Journal Home > Volume 2 , Issue 1

Since the isolation of graphene in 2004, two-dimensional (2D) materials such as transition metal dichalcogenide (TMD) have attracted numerous interests due to their unique van der Waals structure, atomically thin body, and thickness-dependent properties. In recent years, the applications of TMD in public health have emerged due to their large surface area and high surface sensitivities, as well as their unique electrical, optical, and electrochemical properties. In this review, we focus on state-of-the-art methods to modulate the properties of 2D TMD and their applications in biosensing. Particularly, this review provides methods for designing and modulating 2D TMD via defect engineering and morphology control to achieve multi-functional surfaces for molecule capturing and sensing. Furthermore, we compare the 2D TMD-based biosensors with the traditional sensing systems, deepening our understanding of their action mechanism. Finally, we point out the challenges and opportunities of 2D TMD in this emerging area.


menu
Abstract
Full text
Outline
About this article

Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas

Show Author's information Yichao Bai1,2Linxuan Sun1,2Qiangmin Yu1,3Yu Lei1,2( )Bilu Liu1,3( )
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Since the isolation of graphene in 2004, two-dimensional (2D) materials such as transition metal dichalcogenide (TMD) have attracted numerous interests due to their unique van der Waals structure, atomically thin body, and thickness-dependent properties. In recent years, the applications of TMD in public health have emerged due to their large surface area and high surface sensitivities, as well as their unique electrical, optical, and electrochemical properties. In this review, we focus on state-of-the-art methods to modulate the properties of 2D TMD and their applications in biosensing. Particularly, this review provides methods for designing and modulating 2D TMD via defect engineering and morphology control to achieve multi-functional surfaces for molecule capturing and sensing. Furthermore, we compare the 2D TMD-based biosensors with the traditional sensing systems, deepening our understanding of their action mechanism. Finally, we point out the challenges and opportunities of 2D TMD in this emerging area.

Keywords: sensing, 2D materials, property modulation, transition metal dichalcogenide, biomolecule, capturing

References(138)

[1]

Alvarez, M. M.; Aizenberg, J.; Analoui, M.; Andrews, A. M.; Bisker, G.; Boyden, E. S.; Kamm, R. D.; Karp, J. M.; Mooney, D. J.; Oklu, R. et al. Emerging trends in micro- and nanoscale technologies in medicine: From basic discoveries to translation. ACS Nano 2017, 11, 5195–5214.

[2]

Steptoe, A.; Hamer, M.; Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain, Behav., Immun. 2007, 21, 901–912.

[3]

Chaouloff, F.; Berton, O.; Mormède, P. Serotonin and stress. Neuropsychopharmacology 1999, 21, 28–32.

[4]
Taelman, J.; Vandeput, S.; Spaepen, A.; Van Huffel, S. Influence of mental stress on heart rate and heart rate variability. In 4th European Conference of the International Federation for Medical and Biological Engineering. Vander Sloten, J.; Verdonck, P.; Nyssen, M.; Haueisen, J., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp 1366–1369.
DOI
[5]

Kivimäki, M.; Head, J.; Ferrie, J. E.; Shipley, M. J.; Brunner, E.; Vahtera, J.; Marmot, M. G. Work stress, weight gain and weight loss: Evidence for bidirectional effects of job strain on body mass index in the Whitehall Ⅱ study. Int. J. Obes. 2006, 30, 982–987.

[6]

McCowen, K. C.; Malhotra, A.; Bistrian, B. R. Stress-induced hyperglycemia. Cri. Care Clin. 2001, 17, 107–124.

[7]

Burke, H. M.; Davis, M. C.; Otte, C.; Mohr, D. C. Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology 2005, 30, 846–856.

[8]

Chaouloff, F. Serotonin, stress and corticoids. J. Psychopharmacol. 2000, 14, 139–151.

[9]

Simeon, D.; Knutelska, M.; Smith, L.; Baker, B. R.; Hollander, E. A preliminary study of cortisol and norepinephrine reactivity to psychosocial stress in borderline personality disorder with high and low dissociation. Psychiatry Res. 2007, 149, 177–184.

[10]

Heilig, M. The NPY system in stress, anxiety and depression. Neuropeptides 2004, 38, 213–224.

[11]

Martinowich, K.; Manji, H.; Lu, B. New insights into BDNF function in depression and anxiety. Nat. Neurosci. 2007, 10, 1089–1093.

[12]

Steckl, A. J.; Ray, P. Stress biomarkers in biological fluids and their point-of-use detection. ACS Sens. 2018, 3, 2025–2044.

[13]

Piazza, J. R.; Almeida, D. M.; Dmitrieva, N. O.; Klein, L. C. Frontiers in the use of biomarkers of health in research on stress and aging. J. Gerontol. : Ser. B 2010, 65B, 513–525.

[14]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[15]

Rao, C. N. R.; Ramakrishna Matte, H. S. S.; Maitra, U. Graphene analogues of inorganic layered materials. Angew. Chem. , Int. Ed. 2013, 52, 13162–13185.

[16]

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

[17]

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

[18]

Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

[19]

Cao, X. H.; Tan, C. L.; Zhang, X.; Zhao, W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 2016, 28, 6167–6196.

[20]

Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223–227.

[21]

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

[22]

Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K. H.; Sun, Y. F.; Li, X. F.; Borys, N. J.; Yuan, H. T.; Fullerton-Shirey, S. K. et al. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 042001.

[23]

Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.

[24]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[25]

Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

[26]

Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554.

[27]

Wu, S. X.; Zeng, Z. Y.; He, Q. Y.; Wang, Z. J.; Wang, S. J.; Du, Y. P.; Yin, Z. Y.; Sun, X. P.; Chen, W.; Zhang, H. Electrochemically reduced single-layer MoS2 nanosheets: Characterization, properties, and sensing applications. Small 2012, 8, 2264–2270.

[28]

Tang, J.; Quan, Y. Z.; Zhang, Y. Y.; Jiang, M.; Al-Enizi, A. M.; Kong, B.; An, T. C.; Wang, W. S.; Xia, L. M.; Gong, X. G. et al. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling. Nanoscale 2016, 8, 5786–5792.

[29]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[30]

Pumera, M.; Loo, A. H. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends Anal. Chem. 2014, 61, 49–53.

[31]

Peng, B.; Ang, P. K.; Loh, K. P. Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 2015, 10, 128–137.

[32]

Hu, X. L.; Zhang, W.; Liu, X. X.; Mei, Y. N.; Huang, Y. H. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 2015, 44, 2376–2404.

[33]

Wang, H. T.; Yuan, H. T.; Sae Hong, S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664–2680.

[34]

Yu, Q. M.; Luo, Y. T.; Qiu, S. Y.; Li, Q. Y.; Cai, Z. Y.; Zhang, Z. Y.; Liu, J. M.; Sun, C. H.; Liu, B. L. Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano 2019, 13, 11874–11881.

[35]

Kim, S. Y.; Kwak, J.; Ciobanu, C. V.; Kwon, S. Y. Recent developments in controlled vapor-phase growth of 2D group 6 transition metal dichalcogenides. Adv. Mater. 2019, 31, 1804939.

[36]

Li, H. L.; Wang, X.; Zhu, X. L.; Duan, X. F.; Pan, A. L. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev. 2018, 47, 7504–7521.

[37]

He, Y. M.; Tang, P. Y.; Hu, Z. L.; He, Q. Y.; Zhu, C.; Wang, L. Q.; Zeng, Q. S.; Golani, P.; Gao, G. H.; Fu, W. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.

[38]

Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

[39]

Zhang, C.; Luo, Y. T.; Tan, J. Y.; Yu, Q. M.; Yang, F. N.; Zhang, Z. Y.; Yang, L. S.; Cheng, H. M.; Liu, B. L. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 3724.

[40]

Yu, Q. M.; Zhang, Z. Y.; Qiu, S. Y.; Luo, Y. T.; Liu, Z. B.; Yang, F. N.; Liu, H. M.; Ge, S. Y.; Zou, X. L.; Ding, B. F. et al. A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 2021, 12, 6051.

[41]

Zhu, C. Z.; Du, D.; Lin, Y. H. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. 2D Mater. 2015, 2, 032004.

[42]

Balendhran, S.; Walia, S.; Alsaif, M.; Nguyen, E. P.; Ou, J. Z.; Zhuiykov, S.; Sriram, S.; Bhaskaran, M.; Kalantar-Zadeh, K. Field effect biosensing platform based on 2D α-MoO3. ACS Nano 2013, 7, 9753–9760.

[43]

Morales-Narváez, E.; Merkoçi, A. Graphene oxide as an optical biosensing platform. Adv. Mater. 2012, 24, 3298–3308.

[44]

Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead. Adv. Mater. 2016, 28, 6052–6074.

[45]

Zhang, G.; Liu, H. J.; Qu, J. H.; Li, J. H. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209.

[46]

Huang, K. J.; Shuai, H. L.; Zhang, J. Z. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease Ⅲ assisted signal amplification. Biosens. Bioelectron. 2016, 77, 69–75.

[47]

Kaushik, S.; Tiwari, U. K.; Pal, S. S.; Sinha, R. K. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets. Biosens. Bioelectron. 2019, 126, 501–509.

[48]

Song, H. Y.; Ni, Y. N.; Kokot, S. Investigations of an electrochemical platform based on the layered MoS2-graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosens. Bioelectron. 2014, 56, 137–143.

[49]

Wang, L.; Wang, Y.; Wong, J. I.; Palacios, T.; Kong, J.; Yang, H. Y. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 2014, 10, 1101–1105.

[50]

Zhu, L. L.; Zhang, Y.; Xu, P. C.; Wen, W. J.; Li, X. X.; Xu, J. Q. PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens. Bioelectron. 2016, 80, 601–606.

[51]

Wang, X. X.; Nan, F. X.; Zhao, J. L.; Yang, T.; Ge, T.; Jiao, K. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens. Bioelectron. 2015, 64, 386–391.

[52]

Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

[53]

Su, S.; Sun, H. F.; Xu, F.; Yuwen, L. H.; Wang, L. H. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis 2013, 25, 2523–2529.

[54]

Lin, T. R.; Zhong, L. S.; Song, Z. P.; Guo, L. Q.; Wu, H. Y.; Guo, Q. Q.; Chen, Y.; Fu, F. F.; Chen, G. N. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens. Bioelectron. 2014, 62, 302–307.

[55]

Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.

[56]

Li, F.; Wang, S. Y.; Yin, H. S.; Chen, Y.; Zhou, Y. L.; Huang, J.; Ai, S. Y. Photoelectrochemical biosensor for DNA formylation detection in genomic DNA of maize seedlings based on black TiO2-enhanced photoactivity of MoS2/WS2 heterojunction. ACS Sens. 2020, 5, 1092–1101.

[57]

Luo, Y.; Wu, D. H.; Li, Z. H.; Li, X. Y.; Wu, Y. H.; Feng, S. P.; Menon, C.; Chen, H. Y.; Chu, P. K. Plasma functionalized MoSe2 for efficient nonenzymatic sensing of hydrogen peroxide in ultra-wide pH range. SmartMat 2022, 3, 491–502.

[58]

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

[59]

Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu, B. L. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl. Sci. Rev. 2020, 7, 324–332.

[60]

Yang, L. S.; Wang, D. S.; Liu, M. S.; Liu, H. M.; Tan, J. Y.; Wang, Z. Y.; Zhou, H. Y.; Yu, Q. M.; Wang, J. Y.; Lin, J. H. et al. Glue-assisted grinding exfoliation of large-size 2D materials for insulating thermal conduction and large-current-density hydrogen evolution. Mater. Today 2021, 51, 145–154.

[61]

Xiang, X.; Shi, J. B.; Huang, F. H.; Zheng, M. M.; Deng, Q. C.; Xu, J. Q. MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease Ⅲ-aided DNA recycling amplification. Biosens. Bioelectron. 2015, 74, 227–232.

[62]

Wang, X.; Chu, C. C.; Shen, L.; Deng, W. P.; Yan, M.; Ge, S. G.; Yu, J. H.; Song, X. R. An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels. Sens. Actuators B: Chem. 2015, 206, 30–36.

[63]

Wang, T. Y.; Zhu, H. C.; Zhuo, J. Q.; Zhu, Z. W.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M. X. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 2013, 85, 10289–10295.

[64]

Yang, T.; Chen, M. J.; Nan, F. X.; Chen, L. H.; Luo, X. L.; Jiao, K. Enhanced electropolymerization of poly(xanthurenic acid)-MoS2 film for specific electrocatalytic detection of guanine and adenine. J. Mater. Chem. B 2015, 3, 4884–4891.

[65]

Fang, L. X.; Cao, J. T.; Huang, K. J. A sensitive electrochemical biosensor for specific DNA sequence detection based on flower-like VS2, graphene and Au nanoparticles signal amplification. J. Electroanal. Chem. 2015, 746, 1–8.

[66]

Wang, S.; Zhang, S. P.; Liu, M. X.; Song, H. O.; Gao, J. J.; Qian, Y. Y. MoS2 as connector inspired high electrocatalytic performance of NiCo2O4 nanoplates towards glucose. Sens. Actuators B: Chem. 2018, 254, 1101–1109.

[67]

Lin, X. Y.; Ni, Y. N.; Kokot, S. Electrochemical and bio-sensing platform based on a novel 3D Cu nano-flowers/layered MoS2 composite. Biosens. Bioelectron. 2016, 79, 685–692.

[68]

Gao, Y.; Wang, S. Y.; Wang, B.; Jiang, Z.; Fang, T. Recent progress in phase regulation, functionalization, and biosensing applications of polyphase MoS2. Small 2022, 18, 2202956.

[69]

Kaushik, S.; Tiwari, U. K.; Deep, A.; Sinha, R. K. Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. Sci. Rep. 2019, 9, 6987.

[70]

Yang, T.; Yang, R. R.; Chen, H. Y.; Nan, F. X.; Ge, T.; Jiao, K. Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine. ACS Appl. Mater. Interfaces 2015, 7, 2867–2872.

[71]

Lee, D. W.; Lee, J.; Sohn, I. Y.; Kim, B. Y.; Son, Y. M.; Bark, H.; Jung, J.; Choi, M.; Kim, T. H.; Lee, C. et al. Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. Nano Res. 2015, 8, 2340–2350.

[72]

Shorie, M.; Kumar, V.; Kaur, H.; Singh, K.; Tomer, V. K.; Sabherwal, P. Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Microchim. Acta 2018, 185, 158.

[73]

Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.

[74]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[75]

Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. N.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

[76]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[77]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

[78]

Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099.

[79]

Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.

[80]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

[81]

Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

[82]

Chen, K.; Wan, X.; Wen, J. X.; Xie, W. G.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 2015, 9, 9868–9876.

[83]

Huang, Y. H.; Chen, R. S.; Zhang, J. R.; Huang, Y. S. Electronic transport in NbSe2 two-dimensional nanostructures: Semiconducting characteristics and photoconductivity. Nanoscale 2015, 7, 18964–18970.

[84]

Zheng, W. S.; Xie, T.; Zhou, Y.; Chen, Y. L.; Jiang, W.; Zhao, S. L.; Wu, J. X.; Jing, Y. M.; Wu, Y.; Chen, G. C. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 2015, 6, 6972.

[85]

Almeida, G.; Dogan, S.; Bertoni, G.; Giannini, C.; Gaspari, R.; Perissinotto, S.; Krahne, R.; Ghosh, S.; Manna, L. Colloidal monolayer β-In2Se3 nanosheets with high photoresponsivity. J. Am. Chem. Soc. 2017, 139, 3005–3011.

[86]

Zhou, Y. B.; Deng, B.; Zhou, Y.; Ren, X. B.; Yin, J. B.; Jin, C. H.; Liu, Z. F.; Peng, H. L. Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid. Nano Lett. 2016, 16, 2103–2107.

[87]

Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G.; Cho, S. M.; Cho, S. H.; Hwang, I. et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063.

[88]

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

[89]

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

[90]

Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y. H.; Ueno, K.; Saito, R.; Palacios, T. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892–11895.

[91]

Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383–7391.

[92]

Park, K.; Kim, Y.; Song, J. G.; Jin Kim, S.; Wan Lee, C.; Hee Ryu, G.; Lee, Z.; Park, J.; Kim, H. Uniform, large-area self-limiting layer synthesis of tungsten diselenide. 2D Mater. 2016, 3, 014004.

[93]

Liu, B. L.; Ma, Y. Q.; Zhang, A. Y.; Chen, L.; Abbas, A. N.; Liu, Y. H.; Shen, C. F.; Wan, H. C.; Zhou, C. W. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 2016, 10, 5153–5160.

[94]

Ouyang, Q. L.; Zeng, S. W.; Jiang, L.; Qu, J. L.; Dinh, X. Q.; Qian, J.; He, S. L.; Coquet, P.; Yong, K. T. Two-dimensional transition metal dichalcogenide enhanced phase-sensitive plasmonic biosensors: Theoretical insight. J. Phys. Chem. C 2017, 121, 6282–6289.

[95]

Li, Q.; Xu, L.; Luo, K. W.; Li, X. F.; Huang, W. Q.; Wang, L. L.; Yu, Y. B. Electric-field-induced widely tunable direct and indirect band gaps in hBN/MoS2 van der Waals heterostructures. J. Mater. Chem. C 2017, 5, 4426–4434.

[96]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[97]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[98]

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

[99]

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

[100]

Toh, R. J.; Mayorga-Martinez, C. C.; Han, J.; Sofer, Z.; Pumera, M. Group 6 layered transition-metal dichalcogenides in lab-on-a-chip devices: 1T-phase WS2 for microfluidics non-enzymatic detection of hydrogen peroxide. Anal. Chem. 2017, 89, 4978–4985.

[101]

Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361.

[102]

Logan, A.; Shabalina, I. G.; Prime, T. A.; Rogatti, S.; Kalinovich, A. V.; Hartley, R. C.; Budd, R. C.; Cannon, B.; Murphy, M. P. In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice. Aging Cell 2014, 13, 765–768.

[103]

Burgoyne, J. R.; Oka, S. I.; Ale-Agha, N.; Eaton, P. Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system. Antioxid. Redox Signaling 2013, 18, 1042–1052.

[104]

Liu, H.; Grasseschi, D.; Dodda, A.; Fujisawa, K.; Olson, D.; Kahn, E.; Zhang, F.; Zhang, T. Y.; Lei, Y.; Branco, R. B. N. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2. Sci. Adv. 2020, 6, eabc9308.

[105]

Luo, Y. T.; Zhang, S. Q.; Pan, H. Y.; Xiao, S. J.; Guo, Z. L.; Tang, L.; Khan, U.; Ding, B. F.; Li, M.; Cai, Z. Y. et al. Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 2020, 14, 767–776.

[106]

Schuler, B.; Lee, J. H.; Kastl, C.; Cochrane, K. A.; Chen, C. T.; Refaely-Abramson, S.; Yuan, S. J.; van Veen, E.; Roldán, R.; Borys, N. J. et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 2019, 13, 10520–10534.

[107]

Wang, Y. S.; Ma, Z. M.; Chen, Y. J.; Zou, M. C.; Yousaf, M.; Yang, Y. B.; Yang, L. S.; Cao, A. Y.; Han, R. P. S. Controlled synthesis of core-shell carbon@MoS2 nanotube sponges as high-performance battery electrodes. Adv. Mater. 2016, 28, 10175–10181.

[108]

Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S. Q.; Shi, F. Y.; Li, Q. Q.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. Au@MoS2 core-shell heterostructures with strong light-matter interactions. Nano Lett. 2016, 16, 7696–7702.

[109]

Zhang, R. J.; Lai, Y. J.; Chen, W. J.; Teng, C. J.; Sun, Y. J.; Yang, L. S.; Wang, J. Y.; Liu, B. L.; Cheng, H. M. Carrier trapping in wrinkled 2D monolayer MoS2 for ultrathin memory. ACS Nano 2022, 16, 6309–6316.

[110]

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

[111]

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

[112]

Tadi, K. K.; Palve, A. M.; Pal, S.; Sudeep, P. M.; Narayanan, T. N. Single step, bulk synthesis of engineered MoS2 quantum dots for multifunctional electrocatalysis. Nanotechnology 2016, 27, 275402.

[113]

Kalantar-Zadeh, K.; Ou, J. Z.; Daeneke, T.; Strano, M. S.; Pumera, M.; Gras, S. L. Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 2015, 25, 5086–5099.

[114]

Li, F.; Zhang, L.; Li, J.; Lin, X. Q.; Li, X. Z.; Fang, Y. Y.; Huang, J. W.; Li, W. Z.; Tian, M.; Jin, J. et al. Synthesis of Cu-MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Power Sources 2015, 292, 15–22.

[115]

Chng, E. L. K.; Pumera, M. Toxicity of graphene related materials and transition metal dichalcogenides. RSC Adv. 2015, 5, 3074–3080.

[116]

Schweiger, H.; Raybaud, P.; Kresse, G.; Toulhoat, H. Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: A theoretical study. J. Catal. 2002, 207, 76–87.

[117]

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

[118]

Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 2014, 14, 2443–2447.

[119]

Chowdhury, T.; Kim, J.; Sadler, E. C.; Li, C. Y.; Lee, S. W.; Jo, K.; Xu, W. N.; Gracias, D. H.; Drichko, N. V.; Jariwala, D. et al. Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties. Nat. Nanotechnol. 2020, 15, 29–34.

[120]

Cao, M. J.; Cai, R.; Zhao, L. N.; Guo, M. Y.; Wang, L. M.; Wang, Y. C.; Zhang, L. L.; Wang, X. F.; Yao, H. D.; Xie, C. Y. et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 2021, 16, 708–716.

[121]

Moore, C.; Movia, D.; Smith, R. J.; Hanlon, D.; Lebre, F.; Lavelle, E. C.; Byrne, H. J.; Coleman, J. N.; Volkov, Y.; McIntyre, J. Industrial grade 2D molybdenum disulphide (MoS2): An in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation. 2D Mater. 2017, 4, 025065.

[122]

Wang, Y. G.; Wang, Y. L.; Wu, D.; Ma, H. M.; Zhang, Y.; Fan, D. W.; Pang, X. H.; Du, B.; Wei, Q. Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B: Chem. 2018, 255, 125–132.

[123]

Chekin, F.; Bagga, K.; Subramanian, P.; Jijie, R.; Singh, S. K.; Kurungot, S.; Boukherroub, R.; Szunerits, S. Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: Application to human papillomavirus (HPV). Sens. Actuators B: Chem. 2018, 262, 991–1000.

[124]

Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.

[125]

Oudeng, G.; Au, M.; Shi, J. Y.; Wen, C. Y.; Yang, M. One-step in situ detection of miRNA-21 expression in single cancer cells based on biofunctionalized MoS2 nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 350–360.

[126]

Kang, T. W.; Han, J.; Lee, S.; Hwang, I. J.; Jeon, S. J.; Ju, J. M.; Kim, M. J.; Yang, J. K.; Jun, B.; Lee, C. H. et al. 2D transition metal dichalcogenides with glucan multivalency for antibody-free pathogen recognition. Nat. Commun. 2018, 9, 2549.

[127]

Kimmel, D. W.; LeBlanc, G.; Meschievitz, M. E.; Cliffel, D. E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707.

[128]

Bolotsky, A.; Butler, D.; Dong, C. Y.; Gerace, K.; Glavin, N. R.; Muratore, C.; Robinson, J. A.; Ebrahimi, A. Two-dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond. ACS Nano 2019, 13, 9781–9810.

[129]

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

[130]

Du, H. Y.; Huang, Y. F.; Wong, D.; Tseng, M. F.; Lee, Y. H.; Wang, C. H.; Lin, C. L.; Hoffmann, G.; Chen, K. H.; Chen, L. C. Nanoscale redox mapping at the MoS2-liquid interface. Nat. Commun. 2021, 12, 1321.

[131]

Gu, W.; Yan, Y. H.; Zhang, C. L.; Ding, C. P.; Xian, Y. Z. One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl. Mater. Interfaces 2016, 8, 11272–11279.

[132]

Han, K. H.; Kim, J. Y.; Jo, S. G.; Seo, C.; Kim, J.; Joo, J. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects. Nanotechnology 2017, 28, 435501.

[133]

Wu, S. Y.; Huang, H.; Shang, M. X.; Du, C. C.; Wu, Y.; Song, W. B. High visible light sensitive MoS2 ultrathin nanosheets for photoelectrochemical biosensing. Biosens. Bioelectron. 2017, 92, 646–653.

[134]

Huang, K. J.; Liu, Y. J.; Wang, H. B.; Wang, Y. Y.; Liu, Y. M. Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosens. Bioelectron. 2014, 55, 195–202.

[135]

Pathania, P. K.; Saini, J. K.; Vij, S.; Tewari, R.; Sabherwal, P.; Rishi, P.; Suri, C. R. Aptamer functionalized MoS2-rGO nanocomposite based biosensor for the detection of Vi antigen. Biosens. Bioelectron. 2018, 122, 121–126.

[136]

Selvarani, K.; Prabhakaran, A.; Arumugam, P.; Berchmans, S.; Nayak, P. 2D MoSe2 sheets embedded over a high surface graphene hybrid for the amperometric detection of NADH. Microchim. Acta 2018, 185, 411.

[137]

Mani, S.; Ramaraj, S.; Chen, S. M.; Dinesh, B.; Chen, T. W. Two-dimensional metal chalcogenides analogous NiSe2 nanosheets and its efficient electrocatalytic performance towards glucose sensing. J. Colloid Interface Sci. 2017, 507, 378–385.

[138]

Du, Z. G.; Yang, S. B.; Li, S. M.; Lou, J.; Zhang, S. Q.; Wang, S.; Li, B.; Gong, Y. J.; Song, L.; Zou, X. L. et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 2020, 577, 492–496.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 October 2022
Revised: 01 November 2022
Accepted: 04 November 2022
Published: 23 November 2022
Issue date: March 2023

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge the supports by the National Natural Science Foundation of China (Nos. 51991343, 51991340, and 52188101), the National Science Fund for Distinguished Young Scholars (No. 52125309), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2017ZT07C341), and the Shenzhen Basic Research Project (Nos. JCYJ20190809180605522, WDZC20200819095319002, and JCYJ20200109144616617). Y.L. and Y-C.B. would also like to acknowledge the Scientific Research Start-up Funds (No. QD2021033C) at Tsinghua Shenzhen International Graduate School, and Shenzhen Basic Research Project (No. JCYJ20220530142816037).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return