Journal Home > Volume 2 , Issue 2

Advances in research and development of carbon-based metal-free electrocatalysts (C-MFECs) have provided potential alternatives to precious metal catalysts for various reactions important to renewable energy and environmental remediation. This timely but critical review provides an overview of recent breakthroughs (within the past 5 years or so) on C-MFECs in all aspects, including the design and regulation of intrinsic catalytic active sites, design and synthesis of carbon composite and hybrid carbon catalysts, mechanism understanding, and potential applications in clean energy storage and energy/chemical conversion. Current challenges and future opportunities in the field of metal-free carbon electrocatalysis are also discussed to provide forward-looking opportunities for their potential applications in various catalytic processes of practical significance.


menu
Abstract
Full text
Outline
About this article

Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications

Show Author's information Jixin Yan1Fenghui Ye1Quanbin Dai3Xinyue Ma1Zhihai Fang1Liming Dai2( )Chuangang Hu1( )
State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA

Abstract

Advances in research and development of carbon-based metal-free electrocatalysts (C-MFECs) have provided potential alternatives to precious metal catalysts for various reactions important to renewable energy and environmental remediation. This timely but critical review provides an overview of recent breakthroughs (within the past 5 years or so) on C-MFECs in all aspects, including the design and regulation of intrinsic catalytic active sites, design and synthesis of carbon composite and hybrid carbon catalysts, mechanism understanding, and potential applications in clean energy storage and energy/chemical conversion. Current challenges and future opportunities in the field of metal-free carbon electrocatalysis are also discussed to provide forward-looking opportunities for their potential applications in various catalytic processes of practical significance.

Keywords: structural design, carbon-based metal-free electrocatalysts, intrinsic regulation, newly developed application, optimized composition

References(203)

[1]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009.

[2]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

[3]

Zhao, L.; Wang, S. Q.; Liang, S. J.; An, Q.; Fu, J. J.; Hu, J. S. Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coord. Chem. Rev. 2022, 466, 214603.

[4]

Guo, H.; Si, D. H.; Zhu, H. J.; Li, Q. X.; Huang, Y. B.; Cao, R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2022, 2, 295–303.

[5]

Vinothkannan, M.; Ramakrishnan, S.; Kim, A. R.; Lee, H. K.; Yoo, D. J. Ceria stabilized by titanium carbide as a sustainable filler in the nafion matrix improves the mechanical integrity, electrochemical durability, and hydrogen impermeability of proton-exchange membrane fuel cells: Effects of the filler content. ACS Appl. Mater. Interfaces 2020, 12, 5704–5716.

[6]

Ding, L.; Tang, T.; Hu, J. S. Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts. Acta Phys. Chim. Sin. 2020, 37, 2010048.

[7]

Tang, T.; Ding, L.; Jiang, Z.; Hu, J. S.; Wan, L. J. Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci. China Chem. 2020, 63, 1517–1542.

[8]

Hu, C. G.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Ternary Pd2/PtFe networks supported by 3D graphene for efficient and durable electrooxidation of formic acid. Chem. Commun. 2012, 48, 11865–11867.

[9]

Fu, H. C.; Varadhan, P.; Lin, C. H.; He, J. H. Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction. Nat. Commun. 2020, 11, 3930.

[10]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[11]

Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140.

[12]

Shi, Q.; Liu, Q.; Ma, Y.; Fang, Z.; Liang, Z.; Shao, G.; Tang, B.; Yang, W. Y.; Qin, L.; Fang, X. S. High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc-air battery and self-powered overall water splitting. Adv. Energy Mater. 2020, 10, 1903854.

[13]

Wang, P.; Ren, Y. Y.; Wang, R. T.; Zhang, P.; Ding, M. J.; Li, C. X.; Zhao, D. Y.; Qian, Z.; Zhang, Z. W.; Zhang, L. Y. et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 2020, 11, 1576.

[14]

Zhang, J.; Zhou, Q. X.; Tang, Y. W.; Zhang, L.; Li, Y. G. Zinc-air batteries: Are they ready for prime time? Chem. Sci. 2019, 10, 8924–8929.

[15]

Iqbal, M. Z.; Ali, S. R.; Khan, S. Progress in dye sensitized solar cell by incorporating natural photosensitizers. Sol. Energy 2019, 181, 490–509.

[16]

Paul, R.; Dai, Q. B.; Hu, C. G.; Dai, L. M. Ten years of carbon-based metal-free electrocatalysts. Carbon Energy 2019, 1, 19–31.

[17]

Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B. Natural dyes for dye sensitized solar cell: A review. Renew. Sust. Energy Rev. 2017, 69, 705–718.

[18]

Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

[19]

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

[20]

Paul, R.; Zhu, L.; Chen, H.; Qu, J.; Dai, L. M. Recent advances in carbon-based metal-free electrocatalysts. Adv. Mater. 2019, 31, 1806403.

[21]

Chen, Y. S.; Huang, D. L.; Lei, L.; Chen, S.; Liu, X. G.; Cheng, M. Oxygen vacancy-rich doped CDs@ graphite felt-600 heterostructures for high-performance supercapacitor electrodes. Nanoscale 2021, 13, 4995–5005.

[22]

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

[23]

Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

[24]

Hu, C. G.; Xiao, Y.; Zou, Y. Q.; Dai, L. M. Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 2018, 1, 84–112.

[25]

Ye, M. H.; Zhang, Z. P.; Zhao, Y.; Qu, L. T. Graphene platforms for smart energy generation and storage. Joule 2018, 2, 245–268.

[26]

Hu, C. G.; Dai, Q. B.; Dai, L. M. Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage. Cell Rep. Phys. Sci. 2021, 2, 100328.

[27]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[28]

Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.

[29]

Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

[30]

Yan, X. C.; Jia, Y.; Chen, J.; Zhu, Z. H.; Yao, X. D. Defective-activated-carbon-supported Mn-Co nanoparticles as a highly efficient electrocatalyst for oxygen reduction. Adv. Mater. 2016, 28, 8771–8778.

[31]

Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem., Int. Ed. 2016, 128, 2270–2274.

[32]

Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658.

[33]

Xue, D. P.; Xia, H. C.; Yan, W. F.; Zhang, J. N.; Mu, S. C. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 2021, 13, 5.

[34]

Hu, C. G.; Paul, R.; Dai, Q. B.; Dai, L. M. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 2021, 50, 11785–11843.

[35]

Bian, Y. R.; Wang, H.; Hu, J. T.; Liu, B. W.; Liu, D.; Dai, L. M. Nitrogen-rich holey graphene for efficient oxygen reduction reaction. Carbon 2020, 162, 66–73.

[36]

Hu, C. G; Gao, Y. Y.; Zhao, L. J.; Dai, L. M. Carbon-based metal-free electrocatalysts: Recent progress and forward looking. Chem Catal. 2022, 2, 2150–2156.

[37]

Zhang, J.; Zhang, J. J.; He, F.; Chen, Y. J.; Zhu, J. W.; Wang, D. L.; Mu, S. C.; Yang, H. Y. Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 2021, 13, 65.

[38]

Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z. P.; Wang, S. Y.; Ruoff, R. S.; Qu, L. T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping. Adv. Mater. 2019, 31, 1805121.

[39]

Fan, M. M.; Yuan, Q. X.; Zhao, Y. Y.; Wang, Z. M.; Wang, A.; Liu, Y. Y.; Sun, K.; Wu, J. J.; Wang, L.; Jiang, J. C. A facile "double-catalysts" approach to directionally fabricate pyridinic N-B-pair-doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 2022, 34, 2107040.

[40]

Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.

[41]

Rong, H. Q.; Zhan, T. R.; Sun, Y.; Wen, Y. H.; Liu, X. E.; Teng, H. N. ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range. Electrochim. Acta 2019, 318, 783–793.

[42]

Jiang, H.; Wang, Y. Q.; Hao, J. Y.; Liu, Y. S.; Li, W. Z.; Li, J. N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction. Carbon 2017, 122, 64–73.

[43]

Hou, H. S.; Shao, L. D.; Zhang, Y.; Zou, G. Q.; Chen, J.; Ji, X. B. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries. Adv. Sci. 2017, 4, 1600243.

[44]

Hu, Y. P.; Shen, L. L.; Wei, X. H.; Long, Z.; Guo, X. Q.; Qiu, X. Q. One-pot synthesis of novel B, N Co-doped carbon materials for high-performance sodium-ion batteries. ChemistrySelect 2019, 4, 6445–6450.

[45]

Li, S. Y.; Li, Z. H.; Cao, G. Y.; Ling, M.; Ji, J. P.; Zhao, D.; Sha, Y.; Gao, X. H.; Liang, C. D. Sulfur-/nitrogen-rich albumen derived "self-doping" graphene for sodium-ion storage. Chem. -Eur. J. 2019, 25, 14358–14363.

[46]

Zhu, Y. D.; Huang, Y.; Chen, C.; Wang, M. Y.; Liu, P. B. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage. Electrochim. Acta 2019, 321, 134698.

[47]

Fan, M. M.; Cui, J. W.; Wu, J. J.; Vajtai, R.; Sun, D. P.; Ajayan, P. M. Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small 2020, 16, 1906782.

[48]

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

[49]

Yao, Z. H.; Hu, M. C.; Iqbal, Z.; Wang, X. Q. N8- polynitrogen stabilized on boron-doped graphene as metal-free electrocatalysts for oxygen reduction reaction. ACS Catal. 2020, 10, 160–167.

[50]

Lin, Z. Y.; Yang, Y.; Li, M. S.; Huang, H.; Hu, W.; Cheng, L.; Yan, W. S.; Yu, Z. W.; Mao, K. T.; Xia, G. L. et al. Dual graphitic-N doping in a six-membered C-ring of graphene-analogous particles enables an efficient electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16973–16980.

[51]

Liu, S.; Zhang, Y. C.; Ge, B. H.; Zheng, F. C.; Zhang, N.; Zuo, M.; Yang, Y.; Chen, Q. W. Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 2021, 33, 2103133.

[52]

Lai, J. P.; Li, S. P.; Wu, F. X.; Saqib, M.; Luque, R.; Xu, G. B. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting. Energy Environ. Sci. 2016, 9, 1210–1214.

[53]

Dong, L. Y.; Hu, C. G.; Huang, X. K.; Chen, N.; Qu, L. T. One-pot synthesis of nitrogen and phosphorus co-doped graphene and its use as high-performance electrocatalyst for oxygen reduction reaction. Chem. Asian J. 2015, 10, 2609–2614.

[54]

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

[55]

Chen, C. J.; Sun, X. F.; Yan, X. P.; Wu, Y. H.; Liu, H. Z.; Zhu, Q. G.; Bediako, B. B. A.; Han, B. X. Boosting CO2 electroreduction on N,P-co-doped carbon aerogels. Angew. Chem., Int. Ed. 2020, 132, 11216–11222.

[56]

Li, R. R.; Liu, F.; Zhang, Y. H.; Guo, M. M.; Liu, D. Nitrogen, sulfur co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 44578–44587.

[57]

Liu, Y. M.; Zhang, Y. J.; Cheng, K.; Quan, X.; Fan, X. F.; Su, Y.; Chen, S.; Zhao, H. M.; Zhang, Y. B.; Yu, H. T. et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron-and nitrogen Co-doped nanodiamond. Angew. Chem., Int. Ed. 2017, 129, 15813–15817.

[58]

Hao, J.; Wang, J. M.; Qin, S.; Liu, D.; Li, Y. W.; Lei, W. W. B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors. J. Mater. Chem. A 2018, 6, 8053–8058.

[59]

Kou, Z. K.; Guo, B. B.; He, D. P.; Zhang, J.; Mu, S. C. Transforming two-dimensional boron carbide into boron and chlorine dual-doped carbon nanotubes by chlorination for efficient oxygen reduction. ACS Energy Lett. 2018, 3, 184–190.

[60]

Zhao, Z. H.; Xia, Z. H. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal. 2016, 6, 1553–1558.

[61]

Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

[62]

Xu, J. X.; Cui, Y. Q.; Wang, M. L.; Chai, G. L.; Guan, L. H. Pyrimidine-assisted synthesis of S, N-codoped few-layered graphene for highly efficient hydrogen peroxide production in acid. Chem Catal. 2022, 2, 1450–1466.

[63]

Tang, C.; Zhang, Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv. Mater. 2017, 29, 1604103.

[64]

Cao, Y. J.; Liu, Z.; Tang, Y. T.; Huang, C. J.; Wang, Z. L.; Liu, F.; Wen, Y. W.; Shan, B.; Chen, R. Vaporized-salt-induced sp3-hybridized defects on nitrogen-doped carbon surface towards oxygen reduction reaction. Carbon 2021, 180, 1–9.

[65]

Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H. Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 2015, 17, 16733–16743.

[66]

Li, D. H.; Jia, Y.; Chang, G. J.; Chen, J.; Liu, H. W.; Wang, J. C.; Hu, Y. F.; Xia, Y. Z.; Yang, D. J.; Yao, X. D. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345–2356.

[67]

Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371–1397.

[68]

Xiao, Z. H.; Xie, C.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Recent advances in defect electrocatalysts: Preparation and characterization. J. Energy Chem. 2021, 53, 208–225.

[69]

Dong, Y.; Zhang, Q. J.; Tian, Z. Q.; Li, B. R.; Yan, W. S.; Wang, S.; Jiang, K. M.; Su, J. W.; Oloman, C. W.; Gyenge, E. L. et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 2020, 32, 2001300.

[70]

Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.

[71]

Ye, F. H.; Gong, L. L.; Long, Y. D.; Talapaneni, S. N.; Zhang, L. P.; Xiao, Y.; Liu, D.; Hu, C. G.; Dai, L. M. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries. Adv. Energy Mater. 2021, 11, 2101390.

[72]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[73]

Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

[74]

Zhang, C. H.; Dai, L. M. Targeted defect synthesis for improved electrocatalytic performance. Chem 2020, 6, 1849–1851.

[75]

Zhu, J. W.; Mu, S. C. Defect engineering in carbon-based electrocatalysts: Insight into intrinsic carbon defects. Adv. Funct. Mater. 2020, 30, 2001097.

[76]

Xue, L. F.; Li, Y. C.; Liu, X. F.; Liu, Q. T.; Shang, J. X.; Duan, H. P.; Dai, L. M.; Shui, J. L. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 2018, 9, 3819.

[77]

Sa, Y. J.; Kim, J. H.; Joo, S. H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2019, 58, 1100–1105.

[78]

Li, W.; Wang, D. D.; Zhang, Y. Q.; Tao, L.; Wang, T. H.; Zou, Y. Q.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.

[79]

Xie, C.; Yan, D. F.; Chen, W.; Zou, Y. Q.; Chen, R.; Zang, S. Q.; Wang, Y. Y.; Yao, X. D.; Wang, S. Y. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater. Today 2019, 31, 47–68.

[80]

Tao, L.; Qiao, M.; Jin, R.; Li, Y.; Xiao, Z. H.; Wang, Y. Q.; Zhang, N. N.; Xie, C.; He, Q. G.; Jiang, D. C. et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem., Int. Ed. 2019, 131, 1031–1036.

[81]

Tian, Y.; Wei, Z.; Wang, X. J.; Peng, S.; Zhang, X.; Liu, W. M. Plasma-etched, S-doped graphene for effective hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 4184–4192.

[82]

Uzunoglu, A.; Kotan, H.; Karaagac, R.; Ipekci, H. H. Preparation of defect-rich, N-doped activated carbons via high-energy ball milling and investigation of their electrochemical performances towards hydrogen peroxide sensing. Appl. Nanosci. 2022, 12, 1475–1489.

[83]

Ding, W.; Sun, M. X.; Gao, B. W.; Liu, W. Z.; Ding, Z. P.; Anandan, S. A ball-milling synthesis of N-graphyne with controllable nitrogen doping sites for efficient electrocatalytic oxygen evolution and supercapacitors. Dalton Trans. 2020, 49, 10958–10969.

[84]

Chang, H.; Li, X. Z.; Shi, L. N.; Zhu, Y. R.; Yi, T. F. Towards high-performance electrocatalysts and photocatalysts: Design and construction of MXenes-based nanocomposites for water splitting. Chem. Eng. J. 2021, 421, 129944.

[85]

Lee, W. J.; Lim, J.; Kim, S. O. Nitrogen dopants in carbon nanomaterials: Defects or a new opportunity? Small Methods 2017, 1, 1600014.

[86]

Ma, R. G.; Lin, G. X.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G. C.; Yang, M. H.; Wang, J. C. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 2019, 5, 78.

[87]

Cheng, H. H.; Huang, Y. X.; Shi, G. Q.; Jiang, L.; Qu, L. T. Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc. Chem. Res. 2017, 50, 1663–1671.

[88]

Yan, X. C.; Liu, H. L.; Jia, Y.; Zhang, L. Z.; Xu, W. J.; Wang, X.; Chen, J.; Yang, D. J.; Yao, X. D. Clarifying the origin of oxygen reduction activity in heteroatom-modified defective carbon. Cell Rep. Phys. Sci. 2020, 1, 100083.

[89]

Hu, C. G.; Qu, J.; Xiao, Y.; Zhao, S. L.; Chen, H.; Dai, L. M. Carbon nanomaterials for energy and biorelated catalysis: Recent advances and looking forward. ACS Cent. Sci. 2019, 5, 389–408.

[90]

Dai, L. M. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46, 31–42.

[91]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

[92]

Tang, C.; Titirici, M. M.; Zhang, Q. A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. J. Energy Chem. 2017, 26, 1077–1093.

[93]

You, P. Y.; Kamarudin, S. K. Recent progress of carbonaceous materials in fuel cell applications: An overview. Chem. Eng. J. 2017, 309, 489–502.

[94]

Kaur, P.; Verma, G.; Sekhon, S. S. Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater. Sci. 2019, 102, 1–71.

[95]

Sauid, S. M.; Kamarudin, S. K.; Karim, N. A.; Shyuan, L. K. Superior stability and methanol tolerance of a metal-free nitrogen-doped hierarchical porous carbon electrocatalyst derived from textile waste. J. Mater. Res. Technol. 2021, 11, 1834–1846.

[96]

Kong, D. W.; Liu, L. X.; Yuan, W. J.; Xie, A. J.; Shen, Y. H. Facile synthesis and excellent catalytic performance of nitrogen-doped porous carbons derived from banana peel towards oxygen reduction reaction. Mater. Res. Bull. 2018, 103, 63–69.

[97]

Zhang, B. X.; Zhang, J. L.; Zhang, F. Y.; Zheng, L. R.; Mo, G.; Han, B. X.; Yang, G. Y. Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO2 reduction. Adv. Funct. Mater. 2020, 30, 1906194.

[98]

Kong, F. T.; Cui, X. Z.; Huang, Y. F.; Yao, H. L.; Chen, Y. F.; Tian, H.; Meng, G.; Chen, C.; Chang, Z. W.; Shi, J. L. N-doped carbon electrocatalyst: Marked ORR activity in acidic media without the contribution from metal sites? Angew. Chem., Int. Ed. 2022, 61, 202116290.

[99]

Zhang, Y. G.; Li, G. R.; Wang, J. Y.; Luo, D.; Sun, Z. H.; Zhao, Y.; Yu, A. P.; Wang, X.; Chen, Z. W. "Sauna" activation toward intrinsic lattice deficiency in carbon nanotube microspheres for high-energy and long-lasting lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2100497.

[100]

Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem. Int. Ed. 2017, 129, 10980–10984.

[101]

Pham, D. T.; Lee, T. H.; Luong, D. H.; Yao, F.; Ghosh, A.; Le, V. T.; Kim, T. H.; Li, B.; Chang, J.; Lee, Y. H. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 2015, 9, 2018–2027.

[102]

Xue, Y. H.; Ding, Y.; Niu, J. B.; Xia, Z. H.; Roy, A.; Chen, H.; Qu, J.; Wang, Z. L.; Dai, L. M. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv. 2015, 1, 1400198.

[103]

Li, J.; Zhang, Y. Y.; Hu, K. J.; Zhao, Y. Q.; Lin, R. R.; Li, Y.; Huang, Z. R.; Zhang, X.; Geng, X. X.; Ding, J. H. Mitochondrial genome characteristics of two Sphingidae insects (Psilogramma increta and Macroglossum stellatarum) and implications for their phylogeny. Int. J. Biol. Macromol. 2018, 113, 592–600.

[104]

Jeon, D.; Park, J.; Shin, C.; Kim, H.; Jang, J. W.; Lee, D. W.; Ryu, J. Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Sci. Adv. 2020, 6, eaaz3944.

[105]

Li, X. L.; Zhang, J. X.; Qi, G. C.; Cheng, J. L.; Wang, B. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries. Energy Stor. Mater. 2021, 35, 148–156.

[106]

Xiao, Y.; Du, F.; Hu, C. G.; Ding, Y.; Wang, Z. L.; Roy, A.; Dai, L. M. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS Energy Lett. 2020, 5, 916–921.

[107]

Wang, Y. L.; Shi, R.; Shang, L.; Peng, L. S.; Chu, D. W.; Han, Z. J.; Waterhouse, G. I. N.; Zhang, R.; Zhang, T. R. Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy 2022, 96, 107046.

[108]

Li, X. L.; Zhou, J. W.; Zhang, J. X.; Li, M.; Bi, X. X.; Liu, T. C.; He, T.; Cheng, J. L.; Zhang, F.; Li, Y. P. et al. Li-CO2 batteries: Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries (Adv. Mater. 39/2019). Adv. Mater. 2019, 31, 1970279.

[109]

Li, Y. C.; Zhou, J. W.; Zhang, T. B.; Wang, T. S.; Li, X. L.; Jia, Y. F.; Cheng, J. L.; Guan, Q.; Liu, E. Z.; Peng, H. S. et al. Highly surface-wrinkled and N-doped CNTs anchored on metal wire: A novel fiber-shaped cathode toward high-performance flexible Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1808117.

[110]

Konnerth, H.; Matsagar, B. M.; Chen, S. S.; Prechtl, M. H. G.; Shieh, F. K.; Wu, K. C. W. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord. Chem. Rev. 2020, 416, 213319.

[111]

Paul, R.; Du, F.; Dai, L. M.; Ding, Y.; Wang, Z. L.; Wei, F.; Roy, A. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 2019, 31, 1805598.

[112]

Dutta, S.; Kim, J.; Ide, Y.; Kim, J. H.; Hossain, M. S. A.; Bando, Y.; Yamauchi, Y.; Wu, K. C. W. 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz. 2017, 4, 522–545.

[113]

Vasileff, A.; Chen, S.; Qiao, S. Z. Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horiz. 2016, 1, 41–44.

[114]

Long, X. J.; Li, D. H.; Wang, B. B.; Jiang, Z. J.; Xu, W. J.; Wang, B. B.; Yang, D. J.; Xia, Y. Z. Heterocyclization strategy for construction of linear conjugated polymers: Efficient metal-free electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 11369–11373.

[115]

Roy, S.; Bandyopadhyay, A.; Das, M.; Ray, P. P.; Pati, S. K.; Maji, T. K. Redox-active and semi-conducting donor-acceptor conjugated microporous polymers as metal-free ORR catalysts. J. Mater. Chem. A 2018, 6, 5587–5591.

[116]

Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676.

[117]

Xu, Q.; Tang, Y. P.; Zhang, X. B.; Oshima, Y.; Chen, Q. H.; Jiang, D. L. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 2018, 30, 1706330.

[118]

Li, D. H.; Li, C. Y.; Zhang, L. J.; Li, H.; Zhu, L. K.; Yang, D. J.; Fang, Q. R.; Qiu, S. L.; Yao, X. D. Metal-free thiophene-sulfur covalent organic frameworks: Precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 2020, 142, 8104–8108.

[119]

Bai, L.; Zheng, Z. Q.; Wang, Z. Q.; He, F.; Xue, Y. R.; Wang, N. Acetylenic bond-driven efficient hydrogen production of a graphdiyne based catalyst. Mater. Chem. Front. 2021, 5, 2247–2254.

[120]

Lv, Q.; Si, W. Y.; He, J. J.; Sun, L.; Zhang, C. F.; Wang, N.; Yang, Z.; Li, X. D.; Wang, X.; Deng, W. Q. et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 2018, 9, 3376.

[121]

Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

[122]

Zhou, J. Y.; Li, J. Q.; Liu, Z. F.; Zhang, J. Exploring approaches for the synthesis of few-layered graphdiyne. Adv. Mater. 2019, 31, 1803758.

[123]

Li, J. Q.; Zhang, Z. C.; Kong, Y.; Yao, B. W.; Yin, C.; Tong, L. M.; Chen, X. D.; Lu, T. B.; Zhang, J. Synthesis of wafer-scale ultrathin graphdiyne for flexible optoelectronic memory with over 256 storage levels. Chem 2021, 7, 1284–1296.

[124]

Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599.

[125]

Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Porous C3N4 nanolayers@N-Graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 2015, 9, 931–940.

[126]

Tam, T. V.; Kang, S. G.; Kim, M. H.; Lee, S. G.; Hur, S. H.; Chung, J. S.; Choi, W. M. Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn-air batteries and overall water splitting. Adv. Energy Mater. 2019, 9, 1900945.

[127]

Gao, R.; Dai, Q. B.; Du, F.; Yan, D. P.; Dai, L. M. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 11658–11666.

[128]

Li, P. J.; Shen, Y. L.; Li, X. M.; Huang, W. H.; Lu, X. Fullerene-intercalated graphitic carbon nitride as a high-performance anode material for sodium-ion batteries. Energy Environ. Mater. 2022, 5, 608–616.

[129]

Ahsan, M. A.; He, T. W.; Eid, K.; Abdullah, A. M.; Curry, M. L.; Du, A. J.; Santiago, A. R. R.; Echegoyen, L.; Noveron, J. C. Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry. J. Am. Chem. Soc. 2021, 143, 1203–1215.

[130]

Zhong, H. X.; Zhang, Q.; Wang, J.; Zhang, X. B.; Wei, X. L.; Wu, Z. J.; Li, K.; Meng, F. L.; Bao, D.; Yan, J. M. Engineering ultrathin C3N4 quantum dots on graphene as a metal-free water reduction electrocatalyst. ACS Catal. 2018, 8, 3965–3970.

[131]

Zhao, M.; Li, T. H.; Jia, L. C.; Li, H. L.; Yuan, W. Y.; Li, C. M. Pristine-graphene-supported nitrogen-doped carbon self-assembled from glucaminium-based ionic liquids as metal-free catalyst for oxygen evolution. ChemSusChem 2019, 12, 5041–5050.

[132]

Paul, R.; Wang, M.; Roy, A. Transparent graphene/BN-graphene stacked nanofilms for electrocatalytic oxygen evolution. ACS Appl. Nano Mater. 2020, 3, 10418–10426.

[133]

Tong, X.; Cherif, M.; Zhang, G. X.; Zhan, X. X.; Ma, J. G.; Almesrati, A.; Vidal, F.; Song, Y. J.; Claverie, J. P.; Sun, S. H. N,P-codoped graphene dots supported on N-doped 3D graphene as metal-free catalysts for oxygen reduction. ACS Appl. Mater. Interfaces 2021, 13, 30512–30523.

[134]

Li, J. Q.; Yi, Y. Y.; Zuo, X. T.; Hu, B. B.; Xiao, Z. H.; Lian, R. Q.; Kong, Y.; Tong, L. M.; Shao, R. W.; Sun, J. Y. et al. Graphdiyne/graphene/graphdiyne sandwiched carbonaceous anode for potassium-ion batteries. ACS Nano 2022, 16, 3163–3172.

[135]

Yuan, Z. K.; Li, J.; Yang, M. J.; Fang, Z. S.; Jian, J. H.; Yu, D. S.; Chen, X. D.; Dai, L. M. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: Dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 4972–4979.

[136]

Yang, M. J.; Zhang, Y.; Jian, J. H.; Fang, L.; Li, J.; Fang, Z. S.; Yuan, Z. K.; Dai, L. M.; Chen, X. D.; Yu, D. S. Donor-acceptor nanocarbon ensembles to boost metal-free all-pH hydrogen evolution catalysis by combined surface and dual electronic modulation. Angew. Chem., Int. Ed. 2019, 131, 16363–16368.

[137]

Yang, H. B.; Miao, J. W.; Hung, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.

[138]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[139]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[140]

Wang, Q. C.; Ji, Y. J.; Lei, Y. P.; Wang, Y. B.; Wang, Y. D.; Li, Y. Y.; Wang, S. Y. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett. 2018, 3, 1183–1191.

[141]

Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322–333.

[142]

Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 1958, 54, 1053–1063.

[143]

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

[144]

Zhao, H.; Zhang, D.; Wang, Z. C.; Han, Y.; Sun, X. M.; Li, H. D.; Wu, X. K.; Pan, Y.; Qin, Y. N.; Lin, S. Y. et al. High-performance nitrogen electroreduction at low overpotential by introducing Pb to Pd nanosponges. Appl. Catal. B Environ. 2020, 265, 118481.

[145]

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

[146]

Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 129, 2743–2747.

[147]

Liang, J.; Liu, Q.; Ali Alshehri, A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[148]

Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

[149]

Xing, C. Y.; Wu, C. Y.; Xue, Y. R.; Zhao, Y. J.; Hui, L.; Yu, H. D.; Liu, Y. X.; Pan, Q. Y.; Fang, Y.; Zhang, C. et al. A highly selective and active metal-free catalyst for ammonia production. Nanoscale Horiz. 2020, 5, 1274–1278.

[150]

Zou, H. Y.; Rong, W. F.; Long, B. H.; Ji, Y. F.; Duan, L. L. Corrosion-induced Cl-doped ultrathin graphdiyne toward electrocatalytic nitrogen reduction at ambient conditions. ACS Catal. 2019, 9, 10649–10655.

[151]

Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.

[152]

Liu, B.; Zheng, Y. P.; Peng, H. Q.; Ji, B. F.; Yang, Y.; Tang, Y. B.; Lee, C. S.; Zhang, W. J. Nanostructured and boron-doped diamond as an electrocatalyst for nitrogen fixation. ACS Energy Lett. 2020, 5, 2590–2596.

[153]

Liu, Y.; Li, Q. Y.; Guo, X.; Kong, X. D.; Ke, J. W.; Chi, M. F.; Li, Q. X.; Geng, Z. G.; Zeng, J. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Adv. Mater. 2020, 32, 1907690.

[154]

Chang, B.; Li, L. L.; Shi, D.; Jiang, H. H.; Ai, Z. Z.; Wang, S. Z.; Shao, Y. L.; Shen, J. X.; Wu, Y. Z.; Li, Y. L. et al. Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B Environ. 2021, 283, 119622.

[155]

Studt, F.; Tuczek, F. Theoretical, spectroscopic, and mechanistic studies on transition-metal dinitrogen complexes: Implications to reactivity and relevance to the nitrogenase problem. J. Comput. Chem. 2006, 27, 1278–1291.

[156]

Chu, K.; Li, Q. Q.; Liu, Y. P.; Wang, J.; Cheng, Y. H. Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction. Appl. Catal. B Environ. 2020, 267, 118693.

[157]

Zhao, Z. M.; Long, Y.; Chen, Y.; Zhang, F. Y.; Ma, J. T. Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction. Chem. Eng. J. 2022, 430, 132682.

[158]

Chen, C.; Yan, D. F.; Wang, Y.; Zhou, Y. Y.; Zou, Y. Q.; Li, Y. F.; Wang, S. Y. B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small 2019, 15, 1805029.

[159]

Kong, Y.; Li, Y.; Yang, B.; Li, Z. J.; Yao, Y.; Lu, J. G.; Lei, L. C.; Wen, Z. H.; Shao, M. H.; Hou, Y. Boron and nitrogen co-doped porous carbon nanofibers as metal-free electrocatalysts for highly efficient ammonia electrosynthesis. J. Mater. Chem. A 2019, 7, 26272–26278.

[160]

Ren, J. T.; Wan, C. Y.; Pei, T. Y.; Lv, X. W.; Yuan, Z. Y. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms. Appl. Catal. B Environ. 2020, 266, 118633.

[161]

Wen, Y. K.; Zhu, H.; Hao, J. C.; Lu, S. L.; Zong, W.; Lai, F. L.; Ma, P. M.; Dong, W. F.; Liu, T. X.; Du, M. L. Metal-free boron and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia. Appl. Catal. B Environ. 2021, 292, 120144.

[162]

Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. The evolution and future of earth's nitrogen cycle. Science 2010, 330, 192–196.

[163]

Duca, M.; Koper, M. T. M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726–9742.

[164]

Zghibi, A.; Tarhouni, J.; Zouhri, L. Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia). J. African Earth Sci. 2013, 87, 1–12.

[165]

Li, Y. M.; Go, Y. K.; Ooka, H.; He, D. P.; Jin, F. M.; Kim, S. H.; Nakamura, R. Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media. Angew. Chem., Int. Ed. 2020, 59, 9744–9750.

[166]

Zeng, Y. C.; Priest, C.; Wang, G. F.; Wu, G. Restoring the nitrogen cycle by electrochemical reduction of nitrate: Progress and prospects. Small Methods 2020, 4, 2000672.

[167]

Li, Y.; Xiao, S.; Li, X.; Chang, C.; Xie, M.; Xu, J.; Yang, Z. A robust metal-free electrocatalyst for nitrate reduction reaction to synthesize ammonia. Mater. Today Phys. 2021, 19, 100431.

[168]

Li, X.; Gu, Y. W.; Wu, S.; Chen, S.; Quan, X.; Yu, H. T. Selective reduction of nitrate to ammonium over charcoal electrode derived from natural wood. Chemosphere 2021, 285, 131501.

[169]

Zhu, X. R.; Zhou, X. C.; Jing, Y.; Li, Y. F. Electrochemical synthesis of urea on MBenes. Nat. Commun. 2021, 12, 4080.

[170]

Kayan, D. B.; Köleli, F. Simultaneous electrocatalytic reduction of dinitrogen and carbon dioxide on conducting polymer electrodes. Appl. Catal. B Environ. 2016, 181, 88–93.

[171]

Liu, X. W.; Kumar, P. V.; Chen, Q.; Zhao, L. J.; Ye, F. H.; Ma, X. Y.; Liu, D.; Chen, X. C.; Dai, L. M.; Hu, C. G. Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl. Catal. B Environ. 2022, 316, 121618.

[172]

Mavrikis, S.; Göltz, M.; Perry, S. C.; Bogdan, F.; Leung, P. K.; Rosiwal, S.; Wang, L.; De León, C. P. Effective hydrogen peroxide production from electrochemical water oxidation. ACS Energy Lett. 2021, 6, 2369–2377.

[173]

Ando, Y.; Tanaka, T. Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis. Int. J. Hydrog. Energy 2004, 29, 1349–1354.

[174]

Xia, C.; Back, S.; Ringe, S.; Jiang, K.; Chen, F. H.; Sun, X. M.; Siahrostami, S.; Chan, K.; Wang, H. T. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 2020, 3, 125–134.

[175]

Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Rechargeable room-temperature Na-CO2 batteries. Angew. Chem., Int. Ed. 2016, 55, 6482–6486.

[176]

Xie, Z. J.; Zhang, X.; Zhang, Z.; Zhou, Z. Metal-CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 2017, 29, 1605891.

[177]

Cai, F. S.; Hu, Z.; Chou, S. L. Progress and future perspectives on Li (Na)-CO2 batteries. Adv. Sustainable Syst. 2018, 2, 1800060.

[178]

Qie, L.; Lin, Y.; Connell, J. W.; Xu, J. T.; Dai, L. M. Highly rechargeable lithium-CO2 batteries with a boron-and nitrogen-codoped holey-graphene cathode. Angew. Chem., Int. Ed. 2017, 56, 6970–6974.

[179]

Jin, Y. C.; Hu, C. G.; Dai, Q. B.; Xiao, Y.; Lin, Y.; Connell, J. W.; Chen, F. Y.; Dai, L. M. High-performance Li-CO2 batteries based on metal-free carbon quantum dot/holey graphene composite catalysts. Adv. Funct. Mater. 2018, 28, 1804630.

[180]

Hu, X. F.; Li, Z. F.; Chen, J. Flexible Li-CO2 batteries with liquid-free electrolyte. Angew. Chem., Int. Ed. 2017, 129, 5879–5883.

[181]

Li, X. L.; Zhou, J. W.; Zhang, J. X.; Li, M.; Bi, X. X.; Liu, T. C.; He, T.; Cheng, J. L.; Zhang, F.; Li, Y. P. et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries. Adv. Mater. 2019, 31, 1903852.

[182]

Song, L.; Hu, C. G.; Xiao, Y.; He, J. P.; Lin, Y.; Connell, J. W.; Dai, L. M. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy 2020, 71, 104595.

[183]

Hu, X. F.; Li, Z. F.; Zhao, Y. R.; Sun, J. C.; Zhao, Q.; Wang, J. B.; Tao, Z. L.; Chen, J. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 2017, 3, e1602396.

[184]

Zhang, W. C.; Hu, C. G.; Guo, Z. P.; Dai, L. M. High-performance K-CO2 batteries based on metal-free carbon electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 3470–3474.

[185]

Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2017, 2, 525–532.

[186]

Lu, K.; Hu, Z. Y.; Ma, J. Z.; Ma, H. Y.; Dai, L. M.; Zhang, J. T. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 2017, 8, 527.

[187]

Wang, W.; Hu, Y. C.; Liu, Y. C.; Zheng, Z. Y.; Chen, S. L. Self-powered and highly efficient production of H2O2 through a Zn-Air battery with oxygenated carbon electrocatalyst. ACS Appl. Mater. Interfaces 2018, 10, 31855–31859.

[188]

Ghausi, M. A.; Xie, J. F.; Li, Q. H.; Wang, X. Y.; Yang, R.; Wu, M. X.; Wang, Y. B.; Dai, L. M. CO2 overall splitting by a bifunctional metal-free electrocatalyst. Angew. Chem., Int. Ed. 2018, 130, 13319–13323.

[189]

Lin, D. Q.; Hu, C. G.; Chen, H.; Qu, J.; Dai, L. M. Microporous N,P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen. Chem. -Eur. J. 2018, 24, 18487–18493.

[190]

Hu, X. F.; Joo, P. H.; Matios, E.; Wang, C. L.; Luo, J. M.; Yang, K. S.; Li, W. Y. Designing an all-solid-state sodium-carbon dioxide battery enabled by nitrogen-doped nanocarbon. Nano Lett. 2020, 20, 3620–3626.

[191]

Li, X. L.; Qi, G. C.; Zhang, J. X.; Cheng, J. L.; Wang, B. Artificial solid-electrolyte interphase and bamboo-like N-doped carbon nanotube enabled highly rechargeable K-CO2 batteries. Adv. Funct. Mater. 2022, 32, 2105029.

[192]

Lu, Y.; Cai, Y. C.; Zhang, Q.; Ni, Y. X.; Zhang, K.; Chen, J. Rechargeable K-CO2 batteries with a KSn anode and a carboxyl-containing carbon nanotube cathode catalyst. Angew. Chem., Int. Ed. 2021, 60, 9540–9545.

[193]

Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555–558.

[194]

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

[195]

Zhao, Q.; Lu, Y. Y.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015, 15, 5982–5987.

[196]

Gong, D. C.; Wang, B.; Zhu, J. Y.; Podila, R.; Rao, A. M.; Yu, X. Z.; Xu, Z.; Lu, B. G. An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 2017, 7, 1601885.

[197]

Meng, L. X.; Li, L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res. Energy 2022, 1, e9120020.

[198]

Zhang, J. T.; Dai, L. M. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem., Int. Ed. 2016, 55, 13296–13300.

[199]

Hu, C. G.; Chen, X. Y.; Dai, Q. B.; Wang, M.; Qu, L. T.; Dai, L. M. Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. Nano Energy 2017, 41, 367–376.

[200]

Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

[201]

Hasani, A.; Teklagne, M. A.; Do, H. H.; Hong, S. H.; Van Le, Q.; Ahn, S. H.; Kim, S. Y. Graphene-based catalysts for electrochemical carbon dioxide reduction. Carbon Energy 2020, 2, 158–175.

[202]

Xue, X. Y.; Yang, H.; Yang, T.; Yuan, P. F.; Li, Q.; Mu, S. C.; Zheng, X. L.; Chi, L. F.; Zhu, J.; Li, Y. G. et al. N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J. Mater. Chem. A 2019, 7, 15271–15277.

[203]

Yuan, L. P.; Tang, T.; Hu, J. S.; Wan, L. J. Confinement strategies for precise synthesis of efficient electrocatalysts from the macroscopic to the atomic level. Acc. Mater. Res. 2021, 2, 907–919.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 October 2022
Revised: 19 November 2022
Accepted: 25 November 2022
Published: 14 December 2022
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was partly financially supported by the National Natural Science Foundation of China (52172179) and the Fundamental Research Funds for the Central Universities (buctrc202118).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return