AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries

Yang-Yang Wang1,2Xue-Qiang Zhang1,2( )Ming-Yue Zhou3Jia-Qi Huang1,2( )
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

Rechargeable lithium batteries with long calendar life are pivotal in the pursuit of non-fossil and wireless society as energy storage devices. However, corrosion has severely plagued the calendar life of lithium batteries. The corrosion in batteries mainly occurs between electrode materials and electrolytes, which results in constant consumption of active materials and electrolytes and finally premature failure of batteries. Therefore, understanding the mechanism of corrosion and developing strategies to inhibit corrosion are imperative for lithium batteries with long calendar life. In this review, different types of corrosion in batteries are summarized and the corresponding corrosion mechanisms are firstly clarified. Secondly, quantitative studies of the loss of lithium in corrosion are reviewed for an in-depth understanding of the mechanism. Thirdly, the recent progress in inhibiting corrosion is demonstrated. Finally, perspectives to further investigate corrosion mechanism and inhibit corrosion are put forward to promote the development of stable lithium batteries.

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Liu, Z.; Deng, Z.; He, G.; Wang, H. L.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2021, 3, 141–155.

[3]

Dell, R. M.; Rand, D. A. J. Energy storage—a key technology for global energy sustainability. J. Power Sources 2001, 100, 2–17.

[4]

Marinaro, M.; Bresser, D.; Beyer, E.; Faguy, P.; Hosoi, K.; Li, H.; Sakovica, J.; Amine, K.; Wohlfahrt-Mehrens, M.; Passerini, S. Bringing forward the development of battery cells for automotive applications: Perspective of R & D activities in China, Japan, the EU and the USA. J. Power Sources 2020, 459, 228073.

[5]

Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50.

[6]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[7]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[8]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[9]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[10]

Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

[11]

Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278.

[12]

Duan, J.; Tang, X.; Dai, H. F.; Yang, Y.; Wu, W. Y.; Wei, X. Z.; Huang, Y. H. Building safe lithium-ion batteries for electric vehicles: A review. Electrochem. Energy Rev. 2019, 3, 1–42.

[13]

Crabtree, G. The coming electric vehicle transformation. Science 2019, 366, 422–424.

[14]

Kwade, A.; Haselrieder, W.; Leithoff, R.; Modlinger, A.; Dietrich, F.; Droeder, K. Current status and challenges for automotive battery production technologies. Nat. Energy 2018, 3, 290–300.

[15]

Armand, M.; Axmann, P.; Bresser, D.; Copley, M.; Edström, K.; Ekberg, C.; Guyomard, D.; Lestriez, B.; Novák, P.; Petranikova, M. et al. Lithium-ion batteries-current state of the art and anticipated developments. J. Power Sources 2020, 479, 228708.

[16]

Lu, Y.; Zhang, Q.; Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 2019, 62, 533–548.

[17]

Ziegler, M. S.; Trancik, J. E. Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ. Sci. 2021, 14, 1635–1651.

[18]

Ramasamy, R. P.; White, R. E.; Popov, B. N. Calendar life performance of pouch lithium-ion cells. J. Power Sources 2005, 141, 298–306.

[19]

McBrayer, J. D.; Rodrigues, M. T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L. et al. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872.

[20]

Boyle, D. T.; Huang, W.; Wang, H. S.; Li, Y. Z.; Chen, H.; Yu, Z. A.; Zhang, W. B.; Bao, Z. N.; Cui, Y. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 2021, 6, 487–494.

[21]

Sulzer, V.; Mohtat, P.; Aitio, A.; Lee, S.; Yeh, Y. T.; Steinbacher, F.; Khan, M. U.; Lee, J. W.; Siegel, J. B.; Stefanopoulou, A. G. et al. The challenge and opportunity of battery lifetime prediction from field data. Joule 2021, 5, 1934–1955.

[22]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[23]

Meng, J. S.; Guo, H. C.; Niu, C. J.; Zhao, Y. L.; Xu, L.; Li, Q.; Mai, L. Advances in structure and property optimizations of battery electrode materials. Joule 2017, 1, 522–547.

[24]

Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y. M.; Yoon, W. S. Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2020, 59, 2578–2605.

[25]

Li, Y. Q.; Lu, Y. X.; Adelhelm, P.; Titirici, M. M.; Hu, Y. S. Intercalation chemistry of graphite: Alkali metal ions and beyond. Chem. Soc. Rev. 2019, 48, 4655–4687.

[26]

Zhang, H.; Yang, Y.; Ren, D. S.; Wang, L.; He, X. M. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170.

[27]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[28]

Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332–6341.

[29]

Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C. et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights. J. Phys. Chem. Lett. 2015, 6, 4653–4672.

[30]

Shen, X.; Zhang, X. Q.; Ding, F.; Huang, J. Q.; Xu, R.; Chen, X.; Yan, C.; Su, F. Y.; Chen, C. M.; Liu, X. J. et al. Advanced electrode materials in lithium batteries: Retrospect and prospect. Energy Mater. Adv. 2021, 2021, 1205324.

[31]

Yang, L. Y.; Yang, K.; Zheng, J. X.; Xu, K.; Amine, K.; Pan, F. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 4667–4680.

[32]

Cabana, J.; Kwon, B. J.; Hu, L. H. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries. Acc. Chem. Res. 2018, 51, 299–308.

[33]

Sun, S. Y.; Yao, N.; Jin, C. B.; Xie, J.; Li, X. Y.; Zhou, M. Y.; Chen, X.; Li, B. Q.; Zhang, X. Q.; Zhang, Q. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase. Angew. Chem. , Int. Ed. 2022, 61, e202208743.

[34]

Yao, N.; Chen, X.; Fu, Z. H.; Zhang, Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 2022, 122, 10970–11021.

[35]

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

[36]

Jie, Y. L.; Ren, X. D.; Cao, R. G.; Cai, W. B.; Jiao, S. H. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv. Funct. Mater. 2020, 30, 1910777.

[37]

Li, M.; Wang, C. S.; Chen, Z. W.; Xu, K.; Lu, J. New concepts in electrolytes. Chem. Rev. 2020, 120, 6783–6819.

[38]

Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed. 2018, 57, 5301–5305.

[39]

Hou, L. P.; Yao, N.; Xie, J.; Shi, P.; Sun, S. Y.; Jin, C. B.; Chen, C. M.; Liu, Q. B.; Li, B. Q.; Zhang, X. Q. et al. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202201406.

[40]

Lin, D. C.; Liu, Y. Y.; Li, Y. B.; Li, Y. Z.; Pei, A.; Xie, J.; Huang, W.; Cui, Y. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 2019, 11, 382–389.

[41]

Ma, T. Y.; Xu, G. L.; Li, Y.; Wang, L.; He, X. M.; Zheng, J. M.; Liu, J.; Engelhard, M. H.; Zapol, P.; Curtiss, L. A. et al. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. J. Phys. Chem. Lett. 2017, 8, 1072–1077.

[42]

Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; New lithium salts for lithium-ion cells. J. Power Sources 1997, 68, 320–325.

[43]

Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. J. Power Sources 2013, 231, 234–238.

[44]

Zhao, Y. B.; Wu, Y. F.; Liu, H. H.; Chen, S. L.; Bo, S. H. Accelerated growth of electrically isolated lithium metal during battery cycling. ACS Appl. Mater. Interfaces 2021, 13, 35750–35758.

[45]

Ryu, H. S.; Ahn, H. J.; Kim, K. W.; Ahn, J. H.; Lee, J. Y.; Cairns, E. J. Self-discharge of lithium-sulfur cells using stainless-steel current-collectors. J. Power Sources 2005, 140, 365–369.

[46]

Kolesnikov, A.; Kolek, M.; Dohmann, J. F.; Horsthemke, F.; Börner, M.; Bieker, P.; Winter, M.; Stan, M. C. Galvanic corrosion of lithium-powder-based electrodes. Adv. Energy Mater. 2020, 10, 2000017.

[47]

Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W. Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. J. Electrochem. Soc. 2000, 147, 4399–4407.

[48]

Wang, X. M.; Yasukawa, E.; Mori, S. Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochim. Acta 2000, 45, 2677–2684.

[49]

Guéguen, A.; Streich, D.; He, M. L.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J. Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry. J. Electrochem. Soc. 2016, 163, A1095–A1100.

[50]

Yang, H.; Zhuang, G. V.; Ross, P. N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources 2006, 161, 573–579.

[51]

Zhang, X. Y.; Winget, B.; Doeff, M.; Evans, J. W.; Devine, T. M. Corrosion of aluminum current collectors in lithium-ion batteries with electrolytes containing LiPF6. J. Electrochem. Soc. 2005, 152, B448.

[52]

Yang, C. Y.; Chen, J.; Qing, T. T.; Fan, X. L.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A. et al. 4.0 V aqueous Li-ion batteries. Joule 2017, 1, 122–132.

[53]

Gao, H.; Ma, T. Y.; Duong, T.; Wang, L.; He, X. M.; Lyubinetsky, I.; Feng, Z. X.; Maglia, F.; Lamp, P.; Amine, K. et al. Protecting Al foils for high-voltage lithium-ion chemistries. Mater. Today Energy 2018, 7, 18–26.

[54]

Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim. Acta 2002, 47, 2787–2793.

[55]

Gabryelczyk, A.; Ivanov, S.; Bund, A.; Lota, G. Corrosion of aluminium current collector in lithium-ion batteries: A review. J. Energy Storage 2021, 43, 103226.

[56]

Gabryelczyk, A.; Ivanov, S.; Bund, A.; Lota, G. Taguchi method in experimental procedures focused on corrosion process of positive current collector in lithium-ion batteries. Electrochim. Acta 2020, 360, 137011.

[57]

Zhang, X. Y.; Devine, T. M. Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF6. J. Electrochem. Soc. 2006, 153, B344.

[58]

Zhang, X. Y.; Devine, T. M. Factors that influence formation of AlF3 passive film on aluminum in Li-ion battery electrolytes with LiPF6. J. Electrochem. Soc. 2006, 153, B375.

[59]

Wandt, J.; Freiberg, A.; Thomas, R.; Gorlin, Y.; Siebel, A.; Jung, R.; Gasteiger, H. A.; Tromp, M. Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. J. Mater. Chem. A 2016, 4, 18300–18305.

[60]

Pieczonka, N. P. W.; Liu, Z. Y.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J. H. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 2013, 117, 15947–15957.

[61]

Sahore, R.; O'Hanlon, D. C.; Tornheim, A.; Lee, C. W.; Garcia, J. C.; Iddir, H.; Balasubramanian, M.; Bloom, I. Revisiting the mechanism behind transition-metal dissolution from delithiated LiNixMnyCozO2 (NMC) cathodes. J. Electrochem. Soc. 2020, 167, 020513.

[62]

Gilbert, J. A.; Shkrob, I. A.; Abraham, D. P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J. Electrochem. Soc. 2017, 164, A389–A399.

[63]

Evertz, M.; Horsthemke, F.; Kasnatscheew, J.; Börner, M.; Winter, M.; Nowak, S. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique. J. Power Sources 2016, 329, 364–371.

[64]

Yang, L.; Ravdel, B.; Lucht, B. L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 2010, 13, A95.

[65]

Myung, S. T.; Izumi, K.; Komaba, S.; Yashiro, H.; Bang, H. J.; Sun, Y. K.; Kumagai, N. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries. J. Phys. Chem. C 2007, 111, 4061–4067.

[66]

Myung, S. T.; Izumi, K.; Komaba, S.; Sun, Y. K.; Yashiro, H.; Kumagai, N. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater. 2005, 17, 3695–3704.

[67]

Li, D. J.; Li, H.; Danilov, D.; Gao, L.; Zhou, J.; Eichel, R. A.; Yang, Y.; Notten, P. H. L. Temperature-dependent cycling performance and ageing mechanisms of C6/LiNi1/3Mn1/3Co1/3O2 batteries. J. Power Sources 2018, 396, 444–452.

[68]

Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions. J. Power Sources 2003, 119–121, 784–788.

[69]

Han, H. B.; Zhou, S. S.; Zhang, D. J.; Feng, S. W.; Li, L. F.; Liu, K.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J. Power Sources 2011, 196, 3623–3632.

[70]

Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J. Power Sources 2011, 196, 9743–9750.

[71]

Eshetu, G. G.; Grugeon, S.; Gachot, G.; Mathiron, D.; Armand, M.; Laruelle, S. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives. Electrochim. Acta 2013, 102, 133–141.

[72]

Kerner, M.; Plylahan, N.; Scheers, J.; Johansson, P. Thermal stability and decomposition of lithium bis (fluorosulfonyl) imide (LiFSI) salts. RSC Adv. 2016, 6, 23327–23334.

[73]

Hu, J. J.; Long, G. K.; Liu, S.; Li, G. R.; Gao, X. P. A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery. Chem. Commun. 2014, 50, 14647–14650.

[74]

Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

[75]

McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ. Sci. 2014, 7, 416–426.

[76]

Abouimrane, A.; Ding, J.; Davidson, I. J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. J. Power Sources 2009, 189, 693–696.

[77]

Péter, L.; Arai, J. Anodic dissolution of aluminium in organic electrolytes containing perfluoroalkylsulfonyl imides. J. Appl. Electrochem. 1999, 29, 1053–1061.

[78]

Kita, F.; Sakata, H.; Sinomoto, S.; Kawakami, A.; Kamizori, H.; Sonoda, T.; Nagashima, H.; Nie, J.; Pavlenko, N. V.; Yagupolskii, Y. L. Characteristics of the electrolyte with fluoro organic lithium salts. J. Power Sources 2000, 90, 27–32.

[79]

Kanamura, K.; Umegaki, T.; Shiraishi, S.; Ohashi, M.; Takehara, Z. I. Electrochemical behavior of al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J. Electrochem. Soc. 2002, 149, A185.

[80]

Wang, X. M.; Yasukawa, E.; Mori, S. Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries. J. Electrochem. Soc. 1999, 146, 3992–3998.

[81]

Kühnel, R. S.; Balducci, A. Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors. J. Power Sources 2014, 249, 163–171.

[82]

Krämer, E.; Schedlbauer, T.; Hoffmann, B.; Terborg, L.; Nowak, S.; Gores, H. J.; Passerini, S.; Winter, M. Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC: DEC 3: 7 in rechargeable lithium batteries. J. Electrochem. Soc. 2012, 160, A356–A360.

[83]

Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J. H.; Tateyama, Y.; Yamada, A. Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015, 2, 1687–1694.

[84]

Cho, E.; Mun, J.; Chae, O. B.; Kwon, O. M.; Kim, H. T.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochem. Commun. 2012, 22, 1–3.

[85]

Myung, S. T.; Hitoshi, Y.; Sun, Y. K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 2011, 21, 9891.

[86]

Braithwaite, J. W.; Gonzales, A.; Nagasubramanian, G.; Lucero, S. J.; Peebles, D. E.; Ohlhausen, J. A.; Cieslak, W. R. Corrosion of lithium-ion battery current collectors. J. Electrochem. Soc. 1999, 146, 448–456.

[87]

Zhang, S. S.; Jow, T. R. Aluminum corrosion in electrolyte of Li-ion battery. J. Power Sources 2002, 109, 458–464.

[88]

Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries. Mater. Today 2021, 45, 62–76.

[89]

Shi, P.; Hou, L. P.; Jin, C. B.; Xiao, Y.; Yao, Y. X.; Xie, J.; Li, B. Q.; Zhang, X. Q.; Zhang, Q. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 2022, 144, 212–218.

[90]

He, X.; Bresser, D.; Passerini, S.; Baakes, F.; Krewer, U.; Lopez, J.; Mallia, C. T.; Shao-Horn, Y.; Cekic-Laskovic, I.; Wiemers-Meyer, S. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 2021, 6, 1036–1052.

[91]

Wu, H. P.; Jia, H.; Wang, C. M.; Zhang, J. G.; Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 2021, 11, 2003092.

[92]

Hou, Z.; Zhang, J. L.; Wang, W. H.; Chen, Q. W.; Li, B. H.; Li, C. L. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J. Energy Chem. 2020, 45, 7–17.

[93]
Zhang, X. G. Galvanic corrosion. In Uhlig's Corrosion Handbook. Revie, R. W., Ed.; John Wiley & Sons: Hoboken, 2011; pp 123.
DOI
[94]

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.

[95]

Dohmann, J. F.; Horsthemke, F.; Küpers, V.; Bloch, S.; Preibisch, Y.; Kolesnikov, A.; Kolek, M.; Stan, M. C.; Winter, M.; Bieker, P. Galvanic couples in ionic liquid-based electrolyte systems for lithium metal batteries—an overlooked cause of galvanic corrosion? Adv. Energy Mater. 2021, 11, 2101021.

[96]

Evans, T.; Olson, J.; Bhat, V.; Lee, S. H. Corrosion of stainless steel battery components by bis(fluorosulfonyl)imide based ionic liquid electrolytes. J. Power Sources 2014, 269, 616–620.

[97]

Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Improved performances of nanosilicon electrodes using the salt LiFSI: A photoelectron spectroscopy study. J. Am. Chem. Soc. 2013, 135, 9829–9842.

[98]

Luo, C. Y.; Li, Y. J.; Sun, W. W.; Xiao, P. T.; Liu, S. K.; Wang, D. Q.; Zheng, C. M. Revisiting the corrosion mechanism of LiFSI based electrolytes in lithium metal batteries. Electrochim. Acta 2022, 419, 140353.

[99]
Epp, J. X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Hübschen, G.; Altpeter, I.; Tschuncky, R.; Herrmann, H. G., Eds.; Elsevier: Amsterdam, 2016; pp 81–124.
DOI
[100]

Altomare, A.; Corriero, N.; Cuocci, C.; Falcicchio, A.; Moliterni, A.; Rizzi, R. Main features of QUALX2.0 software for qualitative phase analysis. Powder Diffr. 2017, 32, S129–S134.

[101]

Karlak, R. F.; Burnett, D. S. Quantitative phase analysis by X-ray diffraction. Anal. Chem. 1966, 38, 1741–1745.

[102]

Geise, N. R.; Kasse, R. M.; Nelson Weker, J.; Steinrück, H. G.; Toney, M. F. Quantification of efficiency in lithium metal negative electrodes via operando X-ray diffraction. Chem. Mater. 2021, 33, 7537–7545.

[103]

Yao, H. Y. Y.; Wang, J. Q.; Yin, J. Y.; Nie, S. P.; Xie, M. Y. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res. Int. 2021, 143, 110290.

[104]

Bharti, S. K.; Roy, R. Quantitative 1H NMR spectroscopy. Trends Analyt. Chem. 2012, 35, 5–26.

[105]

Pecher, O.; Carretero-González, J.; Griffith, K. J.; Grey, C. P. Materials' methods: NMR in battery research. Chem. Mater. 2017, 29, 213–242.

[106]

Gunnarsdóttir, A. B.; Amanchukwu, C. V.; Menkin, S.; Grey, C. P. Noninvasive in situ NMR study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 20814–20827.

[107]

Gunnarsdóttir, A. B.; Vema, S.; Menkin, S.; Marbella, L. E.; Grey, C. P. Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries using in situ NMR spectroscopy. J. Mater. Chem. A 2020, 8, 14975–14992.

[108]

Bartle, K. D.; Myers, P. History of gas chromatography. Trends Analyt. Chem. 2002, 21, 547–557.

[109]
Karasek, F. W.; Clement, R. E. Basic Gas Chromatography-Mass Spectrometry: Principles and Techniques; Elsevier Science: Amsterdam, 2012.
[110]
McNair, H. M.; Miller, J. M.; Snow, N. H. Basic Gas Chromatography; 3rd ed. John Wiley & Sons: Hoboken, 2019.
DOI
[111]

Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

[112]

Zachman, M. J.; Tu, Z. Y.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature 2018, 560, 345–349.

[113]

Aurbach, D.; Weissman, I. On the possibility of LiH formation on Li surfaces in wet electrolyte solutions. Electrochem. Commun. 1999, 1, 324–331.

[114]

Zhou, M. Y.; Ding, X. Q.; Ding, J. F.; Hou, L. P.; Shi, P.; Xie, J.; Li, B. Q.; Huang, J. Q.; Zhang, X. Q.; Zhang, Q. Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule 2022, 6, 2122–2137.

[115]

Gabbott, P. Principles and Applications of Thermal Analysis; Blackwell Publishing: Oxford, 2008.

DOI
[116]

Höhne, G. W. H.; Hemminger, W. F.; Flammersheim, H. J. Differential Scanning Calorimetry; Springer: Berlin, 2003.

DOI
[117]

Zhang, Q. K.; Zhang, X. Q.; Hou, L. P.; Sun, S. Y.; Zhan, Y. X.; Liang, J. L.; Zhang, F. S.; Feng, X. N.; Li, B. Q.; Huang, J. Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Adv. Energy Mater. 2022, 12, 2200139.

[118]

Xu, H. Y.; Han, C.; Li, W. T.; Li, H. Y.; Qiu, X. P. Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries. J. Power Sources 2022, 529, 231219.

[119]

Richardson, M. J. Quantitative aspects of differential scanning calorimetry. Thermochim. Acta 1997, 300, 15–28.

[120]

Liu, Q.; Dzwiniel, T. L.; Pupek, K. Z.; Zhang, Z. C. Corrosion/passivation behavior of concentrated ionic liquid electrolytes and its impact on the Li-ion battery performance. J. Electrochem. Soc. 2019, 166, A3959–A3964.

[121]

Peng, C. X.; Yang, L.; Zhang, Z. X.; Tachibana, K.; Yang, Y. Anodic behavior of Al current collector in 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide ionic liquid electrolytes. J. Power Sources 2007, 173, 510–517.

[122]

Kühnel, R. S.; Böckenfeld, N.; Passerini, S.; Winter, M.; Balducci, A. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim. Acta 2011, 56, 4092–4099.

[123]

Kühnel, R. S.; Lübke, M.; Winter, M.; Passerini, S.; Balducci, A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J. Power Sources 2012, 214, 178–184.

[124]

Shkrob, I. A.; Pupek, K. Z.; Abraham, D. P. Allotropic control: How certain fluorinated carbonate electrolytes protect aluminum current collectors by promoting the formation of insoluble coordination polymers. J. Phys. Chem. C 2016, 120, 18435–18444.

[125]

Myung, S. T.; Natsui, H.; Sun, Y. K.; Yashiro, H. Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt. J. Power Sources 2010, 195, 8297–8301.

[126]

Chen, X. L.; Xu, W.; Engelhard, M. H.; Zheng, J. M.; Zhang, Y. H.; Ding, F.; Qian, J. F.; Zhang, J. G. Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. J. Mater. Chem. A 2014, 2, 2346–2352.

[127]

Shieh, D. T.; Hsieh, P. H.; Yang, M. H. Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries. J. Power Sources 2007, 174, 663–667.

[128]

Li, C. L.; Zeng, S. W.; Wang, P.; Li, Z. J.; Yang, L.; Zhao, D. N.; Wang, J.; Liu, H. N.; Li, S. Y. Mechanism of aluminum corrosion in LiFSI-based electrolyte at elevated temperatures. Trans. Nonferrous Met. Soc. China 2021, 31, 1439–1451.

[129]

Li, F. Q.; Gong, Y.; Jia, G. F.; Wang, Q. L.; Peng, Z. J.; Fan, W.; Bai, B. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability. J. Power Sources 2015, 295, 47–54.

[130]

Gheytani, S.; Liang, Y. L.; Jing, Y.; Xu, J. Q.; Yao, Y. Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. J. Mater. Chem. A 2016, 4, 395–399.

[131]

Zhao, J.; Frankel, G.; McCreery, R. L. Corrosion protection of untreated AA-2024-T3 in chloride solution by a chromate conversion coating monitored with Raman spectroscopy. J. Electrochem. Soc. 1998, 145, 2258–2264.

[132]

Xia, L.; McCreery, R. L. Chemistry of a chromate conversion coating on aluminum alloy AA2024-T3 probed by vibrational spectroscopy. J. Electrochem. Soc. 1998, 145, 3083–3089.

[133]

Teucher, G.; Van Gestel, T.; Krott, M.; Gehrke, H. G.; Eichel, R. A.; Uhlenbruck, S. Processing of Al-doped ZnO protective thin films on aluminum current collectors for lithium ion batteries. Thin Solid Films 2016, 619, 302–307.

[134]

Maldonado, F.; Stashans, A. Al-doped ZnO: Electronic, electrical and structural properties. J. Phys. Chem. Solids 2010, 71, 784–787.

[135]

Lee, J. H.; Park, B. O. Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol-gel method. Thin Solid Films 2003, 426, 94–99.

[136]

Wu, H. C.; Wu, H. C.; Lee, E.; Wu, N. L. High-temperature carbon-coated aluminum current collector for enhanced power performance of LiFePO4 electrode of Li-ion batteries. Electrochem. Commun. 2010, 12, 488–491.

[137]

Wang, M. Z.; Tang, M.; Chen, S. L.; Ci, H.; Wang, K. X.; Shi, L. R.; Lin, L.; Ren, H. Y.; Shan, J. Y.; Gao, P. et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery. Adv. Mater. 2017, 29, 1703882.

[138]

Li, T.; Bo, H.; Cao, H. W.; Lai, Y. Q.; Liu, Y. X. Carbon-coated aluminum foil as current collector for improving the performance of lithium sulfur batteries. Int. J. Electrochem. Sci. 2017, 12, 3099–3108.

[139]

Li, X.; Deng, S. X.; Banis, M. N.; Doyle-Davis, K.; Zhang, D. X.; Zhang, T. Y.; Yang, J.; Divigalpitiya, R.; Brandys, F.; Li, R. Y. et al. Suppressing corrosion of aluminum foils via highly conductive graphene-like carbon coating in high-performance lithium-based batteries. ACS Appl. Mater. Interfaces 2019, 11, 32826–32832.

[140]

Richard Prabakar, S. J.; Hwang, Y. H.; Bae, E. G.; Lee, D. K.; Pyo, M. Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries. Carbon 2013, 52, 128–136.

[141]

Wang, R. B.; Li, W. W.; Liu, L. T.; Qian, Y. T.; Liu, F. K.; Chen, M. L.; Guo, Y. F.; Liu, L. W. Carbon black/graphene-modified aluminum foil cathode current collectors for lithium ion batteries with enhanced electrochemical performances. J. Electroanal. Chem. 2019, 833, 63–69.

[142]

Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Advances in interfaces between Li metal anode and electrolyte. Adv. Mater. Interfaces 2018, 5, 1701097.

[143]

Han, Z. Y.; Zhang, C.; Lin, Q. W.; Zhang, Y. B.; Deng, Y. Q.; Han, J. W.; Wu, D. C.; Kang, F. Y.; Yang, Q. H.; Lv, W. A protective layer for lithium metal anode: Why and how. Small Methods 2021, 5, e2001035.

[144]

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

[145]

Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. B.; Rubloff, G. W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 2015, 9, 5884–5892.

[146]

Jung, S. C.; Han, Y. K. How do Li atoms pass through the Al2O3 coating layer during lithiation in Li-ion batteries? J. Phys. Chem. Lett. 2013, 4, 2681–2685.

[147]

Lin, C. F.; Kozen, A. C.; Noked, M.; Liu, C. Y.; Rubloff, G. W. ALD protection of Li-metal anode surfaces–quantifying and preventing chemical and electrochemical corrosion in organic solvent. Adv. Mater. Interfaces 2016, 3, 1600426.

[148]

Choudhury, S.; Tu, Z. Y.; Stalin, S.; Vu, D.; Fawole, K.; Gunceler, D.; Sundararaman, R.; Archer, L. A. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem., Int. Ed. 2017, 56, 13070–13077.

[149]

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

[150]

Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.

[151]

Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119.

[152]

Wang, Z. S.; Xu, Z. M.; Jin, X. J.; Li, J. H.; Xu, Q. S.; Chong, Y. N.; Ye, C. C.; Li, W. S.; Ye, D. Q.; Lu, Y. Y. et al. Dendrite-free and air-stable lithium metal batteries enabled by electroless plating with aluminum fluoride. J. Mater. Chem. A 2020, 8, 9218–9227.

[153]

Qu, S. J.; Jia, W. S.; Wang, Y.; Li, C.; Yao, Z. Y.; Li, K. Y.; Liu, Y. C.; Zou, W.; Zhou, F.; Wang, Z. H. et al. Air-stable lithium metal anode with sputtered aluminum coating layer for improved performance. Electrochim. Acta 2019, 317, 120–127.

[154]

Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735–11744.

[155]

Zhao, J.; Zhou, G. M.; Yan, K.; Xie, J.; Li, Y. Z.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J. Y. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 2017, 12, 993–999.

[156]

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

[157]

Kong, L. L.; Wang, L.; Ni, Z. C.; Liu, S.; Li, G. R.; Gao, X. P. Lithium-magnesium alloy as a stable anode for lithium-sulfur battery. Adv. Funct. Mater. 2019, 29, 1808756.

[158]

Lu, K.; Xu, H. P.; He, H. Y.; Gao, S. Y.; Li, X.; Zheng, C.; Xu, T.; Cheng, Y. W. Modulating reactivity and stability of metallic lithium via atomic doping. J. Mater. Chem. A 2020, 8, 10363–10369.

[159]

Shi, P.; Fu, Z. H.; Zhou, M. Y.; Chen, X.; Yao, N.; Hou, L. P.; Zhao, C. Z.; Li, B. Q.; Huang, J. Q.; Zhang, X. Q. et al. Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Sci. Adv. 2022, 8, eabq3445.

[160]

Wasnik, D. N.; Samajdar, I.; Kain, V.; De, P. K.; Verlinden, B. Controlling grain boundary energy to make austenitic stainless steels resistant to intergranular stress corrosion cracking. J. Mater. Eng. Perform. 2003, 12, 402–407.

[161]

Kwon, B.; Lee, J.; Kim, H.; Kim, D. M.; Park, K.; Jo, S.; Lee, K. T. Janus behaviour of LiFSI- and LiPF6-based electrolytes for Li metal batteries: Chemical corrosion versus galvanic corrosion. J. Mater. Chem. A 2021, 9, 24993–25003.

[162]

Du, P. Y.; Nan, Y.; Zhao, H. T.; Guo, D. L.; Li, B.; Wu, S. J. Harnessing stiffness and anticorrosion of chromium in an artificial SEI to achieve a longevous lithium-metal anode. ACS Appl. Energy Mater. 2021, 4, 5043–5049.

Nano Research Energy
Article number: e9120046
Cite this article:
Wang Y-Y, Zhang X-Q, Zhou M-Y, et al. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Research Energy, 2023, 2: e9120046. https://doi.org/10.26599/NRE.2023.9120046

11809

Views

1668

Downloads

25

Crossref

18

Scopus

Altmetrics

Received: 17 October 2022
Revised: 18 November 2022
Accepted: 21 November 2022
Published: 09 December 2022
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return