polyacrylonitrile/Ag framework guided bottom-up lithium deposition for dendrite-free lithium metal batteries. Chem. Eng. J. 2021, 426, 130780.

[195]

Fan, L.; Zhuang, H. L.; Zhang, W. D.; Fu, Y.; Liao, Z. H.; Lu, Y. Y. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Adv. Energy Mater. 2018, 8, 1703360.

[196]

Noh, H. J.; Lee, M. H.; Kim, B. G.; Park, J. H.; Lee, S. M.; Choi, J. H. 3D carbon-based porous anode with a pore-size gradient for high-performance lithium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 55227–55234.

[197]

Yi, J. S.; Chen, J. H.; Yang, Z.; Dai, Y.; Li, W. M.; Cui, J.; Ciucci, F.; Lu, Z. H.; Yang, C. L. Facile patterning of laser-induced graphene with tailored Li nucleation kinetics for stable lithium-metal batteries. Adv. Energy Mater. 2019, 9, 1901796.

[198]

Shen, F.; Zhang, F.; Zheng, Y. J.; Fan, Z. Y.; Li, Z. H.; Sun, Z. T.; Xuan, Y. Y.; Zhao, B.; Lin, Z. Q.; Gui, X. C. et al. Direct growth of 3D host on Cu foil for stable lithium metal anode. Energy Storage Mater. 2018, 13, 323–328.

[199]

Fan, H. L.; Dong, Q. Y.; Gao, C. H.; Hong, B.; Zhang, Z. A.; Zhang, K.; Lai, Y. Q. Encapsulating metallic lithium into carbon nanocages which enables a low-volume effect and a dendrite-free lithium metal anode. ACS Appl. Mater. Interfaces 2019, 11, 30902–30910.

[200]

Liu, Y. M.; Qin, X. Y.; Zhang, S. Q.; Huang, Y. L.; Kang, F. Y.; Chen, G. H.; Li, B. H. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Mater. 2019, 18, 320–327.

[201]

Liu, Y. M.; Qin, X. Y.; Zhang, S. Q.; Zhang, L. H.; Kang, F. Y.; Chen, G. H.; Duan, X. F.; Li, B. H. A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. J. Mater. Chem. A 2019, 7, 13225–13233.

[202]

Chen, M.; Zheng, J. H.; Sheng, O. W.; Jin, C. B.; Yuan, H. D.; Liu, T. F.; Liu, Y. J.; Wang, Y.; Nai, J. W.; Tao, X. Y. Sulfur-nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. J. Mater. Chem. A 2019, 7, 18267– 18274.

[203]

Guo, Q.; Deng, W.; Xia, S. J.; Zhang, Z. B.; Zhao, F.; Hu, B. J.; Zhang, S. S.; Zhou, X. F.; Chen, G. Z.; Liu, Z. P. Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating. Nano Res. 2021, 14, 3585–3597.

[204]

Yu, S. C.; Wu, Z. H.; Holoubek, J.; Liu, H. D.; Hopkins, E.; Xiao, Y. X.; Xing, X.; Lee, M. H.; Liu, P. A fiber-based 3D lithium host for lean electrolyte lithium metal batteries. Adv. Sci. 2022, 9, 2104829.

[205]

Zhang, J. M.; Sun, D.; Tang, Z.; Xie, C. L.; Yang, J.; Tang, J. J.; Zhou, X. Y.; Tang, Y. G.; Wang, H. Y. Scalable slurry-coating induced integrated 3D lithiophilic architecture for stable lithium metal anodes. J. Power Sources 2021, 485, 229334.

[206]

Liu, T. C.; Ge, J. X.; Wang, H. C.; Zhang, Y. F.; Wang, Y. Unusual inside-outside Li deposition within three-dimensional honeycomb-like hierarchical nitrogen-doped framework for a dendrite-free lithium metal anode. ACS Appl. Energy Mater. 2021, 4, 2838–2846.

[207]

Chen, Y. Z.; Elangovan, A.; Zeng, D. L.; Zhang, Y. F.; Ke, H. Z.; Li, J.; Sun, Y. B.; Cheng, H. S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries. Adv. Funct. Mater. 2020, 30, 1906444.

[208]

Xu, Z. X.; Xu, L. Y.; Xu, Z. X.; Deng, Z. P.; Wang, X. L. N, O-codoped carbon nanosheet array enabling stable lithium metal anode. Adv. Funct. Mater. 2021, 31, 2102354.

[209]

Lin, K.; Xu, X. F.; Qin, X. Y.; Wang, S. W.; Han, C. P.; Geng, H. R.; Li, X. J.; Kang, F. Y.; Chen, G. H.; Li, B. H. Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon 2021, 185, 152–160.

[210]

Raji, A. R. O.; Villegas Salvatierra, R.; Kim, N. D.; Fan, X. J.; Li, Y. L.; Silva, G. A. L.; Sha, J. W.; Tour, J. M. Lithium batteries with nearly maximum metal storage. ACS Nano 2017, 11, 6362–6369.

[211]

Wu, Q. P.; Zheng, Y. J.; Guan, X.; Xu, J.; Cao, F. H.; Li, C. L. Dynamical SEI reinforced by open-architecture MOF film with stereoscopic lithiophilic sites for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2101034.

[212]

Zhao, T.; Li, S. W.; Liu, F.; Wang, Z. Q.; Wang, H. L.; Liu, Y. J.; Tang, X. Y.; Bai, M.; Zhang, M.; Ma, Y. Molten-Li infusion of ultra-thin interfacial modification layer towards the highly-reversible, energy-dense metallic batteries. Energy Storage Mater. 2022, 45, 796–804.

[213]

Sim, W. H.; Jeong, H. M. Efficient lithium growth control from ordered nitrogen-chelated lithium-ion for high performance lithium metal batteries. Adv. Sci. 2021, 8, 2002144.

[214]

Zhao, J.; Yuan, H. Y.; Wang, G. L.; Lim, X. F.; Ye, H. L.; Wee, V.; Fang, Y. Z.; Lee, J. Y.; Zhao, D. Stabilization of lithium metal anodes by conductive metal-organic framework architectures. J. Mater. Chem. A 2021, 9, 12099–12108.

[215]

Ma, Y.; Wei, L.; He, Y.; Yuan, X. Z.; Su, Y. H.; Gu, Y. T.; Li, X. J.; Zhao, X. H.; Qin, Y. Z.; Mu, Q. Q. et al. A "blockchain" synergy in conductive polymer-filled metal-organic frameworks for dendrite-free Li plating/stripping with high coulombic efficiency. Angew. Chem., Int. Ed. 2022, 61, e202116291.

[216]

Wang, L. Y.; Zhu, X. Y.; Guan, Y. P.; Zhang, J. L.; Ai, F.; Zhang, W. F.; Xiang, Y.; Vijayan, S.; Li, G. D.; Huang, Y. Q. et al. ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes. Energy Storage Mater. 2018, 11, 191–196.

[217]

Lei, Z. W.; Shen, J. L.; Zhang, W. D.; Wang, Q. R.; Wang, J.; Deng, Y. H.; Wang, C. Y. Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 2020, 13, 2259–2267.

[218]

Shin, H. R.; Yun, J.; Eom, G. H.; Moon, J.; Kim, J. H.; Park, M. S.; Lee, J. W.; Dou, S. X. Mechanistic and nanoarchitectonics insight into Li-host interactions in carbon hosts for reversible Li metal storage. Nano Energy 2022, 95, 106999.

[219]

Yun, J.; Shin, H. R.; Won, E. S.; Kang, H. C.; Lee, J. W. Confined Li metal storage in porous carbon frameworks promoted by strong Li-substrate interaction. Chem. Eng. J. 2022, 430, 132897.

[220]

Man, J. Z.; Liu, W. L.; Zhang, H. B.; Liu, K.; Cui, Y. F.; Yin, J. P.; Wang, X. Y.; Sun, J. C. A metal-organic framework derived electrical insulating-conductive double-layer configuration for stable lithium metal anodes. J. Mater. Chem. A 2021, 9, 13661–13669.

[221]

Sun, B.; Zhang, Q.; Xu, W. L.; Zhao, R.; Zhu, H.; Lv, W.; Li, X. K.; Yang, N. J. A gradient topology host for a dendrite-free lithium metal anode. Nano Energy 2022, 94, 106937.

[222]

Luan, J. Y.; Zhang, Q.; Yuan, H. Y.; Peng, Z. G.; Tang, Y. G.; Wu, S. A.; Wang, H. Y. Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chem. Eng. J. 2020, 395, 124922.

[223]

Li, Q.; Zhu, S. P.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

[224]

Tian, A. L.; Luo, K. L.; Li, Z. D.; Ma, M. M.; Li, S.; Wang, X. Y.; Wang, D. Y.; Peng, Z. F-N-S doped lithiophilic interphases for stable Li metal and alloy anodes. J. Power Sources 2021, 508, 230334.

[225]

Luo, Z.; Liu, C.; Tian, Y.; Zhang, Y.; Jiang, Y. L.; Hu, J. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Mater. 2020, 27, 124–132.

[226]

Luo, K. L.; Leng, Z. Y.; Li, Z. D.; Ma, M. M.; Li, S.; Xie, W. P.; Wang, D. Y.; Cao, X. L.; Peng, Z. Shielded electric field-boosted lithiophilic Sites: A Janus interface toward stable lithium metal anodes. Chem. Eng. J. 2021, 416, 129142.

[227]

Yun, J.; Park, B. K.; Won, E. S.; Choi, S. H.; Kang, H. C.; Kim, J. H.; Park, M. S.; Lee, J. W. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode. ACS Energy Lett. 2020, 5, 3108–3114.

[228]

Hu, X. Y.; Xu, P.; Deng, S. W.; Lei, J.; Lin, X. D.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. Inducing ordered Li deposition on a PANI-decorated Cu mesh for an advanced Li anode. J. Mater. Chem. A 2020, 8, 17056–17064.

[229]

Huang, S. B.; Chen, L.; Wang, T. S.; Hu, J. K.; Zhang, Q. F.; Zhang, H.; Nan, C. W.; Fan, L. Z. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries. Nano Lett. 2021, 21, 791–797.

[230]

Xu, P.; Hu, X. Y.; Liu, X. Y.; Lin, X. D.; Fan, X. X.; Cui, X. Y.; Sun, C.; Wu, Q. H.; Lian, X. B.; Yuan, R. M. et al. A lithium-metal anode with ultra-high areal capacity (50 mAh·cm–2) by gridding lithium plating/stripping. Energy Storage Mater. 2021, 38, 190–199.

[231]

Huang, S. B.; Zhang, W. F.; Ming, H.; Cao, G. P.; Fan, L. Z.; Zhang, H. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett. 2019, 19, 1832–1837.

[232]

Zhang, S.; Deng, W.; Zhou, X.; He, B.; Liang, J.; Zhao, F.; Guo, Q.; Liu, Z. Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation toward high-areal-capacity lithium metal anode. Mater. Today Energy 2021, 21, 100770.

[233]

Chen, W. Y.; Li, S. P.; Wang, C. H.; Dou, H.; Zhang, X. G. Targeted deposition in a lithiophilic silver-modified 3D Cu host for lithium-metal anodes. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12412.

[234]

Wang, J. R.; Wang, M. M.; He, X. D.; Wang, S.; Dong, J. M.; Chen, F.; Yasmin, A.; Chen, C. H. A lithiophilic 3D conductive skeleton for high performance Li metal battery. ACS Appl. Energy Mater. 2020, 3, 7265–7271.

[235]

Fan, H. L.; Gao, C. H.; Dong, Q. Y.; Hong, B.; Fang, Z.; Hu, M. Y.; Lai, Y. Q. Silver sites guide spatially homogeneous plating of lithium metal in 3D host. J. Electroanal. Chem. 2018, 824, 175–180.

[236]

Liu, T. C.; Chen, X. D.; Zhan, C. C.; Cao, X. H.; Wang, Y. W.; Liu, J. H. Selective lithium deposition on 3D porous heterogeneous lithiophilic skeleton for ultrastable lithium metal anodes. ChemNanoMat 2020, 6, 1200–1207.

[237]

Ni, Z. C.; Zhang, Y. Y.; Zhu, B. W.; Wang, Y. J.; Wang, Y.; Li, X.; Zhang, Y. J.; Sun, S. G. A multifunctional Cu6Sn5 interface layer for dendritic-free lithium metal anode. J. Colloid Interf. Sci. 2022, 605, 223–230.

[238]

Wang, J. R.; Wang, M. M.; Chen, F.; Li, Y. X.; Zhang, L. M.; Zhao, Y.; Chen, C. H. In-situ construction of lithiophilic interphase in vertical micro-channels of 3D copper current collector for high performance lithium-metal batteries. Energy Storage Mater. 2021, 34, 22–27.

[239]

Chen, T.; Shi, J. J.; Xing, J. X.; Liu, Y. C.; Wang, Z. H.; Xiao, J. L.; Liu, H. L.; Chen, Y.; Sun, X. L.; Li, J. Z. Self-formed lithiophilic alloy buffer layer on copper foam framework for advanced lithium metal anodes. ACS Appl. Energy Mater. 2021, 4, 4879–4886.

[240]

Fu, X. L.; Shang, C. Q.; Zhou, G. F.; Wang, X. Lithiophilic Sb surface modified Cu nanowires grown on Cu foam: A synergistic 1D@3D hierarchical structure for stable lithium metal anodes. J. Mater. Chem. A 2021, 9, 24963–24970.

[241]

Wang, C.; Mu, X. W.; Yu, J. M.; Lu, Z. D.; Han, J. Scalable hierarchical lithiophilic engineering of metal foam enables stable lithium metal batteries. Chem. Eng. J. 2022, 435, 134643.

[242]

Zhang, R. H.; Li, Y.; Qiao, L.; Li, D. W.; Deng, J. L.; Zhou, J. J.; Xie, L.; Hou, Y.; Wang, T.; Tian, W. et al. Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode. Energy Storage Mater. 2021, 37, 123–134.

[243]

Zhang, R. H.; Li, Y.; Wang, M.; Li, D. W.; Zhou, J. J.; Xie, L.; Wang, T.; Tian, W.; Zhai, Y. J.; Gong, H. Y. et al. Super-assembled hierarchical CoO nanosheets-cu foam composites as multi-level hosts for high-performance lithium metal anodes. Small 2021, 17, 2101301.

[244]

Liu, T. C.; Chen, S. Q.; Sun, W. W.; Lv, L. P.; Du, F. H.; Liu, H.; Wang, Y. Lithiophilic vertical cactus-like framework derived from Cu/Zn-based coordination polymer through in situ chemical etching for stable lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2008514.

[245]

Zhang, L. Y.; Jin, Q.; Zhao, K. X.; Zhang, X. T.; Wu, L. L. Lithiophilic Ti3C2Tx-modified Cu foam by electrophoretic deposition for dendrite-free lithium metal anodes. ACS Appl. Energy Mater. 2022, 5, 2514–2521.

[246]

Cheng, Y. F.; Ke, X.; Chen, Y. M.; Huang, X. Y.; Shi, Z. C.; Guo, Z. P. Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries. Nano Energy 2019, 63, 103854.

[247]

Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Wang, X. X.; Song, Y.; Fu, Z. W.; Wu, X. J.; Zhou, Y. N. Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Mater. 2019, 21, 180–189.

[248]

Zhao, Y.; Hao, S. G.; Su, L.; Ma, Z. P.; Shao, G. J. Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode. Chem. Eng. J. 2020, 392, 123691.

[249]

Feng, Y. Y.; Zhang, C. F.; Li, B.; Xiong, S. Z.; Song, J. X. Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface. J. Mater. Chem. A 2019, 7, 6090–6098.

[250]

Lin, K.; Xu, X. F.; Qin, X. Y.; Zhang, G. Q.; Liu, M.; Lv, F. Z.; Xia, Y.; Kang, F. Y.; Chen, G. H.; Li, B. H. Restructured rimous copper foam as robust lithium host. Energy Storage Mater. 2020, 26, 250–259.

[251]

Cai, Y. F.; Qin, B.; Li, C.; Si, X. Q.; Cao, J.; Zheng, X. H.; Qi, J. L. Stable lithium metal anode achieved by shortening diffusion path on solid electrolyte interface derived from Cu2O lithiophilic layer. Chem. Eng. J. 2022, 433, 133689.

[252]

Jeong, M. G.; Kwak, W. J.; Kim, J. Y.; Lee, J. K.; Sun, Y. K.; Jung, H. G. Uniformly distributed reaction by 3D host-lithium composite anode for high rate capability and reversibility of Li-O2 batteries. Chem. Eng. J. 2022, 427, 130914.

[253]

Li, R.; Wang, J. X.; Lin, L. D.; Wang, H.; Wang, C. M.; Zhang, C. H.; Song, C. H.; Tian, F.; Yang, J.; Qian, Y. T. Pressure-tuned and surface-oxidized copper foams for dendrite-free Li metal anodes. Mater. Today Energy 2020, 15, 100367.

[254]

Tan, L.; Li, X. H.; Cheng, M.; Liu, T. C.; Wang, Z. X.; Guo, H. J.; Yan, G. C.; Li, L. J.; Liu, Y.; Wang, J. X. In-situ tailored 3D Li2O@Cu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency. J. Power Sources 2020, 463, 228178.

[255]

Lu, R. C.; Zhang, B. B.; Cheng, Y. L.; Amin, K.; Yang, C.; Zhou, Q. Y.; Mao, L. J.; Wei, Z. X. Dual-regulation of ions/electrons in a 3D Cu-CuxO host to guide uniform lithium growth for high-performance lithium metal anodes. J. Mater. Chem. A 2021, 9, 10393–10403.

[256]

Lu, Z. Y.; Tai, Z. X.; Yu, Z. P.; LaGrow, A. P.; Bondarchuk, O.; Sousa, J. P. S.; Meng, L. J.; Peng, Z. J.; Liu, L. F. Lithium-copper alloy embedded in 3D porous copper foam with enhanced electrochemical performance toward lithium metal batteries. Mater. Today Energy 2021, 22, 100871.

[257]

Zhai, P. B.; Wei, Y.; Xiao, J.; Liu, W.; Zuo, J. H.; Gu, X. K.; Yang, W. W.; Cui, S. Q.; Li, B.; Yang, S. B. et al. In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes. Adv. Energy Mater. 2020, 10, 1903339.

[258]

Park, H.; Kwon, J.; Song, T.; Paik, U. Lithiophilic surface treatment of metal- and metallic compound-based frameworks by gas nitriding for lithium metal batteries. J. Power Sources 2020, 477, 228776.

[259]

Li, Z. H.; He, Q.; Zhou, C.; Li, Y.; Liu, Z. H.; Hong, X. F.; Xu, X.; Zhao, Y.; Mai, L. Q. Rationally design lithiophilic surfaces toward high-energy Lithium metal battery. Energy Storage Mater. 2021, 37, 40–46.

[260]

Huang, Z. J.; Zhang, C.; Lv, W.; Zhou, G. M.; Zhang, Y. B.; Deng, Y. Q.; Wu, H. L.; Kang, F. Y.; Yang, Q. H. Realizing stable lithium deposition by in situ grown Cu2S nanowires inside commercial Cu foam for lithium metal anodes. J. Mater. Chem. A 2019, 7, 727–732.

[261]

Lei, M. N.; You, Z. Y.; Ren, L. B.; Liu, X. R.; Wang, J. G. Construction of copper oxynitride nanoarrays with enhanced lithiophilicity toward stable lithium metal anodes. J. Power Sources 2020, 463, 228191.

[262]

Yang, G. H.; Chen, J. D.; Xiao, P. T.; Agboola, P. O.; Shakir, I.; Xu, Y. X. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. J. Mater. Chem. A 2018, 6, 9899–9905.

[263]

Liu, T. C.; Ge, J. X.; Xu, Y.; Lv, L. P.; Sun, W. W.; Wang, Y. Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode. Energy Storage Mater. 2020, 32, 261–271.

[264]

Jiang, X. M.; Chen, Y. J.; Meng, X. K.; Cao, W. G.; Liu, C. C.; Huang, Q.; Naik, N.; Murugadoss, V.; Huang, M. N.; Guo, Z. H. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. Carbon 2022, 191, 448–470.

[265]

Pathak, R.; Chen, K.; Wu, F.; Mane, A. U.; Bugga, R. V.; Elam, J. W.; Qiao, Q.; Zhou, Y. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Mater. 2021, 41, 448–465.

[266]

Ponraj, R.; Yun, J. H.; Wang, J. E.; Chen, X. J.; Kim, D. J.; Kim, D. K. Regulating lithium metal interface using seed-coating layer for high-power batteries. Chem. Eng. J. 2022, 433, 134380.

[267]

Pei, F.; Fu, A.; Ye, W. B.; Peng, J.; Fang, X. L.; Wang, M. S.; Zheng, N. F. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 2019, 13, 8337–8346.

[268]

Zhu, W. H.; Deng, W.; Zhao, F.; Liang, S. S.; Zhou, X. F.; Liu, Z. P. Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. Energy Storage Mater. 2019, 21, 107–114.

[269]

Liu, T. C.; Wang, J. L.; Xu, Y.; Zhang, Y. F.; Wang, Y. Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 2021, 13, 170.

[270]

Zhou, Y.; Zhao, K.; Han, Y.; Sun, Z. H.; Zhang, H. T.; Xu, L. Q.; Ma, Y. F.; Chen, Y. S. A nitrogen-doped-carbon/ZnO modified Cu foam current collector for high-performance Li metal batteries. J. Mater. Chem. A 2019, 7, 5712–5718.

[271]

Qian, J.; Wang, S.; Li, Y.; Zhang, M. L.; Wang, F. J.; Zhao, Y. Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R. J. Lithium induced nano-sized copper with exposed lithiophilic surfaces to achieve dense lithium deposition for lithium metal anode. Adv. Funct. Mater. 2021, 31, 2006950.

[272]

Park, J.; Joo, S. H.; Kim, Y. J.; Park, J. H.; Kwak, S. K.; Ahn, S.; Kang, S. J. Organic semiconductor cocrystal for highly conductive lithium host electrode. Adv. Funct. Mater. 2019, 29, 1902888.

[273]

Wang, H. S.; Liu, Y. Y.; Li, Y. Z.; Cui, Y. Lithium metal anode materials design: Interphase and host. Electrochem. Energy Rev. 2019, 2, 509–517.

[274]

Yang, S.; Xiao, R.; Zhang, T. W.; Li, Y.; Zhong, B. H.; Wu, Z. G.; Guo, X. D. Cu nanowires modified with carbon-rich conjugated framework PTEB for stabilizing lithium metal anodes. Chem. Commun. 2021, 57, 13606–13609.

[275]

Yue, Y.; Liang, H. 3D current collectors for lithium-ion batteries: A topical review. Small Methods 2018, 2, 1800056.

[276]

Nanda, S.; Gupta, A.; Manthiram, A. Anode-free full cells: A pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 2021, 11, 2000804.

[277]

Wang, Y. Y.; Wang, Z. J.; Lei, D. N.; Lv, W.; Zhao, Q.; Ni, B.; Liu, Y.; Li, B. H.; Kang, F. Y.; He, Y. B. Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance. ACS Appl. Mater. Interfaces 2018, 10, 20244–20249.

[278]

Lee, J.; Won, E. S.; Kim, D. M.; Kim, H.; Kwon, B.; Park, K.; Jo, S.; Lee, S.; Lee, J. W.; Lee, K. T. Three-dimensional porous frameworks for Li metal batteries: Superconformal versus conformal Li growth. ACS Appl. Mater. Interfaces 2021, 13, 33056–33065.

[279]

Chen, C. L.; Li, S. P.; Notten, P. H. L.; Zhang, Y. H.; Hao, Q. L.; Zhang, X. G.; Lei, W. 3D printed lithium-metal full batteries based on a high-performance three-dimensional anode current collector. ACS Appl. Mater. Interfaces 2021, 13, 24785–24794.

[280]

Song, H. Y.; Eom, K. Realizing superior energy in a full-cell LIB employing a Li-metal anode via the rational design of a Cu-scaffold host structure with an extremely high porosity. Energy Storage Mater. 2021, 36, 326–332.

[281]

Lu, B. Y.; Olivera, E.; Scharf, J.; Chouchane, M.; Fang, C. C.; Ceja, M.; Pangilinan, L. E.; Zheng, S. Q.; Dawson, A.; Cheng, D. Y. et al. Quantitatively designing porous copper current collectors for lithium metal anodes. ACS Appl. Energy Mater. 2021, 4, 6454–6465.

[282]

Zhang, R.; Wen, S. W.; Wang, N.; Qin, K. Q.; Liu, E. Z.; Shi, C. S.; Zhao, N. Q. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 2018, 8, 1800914.

[283]

Qiang, Z.; Liu, B.; Yang, B. J.; Ma, P. J.; Yan, X. B.; Wang, B. X. Preparation of three-dimensional copper-zinc alloy current collector by powder metallurgy for lithium metal battery anode. ChemElectroChem 2021, 8, 2479–2487.

[284]

Lin, H. N.; Zhang, Z. W.; Wang, Y. D.; Zhang, X. L.; Tie, Z. X.; Jin, Z. Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102735.

[285]

Zhou, S.; Usman, I.; Wang, Y. J.; Pan, A. Q. 3D printing for rechargeable lithium metal batteries. Energy Storage Mater. 2021, 38, 141–156.

[286]

Lu, L. L.; Zhang, Y.; Pan, Z.; Yao, H. B.; Zhou, F.; Yu, S. H. Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 2017, 9, 31–38.

[287]

Zhang, C.; Lyu, R.; Lv, W.; Li, H.; Jiang, W.; Li, J.; Gu, S. C.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B. et al. A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 2019, 31, 1904991.

[288]

Zhang, L. H.; Yin, X. G.; Shen, S. B.; Liu, Y.; Li, T.; Wang, H.; Lv, X. H.; Qin, X. Y.; Chiang, S. W.; Fu, Y. Z. et al. Simultaneously homogenized electric field and ionic flux for reversible ultrahigh-areal-capacity Li deposition. Nano Lett. 2020, 20, 5662–5669.

[289]

Shang, H.; Gu, Y.; Wang, Y. B.; Zuo, Z. C. N-doped graphdiyne coating for dendrite-free lithium metal batteries. Chem. -Eur. J. 2020, 26, 5434–5440.

[290]

Shang, H.; Zuo, Z. C.; Li, Y. L. Highly lithiophilic graphdiyne nanofilm on 3D free-standing Cu nanowires for high-energy-density electrodes. ACS Appl. Mater. Interfaces 2019, 11, 17678–17685.

[291]

Hong, S. H.; Jung, D. H.; Kim, J. H.; Lee, Y. H.; Cho, S. J.; Joo, S. H.; Lee, H. W.; Lee, K. S.; Lee, S. Y. Electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries. Adv. Funct. Mater. 2020, 30, 1908868.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 October 2022
Revised: 24 November 2022
Accepted: 27 November 2022
Published: 06 January 2023
Issue date: March 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22279104, 51902261 and 61935017), the National Key Research and Development Program of China (No. 2020YFA0709900), the Singapore Ministry of Education AcRF Tier 1: 2020-T1-001-031, RG4/20, the 111 project (D18023) from Zhengzhou University.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return