Journal Home > Volume 2 , Issue 1

With the increasing penetration of renewable energy sources in the past decades, stationary energy storage technologies are critically desired for storing electricity generated by non-dispatchable energy sources to mitigate its impact on power grids. Redox flow batteries (RFBs) stand out among these technologies due to their salient features for large-scale energy storage. The primary obstacle to the successful industrialization and broad deployment of RFBs is now their high capital costs. A feasible route to cost reduction is to develop high-power RFBs, since the increase in power performance has a pronounced impact on the cost of RFB systems. In this review, an in-depth inspection of the power performance of RFBs is presented. Perspectives for the future development of high-power RFBs along with implementable strategies addressing both the intrinsic and extrinsic limiting factors are summarized, which are expected to provide useful references steering the further improvement in the power density of RFBs.


menu
Abstract
Full text
Outline
About this article

Towards high power density aqueous redox flow batteries

Show Author's information Mengqi Gao1Zhiyu Wang1Dao Gen Lek1Qing Wang1,2( )
Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 117574, Singapore
Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 138632, Singapore

Abstract

With the increasing penetration of renewable energy sources in the past decades, stationary energy storage technologies are critically desired for storing electricity generated by non-dispatchable energy sources to mitigate its impact on power grids. Redox flow batteries (RFBs) stand out among these technologies due to their salient features for large-scale energy storage. The primary obstacle to the successful industrialization and broad deployment of RFBs is now their high capital costs. A feasible route to cost reduction is to develop high-power RFBs, since the increase in power performance has a pronounced impact on the cost of RFB systems. In this review, an in-depth inspection of the power performance of RFBs is presented. Perspectives for the future development of high-power RFBs along with implementable strategies addressing both the intrinsic and extrinsic limiting factors are summarized, which are expected to provide useful references steering the further improvement in the power density of RFBs.

Keywords: power density, aqueous electrolytes, redox kinetics, redox flow batteries, polarizations

References(116)

[1]

Van Soest, H. L.; Den Elzen, M. G. J.; Van Vuuren, D. P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat. Commun. 2021, 12, 2140.

[2]

Bird, L.; Lew, D.; Milligan, M.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Holttinen, H.; Menemenlis, N.; Orths, A. et al. Wind and solar energy curtailment: A review of international experience. Renewable Sustainable Energy Rev. 2016, 65, 577–586.

[3]

Luo, J.; Hu, B.; Hu, M. W.; Zhao, Y.; Liu, T. L. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 2019, 4, 2220–2240.

[4]

Aneke, M.; Wang, M. H. Energy storage technologies and real life applications-a state of the art review. Appl. Energy 2016, 179, 350–377.

[5]

Chen, Y. Q.; Kang, Y. Q.; Zhao, Y.; Wang, L.; Liu, J. L.; Li, Y. X.; Liang, Z.; He, X. M.; Li, X.; Tavajohi, N. et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99.

[6]

Park, M.; Ryu, J.; Wang, W.; Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2017, 2, 16080.

[7]

Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J. Power Sources 2021, 481, 228804.

[8]
Mohamed, M. R.; Sharkh, S. M.; Walsh, F. C. Redox flow batteries for hybrid electric vehicles: Progress and challenges. In 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, USA, 2009, pp 551–557.
DOI
[9]

Yao, Y. X.; Lei, J. F.; Shi, Y.; Ai, F.; Lu, Y. C. Assessment methods and performance metrics for redox flow batteries. Nat. Energy 2021, 6, 582–588.

[10]

Li, T. Y.; Xing, F.; Liu, T.; Sun, J. W.; Shi, D. Q.; Zhang, H. M.; Li, X. F. Cost, performance prediction and optimization of a vanadium flow battery by machine-learning. Energy Environ. Sci. 2020, 13, 4353–4361.

[11]
Viswanathan, V.; Crawford, A.; Thaller, L.; Stephenson, D.; Kim, S.; Wang, W.; Coffey, G.; Balducci, P.; Gary, Z.; Yang, L. L. Estimation of capital and levelized cost for redox flow batteries. US Department of Energy (USDOE-OE ESS), Peer Review at Washington, DC 2012.
[12]

Chalamala, B. R.; Soundappan, T.; Fisher, G. R.; Anstey, M. R.; Viswanathan, V. V.; Perry, M. L. Redox flow batteries: An engineering perspective. Proc. IEEE 2014, 102, 976–999.

[13]

Perry, M. L.; Darling, R. M.; Zaffou, R. High power density redox flow battery cells. ECS Trans. 2013, 53, 7–16.

[14]

Lu, W. J.; Li, X. F.; Zhang, H. M. The next generation vanadium flow batteries with high power density-a perspective. Phys. Chem. Chem. Phys. 2018, 20, 23–35.

[15]

Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.; Mjalli, F. S.; Saleem, M. Progress in flow battery research and development. J. Electrochem. Soc. 2011, 158, R55.

[16]

Andreev, A. A.; Sridhar, A.; Sabry, M. M.; Zapater, M.; Ruch, P.; Michel, B.; Atienza, D. PowerCool: Simulation of cooling and powering of 3D MPSoCs with integrated flow cell arrays. IEEE Trans. Comput. 2018, 67, 73–85.

[17]
Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, 2022.
[18]

Aaron, D.; Tang, Z. J.; Papandrew, A. B.; Zawodzinski, T. A. Polarization curve analysis of all-vanadium redox flow batteries. J. Appl. Electrochem. 2011, 41, 1175–1182.

[19]

Emmett, R. K.; Roberts, M. E. Recent developments in alternative aqueous redox flow batteries for grid-scale energy storage. J. Power Sources 2021, 506, 230087.

[20]

Arévalo-Cid, P.; Dias, P.; Mendes, A.; Azevedo, J. Redox flow batteries: A new frontier on energy storage. Sustainable Energy Fuels 2021, 5, 5366–5419.

[21]

Hofmann, J. D.; Schröder, D. Which parameter is governing for aqueous redox flow batteries with organic active material? Chem. Ing. Tech. 2019, 91, 786–794.

[22]

Wang, H.; Sayed, S. Y.; Luber, E. J.; Olsen, B. C.; Shirurkar, S. M.; Venkatakrishnan, S.; Tefashe, U. M.; Farquhar, A. K.; Smotkin, E. S.; McCreery, R. L. et al. Redox flow batteries: How to determine electrochemical kinetic parameters. ACS Nano 2020, 14, 2575–2584.

[23]

Chen, P.; Fryling, M. A.; McCreery, R. L. Electron transfer kinetics at modified carbon electrode surfaces: The role of specific surface sites. Anal. Chem. 1995, 67, 3115–3122.

[24]

Weber, A. Z.; Mench, M. M.; Meyers, J. P.; Ross, P. N.; Gostick, J. T.; Liu, Q. H. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137–1164.

[25]

Fink, H.; Friedl, J.; Stimming, U. Composition of the electrode determines which half-cell's rate constant is higher in a vanadium flow battery. J. Phys. Chem. C 2016, 120, 15893–15901.

[26]

Chen, Q. R.; Lv, Y. G.; Yuan, Z. Z.; Li, X. F.; Yu, G. H.; Yang, Z. J.; Xu, T. W. Organic electrolytes for pH-neutral aqueous organic redox flow batteries. Adv. Funct. Mater. 2022, 32, 2108777.

[27]

Luo, J.; Sam, A.; Hu, B.; DeBruler, C.; Wei, X. L.; Wang, W.; Liu, T. L. Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries. Nano Energy 2017, 42, 215–221.

[28]

Roznyatovskaya, N.; Noack, J.; Pinkwart, K.; Tübke, J. Aspects of electron transfer processes in vanadium redox-flow batteries. Curr. Opin. Electrochem. 2020, 19, 42–48.

[29]

Park, M.; Ryu, J.; Cho, J. Nanostructured electrocatalysts for all-vanadium redox flow batteries. Chem. Asian J. 2015, 10, 2096– 2110.

[30]

Singh, M. K.; Kapoor, M.; Verma, A. Recent progress on carbon and metal based electrocatalysts for vanadium redox flow battery. WIRs Energy Environ. 2021, 10, e393.

[31]

Li, B.; Gu, M.; Nie, Z. M.; Shao, Y. Y.; Luo, Q. T.; Wei, X. L.; Li, X. L.; Xiao, J.; Wang, C. M.; Sprenkle, V. et al. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett. 2013, 13, 1330–1335.

[32]

Zhang, F. F.; Huang, S. P.; Wang, X.; Jia, C. K.; Du, Y. H.; Wang, Q. Redox-targeted catalysis for vanadium redox-flow batteries. Nano Energy 2018, 52, 292–299.

[33]

Ma, D.; Hu, B.; Wu, W. D.; Liu, X.; Zai, J. T.; Shu, C.; Tadesse Tsega, T.; Chen, L. W.; Qian, X. F.; Liu, T. L. Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 2019, 10, 3367.

[34]

Gao, M. Q.; Huang, S. P.; Zhang, F. F.; Lee, Y. M.; Huang, S. Q.; Wang, Q. Successive ionic layer adsorption and reaction-deposited copper sulfide electrocatalyst for high-power polysulfide-based aqueous flow batteries. Mater. Today Energy 2020, 18, 100540.

[35]

Liu, Y. H.; Li, Y. Y.; Zuo, P. P.; Chen, Q. R.; Tang, G. G.; Sun, P.; Yang, Z. J.; Xu, T. W. Screening viologen derivatives for neutral aqueous organic redox flow batteries. ChemSusChem 2020, 13, 2245–2249.

[36]

Wu, M.; Jing, Y.; Wong, A. A.; Fell, E. M.; Jin, S. J.; Tang, Z. J.; Gordon, R. G.; Aziz, M. J. Extremely stable anthraquinone negolytes synthesized from common precursors. Chem 2020, 6, 1432–1442.

[37]

Amini, K.; Gostick, J.; Pritzker, M. D. Metal and metal oxide electrocatalysts for redox flow batteries. Adv. Funct. Mater. 2020, 30, 1910564.

[38]

Choi, C.; Kim, S.; Kim, R.; Choi, Y.; Kim, S.; Jung, H. Y.; Yang, J. H.; Kim, H. T. A review of vanadium electrolytes for vanadium redox flow batteries. Renewable Sustainable Energy Rev. 2017, 69, 263–274.

[39]

Chao, D. L.; Qiao, S. Z. Toward high-voltage aqueous batteries: Super- or low-concentrated electrolyte? Joule 2020, 4, 1846–1851.

[40]

Wang, X.; Gao, M. Q.; Lee, Y. M.; Salla, M.; Zhang, F. F.; Huang, S. P.; Wang, Q. E-blood: High power aqueous redox flow cell for concurrent powering and cooling of electronic devices. Nano Energy 2022, 93, 106864.

[41]

Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180–232.

[42]

Robb, B. H.; Farrell, J. M.; Marshak, M. P. Chelated chromium electrolyte enabling high-voltage aqueous flow batteries. Joule 2019, 3, 2503–2512.

[43]

Liu, Y.; Dai, G. L.; Chen, Y. Y.; Wang, R.; Li, H. M.; Shi, X. L.; Zhang, X. H.; Xu, Y.; Zhao, Y. Effective design strategy of small bipolar molecules through fused conjugation toward 2.5 V based redox flow batteries. ACS Energy Lett. 2022, 7, 1274–1283.

[44]

Gao, M. Q.; Salla, M.; Song, Y. X.; Wang, Q. High-power near-neutral aqueous all organic redox flow battery enabled with a pair of anionic redox species. Angew. Chem. , Int. Ed. 2022, 61, e202208223.

[45]

Gu, S.; Gong, K.; Yan, E. Z.; Yan, Y. S. A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 2014, 7, 2986–2998.

[46]

Zhong, C.; Liu, B.; Ding, J.; Liu, X. R.; Zhong, Y. W.; Li, Y.; Sun, C. B.; Han, X. P.; Deng, Y. D.; Zhao, N. Q. et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 2020, 5, 440–449.

[47]

Yu, V. K.; Chen, D. Peak power prediction of a vanadium redox flow battery. J. Power Sources 2014, 268, 261–268.

[48]

Li, Z. J.; Weng, G. M.; Zou, Q. L.; Cong, G. T.; Lu, Y. C. A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 2016, 30, 283–292.

[49]

Ding, Y.; Zhang, C. K.; Zhang, L. Y.; Zhou, Y. G.; Yu, G. H. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69–103.

[50]

Hu, B.; DeBruler, C.; Rhodes, Z.; Liu, T. L. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 2017, 139, 1207–1214.

[51]

Yu, J. Z.; Salla, M.; Zhang, H.; Ji, Y.; Zhang, F. F.; Zhou, M. Y.; Wang, Q. A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery. Energy Storage Mater. 2020, 29, 216–222.

[52]

Jin, S. J.; Jing, Y.; Kwabi, D. G.; Ji, Y. L.; Tong, L.; De Porcellinis, D.; Goulet, M. A.; Pollack, D. A.; Gordon, R. G.; Aziz, M. J. A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 2019, 4, 1342–1348.

[53]

Zhang, C. K.; Chen, H.; Qian, Y. M.; Dai, G. L.; Zhao, Y.; Yu, G. H. General design methodology for organic eutectic electrolytes toward high-energy-density redox flow batteries. Adv. Mater. 2021, 33, 2008560.

[54]

Zhang, C. K.; Qian, Y. M.; Ding, Y.; Zhang, L. Y.; Guo, X. L.; Zhao, Y.; Yu, G. H. Biredox eutectic electrolytes derived from organic redox-active molecules: High-energy storage systems. Angew. Chem. , Int. Ed. 2019, 58, 7045–7050.

[55]

Shi, Y.; Wang, Z. Y.; Yao, Y. X.; Wang, W. W.; Lu, Y. C. High-areal-capacity conversion type iron-based hybrid redox flow batteries. Energy Environ. Sci. 2021, 14, 6329–6337.

[56]

Khor, A.; Leung, P.; Mohamed, M. R.; Flox, C.; Xu, Q.; An, L.; Wills, R. G. A.; Morante, J. R.; Shah, A. A. Review of zinc-based hybrid flow batteries: From fundamentals to applications. Mater. Today Energy 2018, 8, 80–108.

[57]

Yuan, Z. Z.; Yin, Y. B.; Xie, C. X.; Zhang, H. M.; Yao, Y.; Li, X. F. Advanced materials for zinc-based flow battery: Development and challenge. Adv. Mater. 2019, 31, 1902025.

[58]

Yuan, Z. Z.; Liang, L. X.; Dai, Q.; Li, T. Y.; Song, Q. L.; Zhang, H. M.; Hou, G. J.; Li, X. F. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule 2022, 6, 884–905.

[59]

Wang, G. X.; Zou, H. T.; Zhu, X. B.; Ding, M.; Jia, C. K. Recent progress in zinc-based redox flow batteries: A review. J. Phys. D: Appl. Phys. 2022, 55, 163001.

[60]

Duduta, M.; Ho, B.; Wood, V. C.; Limthongkul, P.; Brunini, V. E.; Carter, W. C.; Chiang, Y. M. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 2011, 1, 511–516.

[61]

Ventosa, E. Semi-solid flow battery and redox-mediated flow battery: Two strategies to implement the use of solid electroactive materials in high-energy redox-flow batteries. Curr. Opin. Chem. Eng. 2022, 37, 100834.

[62]

Huang, Q. Z.; Wang, Q. Next-generation, high-energy-density redox flow batteries. ChemPlusChem 2015, 80, 312–322.

[63]

Yan, R. T.; Wang, Q. Redox-targeting-based flow batteries for large-scale energy storage. Adv. Mater. 2018, 30, 1802406.

[64]

Zhou, M. Y.; Chen, Y.; Salla, M.; Zhang, H.; Wang, X.; Mothe, S. R.; Wang, Q. Single-molecule redox-targeting reactions for a pH-neutral aqueous organic redox flow battery. Angew. Chem. , Int. Ed. 2020, 59, 14286–14291.

[65]

Zhang, F. F.; Gao, M. Q.; Huang, S. Q.; Zhang, H.; Wang, X.; Liu, L. J.; Han, M.; Wang, Q. Redox targeting of energy materials for energy storage and conversion. Adv. Mater. 2022, 34, 2104562.

[66]

Chen, Y.; Zhou, M. Y.; Xia, Y. H.; Wang, X.; Liu, Y.; Yao, Y.; Zhang, H.; Li, Y.; Lu, S. T.; Qin, W. et al. A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries. Joule 2019, 3, 2255–2267.

[67]

Cheng, Y. H.; Wang, X.; Huang, S. P.; Samarakoon, W.; Xi, S. B.; Ji, Y.; Zhang, H.; Zhang, F. F.; Du, Y. H.; Feng, Z. X. et al. Redox targeting-based vanadium redox-flow battery. ACS Energy Lett. 2019, 4, 3028–3035.

[68]

Noack, J.; Roznyatovskaya, N.; Herr, T.; Fischer, P. The chemistry of redox-flow batteries. Angew. Chem. , Int. Ed. 2015, 54, 9776–9809.

[69]

Jiang, L. W.; Dong, D. J.; Lu, Y. C. Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 2022, 1, e9120003.

[70]

Leung, P.; Li, X. H.; De León, C. P.; Berlouis, L.; Low, C. T. J.; Walsh, F. C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156.

[71]

Chakrabarti, M. H.; Brandon, N. P.; Hajimolana, S. A.; Tariq, F.; Yufit, V.; Hashim, M. A.; Hussain, M. A.; Low, C. T. J.; Aravind, P. V. Application of carbon materials in redox flow batteries. J. Power Sources 2014, 253, 150–166.

[72]

Ye, R. J.; Henkensmeier, D.; Yoon, S. J.; Huang, Z. F.; Kim, D. K.; Chang, Z. J.; Kim, S.; Chen, R. Y. Redox flow batteries for energy storage: A technology review. J. Electrochem. Energy Convers. Storage 2018, 15, 010801.

[73]

Wang, R.; Li, Y. S. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective. Energy Storage Mater. 2020, 31, 230–251.

[74]

Shao, Y. Y.; Wang, X. Q.; Engelhard, M.; Wang, C. M.; Dai, S.; Liu, J.; Yang, Z. G.; Lin, Y. H. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. J. Power Sources 2010, 195, 4375–4379.

[75]

Wu, L. T.; Shen, Y.; Yu, L. H.; Xi, J. Y.; Qiu, X. P. Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres electrocatalyst. Nano Energy 2016, 28, 19–28.

[76]

Miller, M. A.; Bourke, A.; Quill, N.; Wainright, J. S.; Lynch, R. P.; Buckley, D. N.; Savinell, R. F. Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency. J. Electrochem. Soc. 2016, 163, A2095–A2102.

[77]

Banerjee, R.; Bevilacqua, N.; Mohseninia, A.; Wiedemann, B.; Wilhelm, F.; Scholta, J.; Zeis, R. Carbon felt electrodes for redox flow battery: Impact of compression on transport properties. J. Energy Storage 2019, 26, 100997.

[78]

Park, S. K.; Shim, J.; Yang, J. H.; Jin, C. S.; Lee, B. S.; Lee, Y. S.; Shin, K. H.; Jeon, J. D. The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery. Electrochim. Acta 2014, 116, 447–452.

[79]

Gundlapalli, R.; Jayanti, S. Effect of electrode compression and operating parameters on the performance of large vanadium redox flow battery cells. J. Power Sources 2019, 427, 231–242.

[80]

Zhou, X. L.; Zeng, Y. K.; Zhu, X. B.; Wei, L.; Zhao, T. S. A high-performance dual-scale porous electrode for vanadium redox flow batteries. J. Power Sources 2016, 325, 329–336.

[81]

Aaron, D. S.; Liu, Q.; Tang, Z.; Grim, G. M.; Papandrew, A. B.; Turhan, A.; Zawodzinski, T. A.; Mench, M. M. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 2012, 206, 450–453.

[82]

Jiang, H. R.; Sun, J.; Wei, L.; Wu, M. C.; Shyy, W.; Zhao, T. S. A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 2020, 24, 529–540.

[83]

Zeng, L.; Zhao, T. S.; Wei, L.; Jiang, H. R.; Wu, M. C. Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges. Appl. Energy 2019, 233234, 622–643.

[84]

Hickner, M. A.; Herring, A. M.; Coughlin, E. B. Anion exchange membranes: Current status and moving forward. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 1727–1735.

[85]

Jin, S. J.; Fell, E. M.; Vina-Lopez, L.; Jing, Y.; Michalak, P. W.; Gordon, R. G.; Aziz, M. J. Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species. Adv. Energy Mater. 2020, 10, 2000100.

[86]

Yuan, Z. Z.; Zhang, H. M.; Li, X. F. Ion conducting membranes for aqueous flow battery systems. Chem. Commun. 2018, 54, 7570–7588.

[87]

Xiong, P.; Zhang, L. Y.; Chen, Y. Y.; Peng, S. S.; Yu, G. H. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries. Angew. Chem. , Int. Ed. 2021, 60, 24770–24798.

[88]

Lee, K. J.; Chu, Y. H. Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system. Vacuum 2014, 107, 269–276.

[89]

Xi, J. Y.; Wu, Z. H.; Qiu, X. P.; Chen, L. Q. Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power Sources 2007, 166, 531–536.

[90]

Teng, X. G.; Zhao, Y. T.; Xi, J. Y.; Wu, Z. H.; Qiu, X. P.; Chen, L. Q. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions. J. Membr. Sci. 2009, 341, 149–154.

[91]

Mai, Z.; Zhang, H. M.; Li, X. F.; Xiao, S. H.; Zhang, H. Z. Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. J. Power Sources 2011, 196, 5737–5741.

[92]

Kuwertz, R.; Kirstein, C.; Turek, T.; Kunz, U. Influence of acid pretreatment on ionic conductivity of Nafion® membranes. J. Membr. Sci. 2016, 500, 225–235.

[93]

Schwenzer, B.; Zhang, J. L.; Kim, S.; Li, L. Y.; Liu, J.; Yang, Z. G. Membrane development for vanadium redox flow batteries. ChemSusChem 2011, 4, 1388–1406.

[94]

Li, Z. J.; Lu, Y. C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 2021, 6, 517–528.

[95]

Chen, D. J.; Qi, H. N.; Sun, T. T.; Yan, C.; He, Y. Y.; Kang, C. Z.; Yuan, Z. Z.; Li, X. F. Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications. J. Membr. Sci. 2019, 586, 202–210.

[96]

Yuan, Z. Z.; Liu, X. Q.; Xu, W. B.; Duan, Y. Q.; Zhang, H. M.; Li, X. F. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life. Nat. Commun. 2018, 9, 3731.

[97]

Gao, M. Q.; Salla, M.; Zhang, F. F.; Zhi, Y. F.; Wang, Q. Membrane fouling in aqueous redox flow batteries. J. Power Sources 2022, 527, 231180.

[98]

Pourcelly, G.; Oikonomou, A.; Gavach, C.; Hurwitz, H. D. Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes. J. Electroanal. Chem. Interfacial Electrochem. 1990, 287, 43–59.

[99]

Stenina, I. A.; Sistat, P.; Rebrov, A. I.; Pourcelly, G.; Yaroslavtsev, A. B. Ion mobility in Nafion-117 membranes. Desalination 2004, 170, 49–57.

[100]

Wessells, C.; Ruffο, R.; Huggins, R. A.; Cui, Y. Investigations of the electrochemical stability of aqueous electrolytes for lithium battery applications. Electrochem. Solid-State Lett. 2010, 13, A59.

[101]

Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943.

[102]

Ke, X. Y.; Prahl, J. M.; Alexander, J. I. D.; Wainright, J. S.; Zawodzinski, T. A.; Savinell, R. F. Rechargeable redox flow batteries: Flow fields, stacks and design considerations. Chem. Soc. Rev. 2018, 47, 8721–8743.

[103]

Elgammal, R. A.; Tang, Z. J.; Sun, C. N.; Lawton, J.; Zawodzinski, Jr. T. A. Species uptake and mass transport in membranes for vanadium redox flow batteries. Electrochim. Acta 2017, 237, 1–11.

[104]

Marschewski, J.; Brenner, L.; Ebejer, N.; Ruch, P.; Michel, B.; Poulikakos, D. 3D-printed fluidic networks for high-power-density heat-managing miniaturized redox flow batteries. Energy Environ. Sci. 2017, 10, 780–787.

[105]

Arenas, L. F.; De León, C. P.; Walsh, F. C. Redox flow batteries for energy storage: Their promise, achievements and challenges. Curr. Opin. Electrochem. 2019, 16, 117–126.

[106]

Esan, O. C.; Shi, X. Y.; Pan, Z. F.; Huo, X. Y.; An, L.; Zhao, T. S. Modeling and simulation of flow batteries. Adv. Energy Mater. 2020, 10, 2000758.

[107]

Ruch, P.; Brunschwiler, T.; Escher, W.; Paredes, S.; Michel, B. Toward five-dimensional scaling: How density improves efficiency in future computers. IBM J. Res. Dev. 2011, 55, 15: 1–15: 13.

[108]

Aubin, C. A.; Choudhury, S.; Jerch, R.; Archer, L. A.; Pikul, J. H.; Shepherd, R. F. Electrolytic vascular systems for energy-dense robots. Nature 2019, 571, 51–57.

[109]

Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields. J. Power Sources 2016, 327, 258–264.

[110]

Chen, Q.; Gerhardt, M. R.; Hartle, L.; Aziz, M. J. A quinone-bromide flow battery with 1 W/cm2 power density. J. Electrochem. Soc. 2016, 163, A5010–A2013.

[111]

Luo, J.; Wu, W. D.; Debruler, C.; Hu, B.; Hu, M. W.; Liu, T. L. A 1.51 V pH neutral redox flow battery towards scalable energy storage. J. Mater. Chem. A 2019, 7, 9130–9136.

[112]

Wang, C. X.; Li, X.; Yu, B.; Wang, Y. R.; Yang, Z.; Wang, H. Z.; Lin, H. N.; Ma, J.; Li, G. G.; Jin, Z. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries. ACS Energy Lett. 2020, 5, 411–417.

[113]

Lv, X. L.; Sullivan, P.; Fu, H. C.; Hu, X. X.; Liu, H. H.; Jin, S.; Li, W. J.; Feng, D. W. Dextrosil-viologen: A robust and sustainable anolyte for aqueous organic redox flow batteries. ACS Energy Lett. 2022, 7, 2428–2434.

[114]

Becker, M.; Bredemeyer, N.; Tenhumberg, N.; Turek, T. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries. J. Power Sources 2016, 307, 826–833.

[115]

Zhou, M. Y.; Huang, Q. Z.; Truong, T. N. P.; Ghilane, J.; Zhu, Y. G.; Jia, C. K.; Yan, R. T.; Fan, L.; Randriamahazaka, H.; Wang, Q. Nernstian-potential-driven redox-targeting reactions of battery materials. Chem 2017, 3, 1036–1049.

[116]

Jing, Y.; Zhao, E. W.; Goulet, M. A.; Bahari, M.; Fell, E. M.; Jin, S. J.; Davoodi, A.; Jónsson, E.; Wu, M.; Grey, C. P. et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat. Chem. 2022, 14, 1103–1109.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 October 2022
Revised: 19 November 2022
Accepted: 20 November 2022
Published: 09 December 2022
Issue date: March 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Investigatorship Programme (Award No. NRF-NRFI2018-06).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return