Journal Home > Online First

Electrochemical CO2 reduction reaction (CO2RR) is a promising technology for mitigating global warming and storing renewable energy. Designing low-cost and efficient electrocatalysts with high selectivity is a priority to facilitate CO2 conversion. Halide ion (F, Cl, Br, I) modified electrocatalysts is a potential strategy to promote CO2 reduction and suppress the competitive hydrogen evolution reaction (HER). Therefore, a comprehensive review of the role and mechanism of halide ions in the CO2RR process can help better guide the future design of efficient electrocatalysts. In this review, we first discuss the role of halide ions on the structure and morphology of electrocatalysts. Secondly, the relationship between the halide ions and the valence states of the active sites on the catalyst surface is further elaborated on. Thirdly, the mechanisms of halide in enhancing CO2 conversion efficiency are also summarized, including the involvement of halide ions in electron transfer and their influence on the reaction pathway. Finally, we conclude with a summary and future outlook.


menu
Abstract
Full text
Outline
About this article

Reviewing the impact of halides on electrochemical CO2 reduction

Show Author's information Zebi Zhao1Jiguang Zhang2Ming Lei1( )Yanwei Lum2( )
State Key Laboratory of Information Photonics and Optical Communications & School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis way, Innovis, Singapore 138634, Singapore

Abstract

Electrochemical CO2 reduction reaction (CO2RR) is a promising technology for mitigating global warming and storing renewable energy. Designing low-cost and efficient electrocatalysts with high selectivity is a priority to facilitate CO2 conversion. Halide ion (F, Cl, Br, I) modified electrocatalysts is a potential strategy to promote CO2 reduction and suppress the competitive hydrogen evolution reaction (HER). Therefore, a comprehensive review of the role and mechanism of halide ions in the CO2RR process can help better guide the future design of efficient electrocatalysts. In this review, we first discuss the role of halide ions on the structure and morphology of electrocatalysts. Secondly, the relationship between the halide ions and the valence states of the active sites on the catalyst surface is further elaborated on. Thirdly, the mechanisms of halide in enhancing CO2 conversion efficiency are also summarized, including the involvement of halide ions in electron transfer and their influence on the reaction pathway. Finally, we conclude with a summary and future outlook.

Keywords:

energy conversion, CO2 reduction reaction, electrocatalysts, halide ions, catalytic mechanism
Received: 10 October 2022 Revised: 31 October 2022 Accepted: 05 November 2022 Published: 30 November 2022
References(123)
[1]

Huang, J. E.; Li, F. W.; Ozden, A.; Rasouli, A. S.; De Arquer, F. P. G.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.

[2]

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[3]

Lum, Y.; Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2019, 2, 86–93.

[4]

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

[5]

Lum, Y.; Cheng, T.; Goddard Ⅲ, W. A.; Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 2018, 140, 9337–9340.

[6]

Ding, N.; Lum, Y.; Chen, S. F.; Chien, S. W.; Hor, T. S. A.; Liu, Z. L.; Zong, Y. Sulfur-carbon yolk-shell particle based 3D interconnected nanostructures as cathodes for rechargeable lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 1853–1857.

[7]

Kim, T.; Palmore, G. T. R. A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products. Nat. Commun. 2020, 11, 3622.

[8]

Singh, M. R.; Kwon, Y.; Lum, Y.; Ager Ⅲ, J. W.; Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138, 13006–13012.

[9]

Lum, Y.; Huang, J. E.; Wang, Z. Y.; Luo, M. C.; Nam, D. H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y. H. et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 2020, 3, 14–22.

[10]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[11]

He, J. F.; Wu, C. H.; Li, Y. M.; Li, C. L. Design of pre-catalysts for heterogeneous CO2 electrochemical reduction. J. Mater. Chem. A 2021, 9, 19508–19533.

[12]

Lai, W. C.; Ma, Z. S.; Zhang, J. W.; Yuan, Y. L.; Qiao, Y.; Huang, H. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: Fundamental understanding and recent progress. Adv. Funct. Mater. 2022, 32, 2111193.

[13]

Lai, W. C.; Qiao, Y.; Zhang, J. W.; Lin, Z. Q.; Huang, H. W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci. 2022, 15, 3603–3629.

[14]

Zhang, J. W.; Zeng, G. M.; Chen, L. L.; Lai, W. C.; Yuan, Y. L.; Lu, Y. F.; Ma, C.; Zhang, W. H.; Huang, H. W. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Res. 2022, 15, 4014–4022.

[15]

Eid, K.; Lu, Q. Q.; Abdel-Azeim, S.; Soliman, A.; Abdullah, A. M.; Abdelgwad, A. M.; Forbes, R. P.; Ozoemena, K. I.; Varma, R. S.; Shibl, M. F. Highly exfoliated Ti3C2Tx MXene nanosheets atomically doped with Cu for efficient electrochemical CO2 reduction: An experimental and theoretical study. J. Mater. Chem. A 2022, 10, 1965–1975.

[16]

Masana, J. J.; Peng, B. W.; Shuai, Z. Y.; Qiu, M.; Yu, Y. Influence of halide ions on the electrochemical reduction of carbon dioxide over a copper surface. J. Mater. Chem. A 2022, 10, 1086–1104.

[17]

Halilu, A.; Hayyan, M.; Aroua, M. K.; Yusoff, R.; Hizaddin, H. F. Mechanistic insights into carbon dioxide utilization by superoxide ion generated electrochemically in ionic liquid electrolyte. Phys. Chem. Chem. Phys. 2021, 23, 1114–1126.

[18]

Kiss, A. A.; Pragt, J. J.; Vos, H. J.; Bargeman, G.; De Groot, M. T. Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem. Eng. J. 2016, 284, 260–269.

[19]

Luo, S. H.; Zeng, Z. T.; Wang, H.; Xiong, W. P.; Song, B.; Zhou, C. Y.; Duan, A. B.; Tan, X. F.; He, Q. Y.; Zeng, G. M. et al. Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progr. Polym. Sci. 2021, 115, 101374.

[20]

Wu, Y. Z.; Cao, S. Y.; Hou, J. G.; Li, Z. W.; Zhang, B.; Zhai, P. L.; Zhang, Y. T.; Sun, L. C. Rational design of nanocatalysts with nonmetal species modification for electrochemical CO2 reduction. Adv. Energy Mater. 2020, 10, 2000588.

[21]

Pérez-Sequera, A. C.; Díaz-Pérez, M. A.; Serrano-Ruiz, J. C. Recent advances in the electroreduction of CO2 over heteroatom-doped carbon materials. Catalysts 2020, 10, 1179.

[22]

Li, H.; Jiang, T. W.; Qin, X. X.; Chen, J.; Ma, X. Y.; Jiang, K.; Zhang, X. G.; Cai, W. B. Selective reduction of CO2 to CO on an Sb-modified Cu electrode: Spontaneous fabrication and physical insight. ACS Catal. 2021, 11, 6846–6856.

[23]

Lum, Y.; Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 2018, 11, 2935–2944.

[24]

Lamaison, S.; Wakerley, D.; Kracke, F.; Moore, T.; Zhou, L.; Lee, D. U.; Wang, L.; Hubert, M. A.; Acosta, J. E. A.; Gregoire, J. M. et al. Designing a Zn-Ag catalyst matrix and electrolyzer system for CO2 Conversion to CO and beyond. Adv. Mater. 2022, 34, e2103963.

[25]

De Arquer, F. P. G.; Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Seifitokaldani, A.; Saidaminov, M. I.; Tan, C. S.; Quan, L. N.; Proppe, A.; Kibria, M. G. et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 2018, 30, 1802858.

[26]

Arán-Ais, R. M.; Rizo, R.; Grosse, P.; Algara-Siller, G.; Dembélé, K.; Plodinec, M.; Lunkenbein, T.; Chee, S. W.; Cuenya, B. R. Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction. Nat. Commun. 2020, 11, 3489.

[27]

Li, S. J.; Dong, X.; Zhao, Y. H.; Mao, J. N.; Chen, W.; Chen, A. H.; Song, Y. F.; Li, G. H.; Jiang, Z.; Wei, W. et al. Chloride ion adsorption enables ampere-level CO2 electroreduction over silver hollow fiber. Angew. Chem., Int. Ed. 2022, 61, e202210432.

[28]

Ko, Y. J.; Kim, J. Y.; Lee, W. H.; Kim, M. G.; Seong, T. Y.; Park, J.; Jeong, Y.; Min, B. K.; Lee, W. S.; Lee, D. K. et al. Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate. Nat. Commun. 2022, 13, 2205.

[29]

Kong, X. D.; Ke, J. W.; Wang, Z. Q.; Liu, Y.; Wang, Y. B.; Zhou, W. R.; Yang, Z. W.; Yan, W. S.; Geng, Z. G.; Zeng, J. Co-based molecular catalysts for efficient CO2 reduction via regulating spin states. Appl. Catal. B Environ. 2021, 290, 120067.

[30]

Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catal. Today 2016, 260, 8–13.

[31]

Pan, F. P.; Li, B. Y.; Xiang, X. M.; Wang, G. F.; Li, Y. Efficient CO2 electroreduction by highly dense and active pyridinic nitrogen on holey carbon layers with fluorine engineering. ACS Catal. 2019, 9, 2124–2133.

[32]

Wicks, J.; Jue, M. L.; Beck, V. A.; Oakdale, J. S.; Dudukovic, N. A.; Clemens, A. L.; Liang, S. W.; Ellis, M. E.; Lee, G.; Baker, S. E. et al. 3D-printable fluoropolymer gas diffusion layers for CO2 electroreduction. Adv. Mater. 2021, 33, 2003855.

[33]

Xie, J. F.; Zhao, X. T.; Wu, M. X.; Li, Q. H.; Wang, Y. B.; Yao, J. N. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9640–9644.

[34]

Ni, W.; Xue, Y. F.; Zang, X. G.; Li, C. X.; Wang, H. Z.; Yang, Z. Y.; Yan, Y. M. Fluorine doped cagelike carbon electrocatalyst: An insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential. ACS Nano 2020, 14, 2014–2023.

[35]

Lu, Y. F.; Dong, L. Z.; Liu, J.; Yang, R. X.; Liu, J. J.; Zhang, Y.; Zhang, L.; Wang, Y. R.; Li, S. L.; Lan, Y. Q. Predesign of catalytically active sites via stable coordination cluster model system for electroreduction of CO2 to ethylene. Angew. Chem., Int. Ed. 2021, 60, 26210–26217.

[36]

Sheelam, A.; Muneeb, A.; Talukdar, B.; Ravindranath, R.; Huang, S. J.; Kuo, C. H.; Sankar, R. Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide. J. Appl. Electrochem. 2020, 50, 979–991.

[37]

Grosse, P.; Yoon, A.; Rettenmaier, C.; Chee, S. W.; Cuenya, B. R. Growth dynamics and processes governing the stability of electrodeposited size-controlled cubic Cu catalysts. J. Phys. Chem. C 2020, 124, 26908–26915.

[38]

Ogura, K.; Oohara, R.; Kudo, Y. Reduction of CO2 to ethylene at three-phase interface effects of electrode substrate and catalytic coating. J. Electrochem. Soc. 2005, 152, D213.

[39]

Qiu, Y.; Du, J.; Dong, W.; Dai, C. N.; Tao, C. Y. Selective conversion of CO2 to formate on a size tunable nano-Bi electrocatalyst. J. CO2 Utilizat. 2017, 20, 328–335.

[40]

Wang, Q. Z.; Ma, M.; Zhang, S. S.; Lu, K. K.; Fu, L. J.; Liu, X. J.; Chen, Y. H. Influence of the chemical compositions of bismuth oxyiodides on the electroreduction of carbon dioxide to formate. ChemPlusChem 2020, 85, 672–678.

[41]

Hsieh, Y. C.; Betancourt, L. E.; Senanayake, S. D.; Hu, E. Y.; Zhang, Y.; Xu, W. Q.; Polyansky, D. E. Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions. ACS Appl. Energy Mater. 2019, 2, 102–109.

[42]

Wang, Q. N.; Dong, H.; Yu, H.; Yu, H. B. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer. J. Power Sources 2015, 279, 1–5.

[43]

Wan, X. K.; Wang, J. Q.; Wang, Q. M. Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance. Angew. Chem., Int. Ed. 2021, 60, 20748–20753.

[44]

Raciti, D.; Braun, T.; Tackett, B. M.; Xu, H.; Cruz, M.; Wiley, B. J.; Moffat, T. P. High-aspect-ratio Ag nanowire mat electrodes for electrochemical CO production from CO2. ACS Catal. 2021, 11, 11945–11959.

[45]

Liu, S. B.; Wang, X. Z.; Tao, H. B.; Li, T. F.; Liu, Q.; Xu, Z. H.; Fu, X. Z.; Luo, J. L. Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO. Nano Energy 2018, 45, 456–462.

[46]

Fu, H. Q.; Zhang, L.; Zheng, L. R.; Liu, P. F.; Zhao, H. J.; Yang, H. G. Enhanced CO2 electroreduction performance over Cl-modified metal catalysts. J. Mater. Chem. A 2019, 7, 12420–12425.

[47]

Qiu, W. B.; Liang, R. P.; Luo, Y. L.; Cui, G. W.; Qiu, J. D.; Sun, X. P. A Br anion adsorbed porous Ag nanowire film: In situ electrochemical preparation and application toward efficient CO2 electroreduction to CO with high selectivity. Inorg. Chem. Front. 2018, 5, 2238–2241.

[48]

Li, H. F.; Liu, T. F.; Wei, P. F.; Lin, L.; Gao, D. F.; Wang, G. X.; Bao, X. H. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem., Int. Ed. 2021, 60, 14329–14333.

[49]

Liu, P.; Liu, H. L.; Zhang, S.; Wang, J.; Wang, C. Significant role of reconstructed character on CuO-derived catalyst for enhanced electrocatalytic reduction of CO2 to multicarbon products. Electrochim. Acta 2020, 354, 136753.

[50]

Yang, R. O.; Duan, J. Y.; Dong, P. P.; Wen, Q. L.; Wu, M.; Liu, Y. W.; Liu, Y.; Li, H. Q.; Zhai, T. Y. In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew. Chem., Int. Ed. 2022, 61, e202116706.

[51]

Gao, D. F.; Scholten, F.; Cuenya, B. R. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect. ACS Catal. 2017, 7, 5112–5120.

[52]

Lee, S.; Kim, D.; Lee, J. Electrocatalytic Production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst. Angew. Chem., Int. Ed. 2015, 54, 14701–14705.

[53]

Chen, R. Z.; Cheng, L.; Liu, J. Z.; Wang, Y. T.; Ge, W. X.; Xiao, C. Q.; Jiang, H.; Li, Y. H.; Li, C. Z. Toward high-performance CO2-to-C2 electroreduction via linker tuning on MOF-derived catalysts. Small 2022, 18, 2200720.

[54]

Wang, H.; Matios, E.; Wang, C. L.; Luo, J. M.; Lu, X.; Hu, X. F.; Li, W. Y. Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide. Nano Lett. 2019, 19, 3925–3932.

[55]

Gao, D. F.; Sinev, I.; Scholten, F.; Arán-Ais, R. M.; Divins, N. J.; Kvashnina, K.; Timoshenko, J.; Cuenya, B. R. Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew. Chem., Int. Ed. 2019, 58, 17047–17053.

[56]

Li, M. H.; Ma, Y. Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. P. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+. Angew. Chem., Int. Ed. 2021, 60, 11487–11493.

[57]

Yoon, A.; Poon, J.; Grosse, P.; Chee, S. W.; Cuenya, B. R. Iodide-mediated Cu catalyst restructuring during CO2 electroreduction. J. Mater. Chem. A 2022, 10, 14041–14050.

[58]

Kwon, Y.; Lum, Y.; Clark, E. L.; Ager, J. W.; Bell, A. T. CO2 electroreduction with enhanced ethylene and ethanol selectivity by nanostructuring polycrystalline copper. ChemElectroChem 2016, 3, 1012–1019.

[59]

Park, J. Y.; Dong, W. J.; Lee, J. L. Monolithic Cl-modified nanoporous Ag nanowires for electrochemical CO2 reduction to CO. ACS Appl. Energy Mater. 2022, 5, 1627–1634.

[60]

Fu, X. B.; Wang, J. A.; Hu, X. B.; He, K.; Tu, Q.; Yue, Q.; Kang, Y. J. Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel. Adv. Funct. Mater. 2021, 32, 2107182.

[61]

He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem., Int. Ed. 2018, 57, 16114–16119.

[62]

Liu, P.; Liu, H. L.; Zhang, S.; Wang, J.; Wang, C. Effects of thicknesses and sizes of BiOX nanoplates precursors on derived Bi nanosheets for efficient CO2 electroreduction. J. CO2 Utilizat. 2021, 51, 101643.

[63]

Zheng, H. Z.; Wu, G. L.; Gao, G. H.; Wang, X. X. The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO2 reduction to formate. Chem. Eng. J. 2021, 421, 129606.

[64]

Tang, J. M.; Tang, J. B.; Mayyas, M.; Ghasemian, M. B.; Sun, J.; Rahim, M. A.; Yang, J.; Han, J. L.; Lawes, D. J.; Jalili, R. et al. Liquid-metal-enabled mechanical-energy-induced CO2 conversion. Adv. Mater. 2022, 34, e2105789.

[65]

Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

[66]

Huang, W. J.; Wang, Y. J.; Liu, J. W.; Wang, Y.; Liu, D. B.; Dong, J. F.; Jia, N.; Yang, L.; Liu, C. T.; Liu, Z. et al. Efficient and selective CO2 reduction to formate on Pd-doped Pb3(CO3)2(OH)2: Dynamic catalyst reconstruction and accelerated CO2 protonation. Small 2022, 18, 2107885.

[67]

Xie, J. F.; Chen, J. J.; Huang, Y. X.; Zhang, X.; Wang, W. K.; Huang, G. X.; Yu, H. Q. Selective electrochemical CO2 reduction on Cu-Pd heterostructure. Appl. Catal. B Environ. 2020, 270, 118864.

[68]

Vasileff, A.; Zhu, Y. P.; Zhi, X.; Zhao, Y. Q.; Ge, L.; Chen, H. M.; Zheng, Y.; Qiao, S. Z. Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate. Angew. Chem., Int. Ed. 2020, 59, 19649–19653.

[69]

Lum, Y.; Yue, B. B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C-C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 2017, 121, 14191–14203.

[70]

Cai, R. M.; Sun, M. Z.; Ren, J. Z.; Ju, M.; Long, X.; Huang, B. L.; Yang, S. H. Unexpected high selectivity for acetate formation from CO2 reduction with copper based 2D hybrid catalysts at ultralow potentials. Chem. Sci. 2021, 12, 15382–15388.

[71]

Nguyen, D. L. T.; Jee, M. S.; Won, D. H.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO. Catal. Commun. 2018, 114, 109–113.

[72]

Li, Y. H.; Xu, A. N.; Lum, Y.; Wang, X.; Hung, S. F.; Chen, B.; Wang, Z. Y.; Xu, Y.; Li, F. W.; Abed, J. et al. Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nat. Commun. 2020, 11, 6190.

[73]

Lum, Y.; Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem., Int. Ed. 2018, 57, 551–554.

[74]

Kibria, M. G.; Dinh, C. T.; Seifitokaldani, A.; De Luna, P.; Burdyny, T.; Quintero-Bermudez, R.; Ross, M. B.; Bushuyev, O. S.; De Arquer, F. P. G.; Yang, P. D. et al. A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv. Mater. 2018, 30, 1804867.

[75]

Ni, W. P.; Gao, Y.; Lin, Y.; Ma, C.; Guo, X. G.; Wang, S. Y.; Zhang, S. G. Nonnitrogen coordination environment steering electrochemical CO2-to-CO conversion over single-atom tin catalysts in a wide potential window. ACS Catal. 2021, 11, 5212–5221.

[76]

Wang, D.; Wang, Y. Y.; Chang, K.; Zhang, Y. N.; Wang, Z. L.; Zhang, Z. D.; Pan, C. S.; Lou, Y.; Zhu, Y. F.; Zhang, Y. Residual iodine on in-situ transformed bismuth nanosheets induced activity difference in CO2 electroreduction. J. CO2 Utilizat. 2022, 55, 101802.

[77]

Zhu, J. H.; Fan, J.; Cheng, T. L.; Cao, M. Y.; Sun, Z. H.; Zhou, R.; Huang, L.; Wang, D.; Li, Y. G.; Wu, Y. P. Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO2 reduction. Nano Energy 2020, 75, 104939.

[78]

Li, Y. H.; Li, Y.; Wan, Y. H.; Xie, Y.; Zhu, J. F.; Pan, H. B.; Zheng, X. S.; Xia, C. R. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances. Adv. Energy Mater. 2019, 9, 1803156.

[79]

Wang, W. H.; Ma, Z. G.; Fei, X.; Wang, X. S.; Yang, Z. X.; Wang, Y.; Zhang, J. Q.; Ning, H.; Tsubaki, N.; Wu, M. B. Joint tuning the morphology and oxygen vacancy of Cu2O by ionic liquid enables high-efficient CO2 reduction to C2 products. Chem. Eng. J. 2022, 436, 135029.

[80]

Yang, Y.; Li, K. J.; Ajmal, S.; Feng, Y. Q.; Bacha, A. U. R.; Nabi, I.; Zhang, L. W. Interplay between halides in the electrolyte and the chemical states of Cu in Cu-based electrodes determines the selectivity of the C2 product. Sustain. Energy Fuels 2020, 4, 2284–2292.

[81]

Wang, R.; Liu, J.; Huang, Q.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Partial coordination-perturbed Bi-copper sites for selective electroreduction of CO2 to hydrocarbons. Angew. Chem., Int. Ed. 2021, 60, 19829–19835.

[82]

Wang, J. H.; Yang, H.; Liu, Q. Q.; Liu, Q.; Li, X. T.; Lv, X. Z.; Cheng, T.; Wu, H. B. Fastening Br ions at copper-molecule interface enables highly efficient electroreduction of CO2 to ethanol. ACS Energy Lett. 2021, 6, 437–444.

[83]

Li, H. Y.; Gao, J. M.; Shan, J. J.; Du, Q.; Zhang, Y.; Guo, X.; Xie, M.; Wu, S. H.; Wang, Z. J. Effect of halogen-modification on Ag catalyst for CO2 electrochemical reduction to syngas from NH4HCO3 electrolyte. J. Environ. Chem. Eng. 2021, 9, 106415.

[84]

Li, H. Y.; Gao, J. M.; Du, Q.; Shan, J. J.; Zhang, Y.; Wu, S. H.; Wang, Z. J. Direct CO2 electroreduction from NH4HCO3 electrolyte to syngas on bromine-modified Ag catalyst. Energy 2021, 216, 119250.

[85]

Cheng, Y. W.; Xu, X. J.; Li, Y. T.; Zhang, Y. M.; Song, Y. CO2 reduction mechanism on the Nb2CO2 MXene surface: Effect of nonmetal and metal modification. Computat. Mater. Sci. 2022, 202, 110971.

[86]

Zhao, Q.; Zhang, C.; Hu, R. M.; Du, Z. G.; Gu, J. N.; Cui, Y. L. S.; Chen, X.; Xu, W. J.; Cheng, Z. J.; Li, S. M. et al. Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 2021, 15, 4927–4936.

[87]

Handoko, A. D.; Chen, H. T.; Lum, Y.; Zhang, Q. F.; Anasori, B.; Seh, Z. W. Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. iScience 2020, 23, 101181.

[88]

Lv, K. L.; Teng, C.; Shi, M. H.; Yuan, Y.; Zhu, Y.; Wang, J. R.; Kong, Z.; Lu, X. Y.; Zhu, Y. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Adv. Funct. Mater. 2018, 28, 1802339.

[89]

Li, Z.; Wu, R.; Xiao, S. H.; Yang, Y. C.; Lai, L. O.; Chen, J. S.; Chen, Y. Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem. Eng. J. 2022, 430, 132882.

[90]

Ye, J. J.; Rao, D. W.; Yan, X. H. CO2 electrochemical reduction boosted by the regulated electronic properties of metalloporphyrins through tuning an atomic environment. New J. Chem. 2021, 45, 10664–10671.

[91]

Han, S. G.; Ma, D. D.; Zhou, S. H.; Zhang, K. X.; Wei, W. B.; Du, Y. H.; Wu, X. T.; Xu, Q.; Zou, R. Q.; Zhu, Q. L. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B Environ. 2021, 283, 119591.

[92]

Zheng, S. S.; Zuo, C. J.; Liang, X. H.; Li, S. N.; Pan, F. Valence state of transition metal center as an activity descriptor for CO2 reduction on single atom catalysts. J. Energy Chem. 2021, 56, 444–448.

[93]

Li, X. Q.; Duan, G. Y.; Chen, J. W.; Han, L. J.; Zhang, S. J.; Xu, B. H. Regulating electrochemical CO2RR selectivity at industrial current densities by structuring copper@poly(ionic liquid) interface. Appl. Catal. B Environ. 2021, 297, 120471.

[94]

Lee, J. H.; Park, I. K.; Duchesne, D.; Chen, L. S.; Lee, C. H.; Lee, J. H. Saline water electrolysis system with double-layered cation exchange membrane for low-energy consumption and its application for CO2 mineralization. J. CO2 Utilizat. 2020, 41, 101269.

[95]

Chen, T. Y.; Hu, J.; Wang, K. Z.; Wang, K. J.; Zhang, W. J.; Gan, G. Y.; Shi, J. Effect of chloride adlayer on the oxide-derived gallium microspheres catalysts for electroreduction of CO2 to CO. J. Phys. Chem. Solids 2022, 163, 110574.

[96]

Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv. Funct. Mater. 2018, 28, 1804762.

[97]

Liu, J. Z.; Wang, Y. T.; Jiang, H.; Jiang, H. B.; Zhou, X. D.; Li, Y. H.; Li, C. Z. Ag@Au core-shell nanowires for nearly 100% CO2-to-CO electroreduction. Chem. Asian J. 2020, 15, 425–431.

[98]

Xia, Z.; Freeman, M.; Zhang, D. X.; Yang, B.; Lei, L. C.; Li, Z. J.; Hou, Y. Highly selective electrochemical conversion of CO2 to HCOOH on dendritic indium foams. ChemElectroChem 2018, 5, 253–259.

[99]

Bagger, A.; Arán-Ais, R. M.; Stenlid, J. H.; Dos Santos, E. C.; Arnarson, L.; Jensen, K. D.; Escudero-Escribano, M.; Cuenya, B. R.; Rossmeisl, J. Ab initio cyclic voltammetry on Cu(111), Cu(100) and Cu(110) in acidic, neutral and alkaline solutions. ChemPhysChem 2019, 20, 3096–3105.

[100]

Kortlever, R.; Tan, K. H.; Kwon, Y.; Koper, M. T. M. Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media. J. Solid State Electrochem. 2013, 17, 1843–1849.

[101]

Huang, Y.; Ong, C. W.; Yeo, B. S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 2018, 11, 3299–3306.

[102]

Zhang, Q.; Shao, X. L.; Yi, J.; Liu, Y. Y.; Zhang, J. J. An experimental study of electroreduction of CO2 to HCOOH on SnO2/C in presence of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) and anions (HCO3, Cl, Br and I). Chin. J. Chem. Eng. 2020, 28, 2549–2554.

[103]

Yoon, S. H.; Piao, G.; Park, H.; Elbashir, N. O.; Han, D. S. Theoretical insight into effect of cation-anion pairs on CO2 reduction on bismuth electrocatalysts. Appl. Surf. Sci. 2020, 532, 147459.

[104]

Zhang, Y. N.; Liu, L.; Shi, L.; Yang, T. T.; Niu, D. F.; Hu, S. Z.; Zhang, X. S. Enhancing CO2 electroreduction on nanoporous silver electrode in the presence of halides. Electrochim. Acta 2019, 313, 561–569.

[105]

Garg, S.; Li, M. R.; Wu, Y. M.; Idros, M. N.; Wang, H. M.; Yago, A. J.; Ge, L.; Wang, G. G. X.; Rufford, T. E. Understanding the effects of anion interactions with Ag electrodes on electrochemical CO2 reduction in choline halide electrolytes. ChemSusChem 2021, 14, 2601–2611.

[106]

Hong, S.; Lee, S.; Kim, S.; Lee, J. K.; Lee, J. Anion dependent CO/H2 production ratio from CO2 reduction on Au electro-catalyst. Catal. Today 2017, 295, 82–88.

[107]

Ovalle, V. J.; Waegele, M. M. Impact of electrolyte anions on the adsorption of CO on Cu electrodes. J. Phys. Chem. C 2020, 124, 14713–14721.

[108]

Cho, M.; Song, J. T.; Back, S.; Jung, Y.; Oh, J. The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction. ACS Catal. 2018, 8, 1178–1185.

[109]

Ogura, K. Electrochemical reduction of carbon dioxide to ethylene: Mechanistic approach. J. CO2 Utilizat. 2013, 1, 43–49.

[110]

Ogura, K.; Ferrell, J. R.; Cugini, A. V.; Smotkin, E. S.; Salazar-Villalpando, M. D. CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim. Acta 2010, 56, 381–386.

[111]

Ogura, K.; Salazar-Villalpando, M. D. CO2 electrochemical reduction via adsorbed halide anions. JOM 2011, 63, 35–38.

[112]

Chen, T. Y.; Hu, J.; Wang, K. Z.; Wang, K. J.; Gan, G. Y.; Shi, J. Specifically adsorbed anions enhance CO2 electrochemical reduction to CO over a gallium catalyst in organic electrolytes. Energy Fuels 2021, 35, 17784–17790.

[113]

Schizodimou, A.; Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 2012, 78, 171–176.

[114]

Varela, A. S.; Ju, W.; Reier, T.; Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 2016, 6, 2136–2144.

[115]

Wan, Q. Q.; He, Q. C.; Zhang, Y.; Zhang, L. H.; Li, J.; Hou, J. B.; Zhuang, X. D.; Ke, C. C.; Zhang, J. L. Boosting the faradaic efficiency for carbon dioxide to monoxide on a phthalocyanine cobalt based gas diffusion electrode to higher than 99% via microstructure regulation of catalyst layer. Electrochim. Acta 2021, 392, 139023.

[116]

Verma, S.; Lu, X.; Ma, S. C.; Masel, R. I.; Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 2016, 18, 7075–7084.

[117]

Shao, P.; Zhou, W.; Hong, Q. L.; Yi, L. C.; Zheng, L. R.; Wang, W. J.; Zhang, H. X.; Zhang, H. B.; Zhang, J. Synthesis of a boron-imidazolate framework nanosheet with dimer copper units for CO2 electroreduction to ethylene. Angew. Chem., Int. Ed. 2021, 60, 16687–16692.

[118]

Akhade, S. A.; McCrum, I. T.; Janik, M. J. The impact of specifically adsorbed ions on the copper-catalyzed electroreduction of CO2. J. Electrochem. Soc. 2016, 163, F477–F484.

[119]

Ahmad, N.; Wang, X. X.; Sun, P. X.; Chen, Y.; Rehman, F.; Xu, J.; Xu, X. Electrochemical CO2 reduction to CO facilitated by MDEA-based deep eutectic solvent in aqueous solution. Renew. Energy 2021, 177, 23–33.

[120]

Piao, G.; Yoon, S. H.; Han, D. S.; Park, H. Ion-enhanced conversion of CO2 into formate on porous dendritic bismuth electrodes with high efficiency and durability. ChemSusChem 2020, 13, 698–706.

[121]

Ge, R.; Dong, L. Y.; Hu, X.; Wu, Y. T.; He, L.; Hao, G. P.; Lu, A. H. Intensified coupled electrolysis of CO2 and brine over electrocatalysts with ordered mesoporous transport channels. Chem. Eng. J. 2022, 438, 135500.

[122]

Tan, X. Y.; Yu, C.; Song, X. D.; Zhao, C. T.; Cui, S.; Xu, H. Y.; Chang, J. W.; Guo, W.; Wang, Z.; Xie, Y. Y. et al. Toward an understanding of the enhanced CO2 electroreduction in NaCl electrolyte over CoPc molecule-implanted graphitic carbon nitride catalyst. Adv. Energy Mater. 2021, 11, 2100075.

[123]

Peng, C.; Yang, S. T.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J. B.; Chen, Y. S.; Li, W. H.; Wang, Z. Q.; Sham, T. K. et al. Surface co-modification of halide anions and potassium cations promotes high-rate CO2-to-ethanol electrosynthesis. Adv. Mater. 2022, 34, 2204476.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 October 2022
Revised: 31 October 2022
Accepted: 05 November 2022
Published: 30 November 2022

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This study was supported financially by the Fundamental Research Funds for the Central Universities (2021XD-A04-2) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, P.R. China). Additionally, Zebi Zhao acknowledges the financial assistance from China Scholarship Council (CSC, No. 202206470057). Y. L. acknowledges support and funding from A*STAR Career Development Award (Project No. 202D800037)

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return