Journal Home > Volume 2 , Issue 1

Harvesting water energy in various forms of water motion, such as evaporation, raindrops, river flows, ocean waves, and other, is promising to relieve the global energy crisis and reach the aim of carbon neutrality. However, this highly decentralized and distributed water energy poses a challenge on conventional electromagnetic hydropower technologies that feature centralization and scalization. Recently, this problem has been gradually addressed by the emergence of a myriad of electricity generators that take inspiration from natural living organisms, which have the capability to efficiently process and manage water and energy for survival in the natural competition. Imitating the liquid–solid behaviors manifested in ubiquitous biological processes, these generators allow for the efficient energy conversion from water–solid interaction into the charge transfer or electrical output under natural driving, such as gravity and solar power. However, in spite of the rapid development of the field, a fundamental understanding of these generators and their ability to bridge the gap between the fundamentals and the practical applications remains elusive. In this review, we first introduce the latest progress in the fundamental understanding in bio-inspired electricity generators that allow for efficient harvesting water energy in various forms, ranging from water evaporation, droplet to wave or flow, and then summarize the development of the engineering design of the various bio-inspired electricity generator in the practical applications, including self-powered sensor and wearable electronics. Finally, the prospects and urgent problems, such as how to achieve large-scale electricity generation, are presented.


menu
Abstract
Full text
Outline
About this article

Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications

Show Author's information Kaiqiang Wang1,2Wanghuai Xu1Wei Zhang1Xiong Wang1Xiao Yang1,4Jianfeng Li2Hanli Zhang2Jinjin Li2Zuankai Wang1,3,4( )
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
Centre for Nautre-Inspired Engineering, Hong Kong 999077, China
Hong Kong Centre for Cerebro-Caradiovasular Health Engineering (COCHE), Hong Kong 999077, China

Abstract

Harvesting water energy in various forms of water motion, such as evaporation, raindrops, river flows, ocean waves, and other, is promising to relieve the global energy crisis and reach the aim of carbon neutrality. However, this highly decentralized and distributed water energy poses a challenge on conventional electromagnetic hydropower technologies that feature centralization and scalization. Recently, this problem has been gradually addressed by the emergence of a myriad of electricity generators that take inspiration from natural living organisms, which have the capability to efficiently process and manage water and energy for survival in the natural competition. Imitating the liquid–solid behaviors manifested in ubiquitous biological processes, these generators allow for the efficient energy conversion from water–solid interaction into the charge transfer or electrical output under natural driving, such as gravity and solar power. However, in spite of the rapid development of the field, a fundamental understanding of these generators and their ability to bridge the gap between the fundamentals and the practical applications remains elusive. In this review, we first introduce the latest progress in the fundamental understanding in bio-inspired electricity generators that allow for efficient harvesting water energy in various forms, ranging from water evaporation, droplet to wave or flow, and then summarize the development of the engineering design of the various bio-inspired electricity generator in the practical applications, including self-powered sensor and wearable electronics. Finally, the prospects and urgent problems, such as how to achieve large-scale electricity generation, are presented.

Keywords: surface treatment, bionics, synergy of solid and liquid, electricity generator, energy harvest

References(160)

[1]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[2]

Shindell, D.; Smith, C. J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411.

[3]

Cao, J. J.; Xu, H. M.; Xu, Q.; Chen, B. H.; Kan, H. D. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted chinese city. Environ. Health Perspect. 2012, 120, 373–378.

[4]

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[5]

Liu, S. Y.; Shan, Y.; Hong, Y.; Jin, Y. K.; Lin, W. K.; Zhang, Z. M.; Xu, X. T.; Wang, Z. K.; Yang, Z. B. 3D conformal fabrication of piezoceramic films. Adv. Sci. 2022, 9, 2106030.

[6]

Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

[7]

Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

[8]

Goldsmid, H. J. Introduction to Thermoelectricity; Springer: Berlin, Heidelberg, 2010.

DOI
[9]

Wang, K. Q.; Li, J. J. Electricity generation from the interaction of liquid-solid interface: A review. J. Mater. Chem. A 2021, 9, 8870–8895.

[10]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[11]

Wang, K. Q.; Li, J. J.; Li, J. F.; Wu, C. Y.; Yi, S.; Liu, Y. F.; Luo, J. B. Hexadecane-containing sandwich structure based triboelectric nanogenerator with remarkable performance enhancement. Nano Energy 2021, 87, 106198.

[12]

Liu, Y. M.; Wong, T. H.; Huang, X. C.; Yiu, C. K.; Gao, Y. Y.; Zhao, L.; Zhou, J. K.; Park, W.; Zhao, Z.; Yao, K. M. et al. Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 2022, 99, 107442.

[13]

Zhang, W.; Jin, Y. K.; Yang, S. Y.; Zhang, H. H.; Wang, Z. K. Bioinspired topological surfaces for mitigating water, thermal and energy crises. Acc. Mater. Res. 2022, 3, 199–212.

[14]

Wang, K. Q.; Liu, Y. F.; Li, J. J.; Li, J. F. Electricity generation by sliding an ionic solution droplet on a self-assembled reduced graphene oxide film. J. Mater. Chem. A 2020, 8, 12735–12743.

[15]

Yin, J.; Zhang, Z. H.; Li, X. M.; Yu, J.; Zhou, J. X.; Chen, Y. Q.; Guo, W. L. Waving potential in graphene. Nat. Commun. 2014, 5, 3582.

[16]

Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.

[17]

Zhang, N.; Zhang, H. M.; Xu, W. H.; Gu, H. J.; Ye, S. M.; Zheng, H. X.; Song, Y. X.; Wang, Z. K.; Zhou, X. F. A droplet-based electricity generator with ultrahigh instantaneous output and short charging time. Droplet 2022, 1, 56–64.

[18]

Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of ocean tidal, wave and thermal energy technologies. Renew Sustain Energy Rev. 2017, 72, 590–604.

[19]

Tang, W.; Chen, B. D.; Wang, Z. L. Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 2019, 29, 1901069.

[20]

Sun, J.; Zhu, P. A.; Yan, X. T.; Zhang, C.; Jin, Y. K.; Chen, X.; Wang, Z. K. Robust liquid repellency by stepwise wetting resistance. Appl. Phys. Rev. 2021, 8, 031403.

[21]

Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916.

[22]

Cheng, Y. Q.; Wang, M. M.; Sun, J.; Liu, M. J.; Du, B. G.; Liu, Y. B.; Jin, Y. K.; Wen, R. F.; Lan, Z.; Zhou, X. F. et al. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection. Nano Lett. 2021, 21, 7411–7418.

[23]

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

[24]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

[25]

Liu, Y. H.; Fu, Q.; Mo, J. L.; Lu, Y. X.; Cai, C. C.; Luo, B.; Nie, S. X. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy 2021, 89, 106369.

[26]

Zhao, L. M.; Zheng, Q.; Ouyang, H.; Li, H.; Yan, L.; Shi, B. J.; Li, Z. A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 2016, 28, 172–178.

[27]

Zheng, Y. B.; Ma, S. C.; Benassi, E.; Feng, Y. G.; Xu, S. W.; Luo, N.; Liu, Y.; Cheng, L.; Qin, Y.; Yuan, M. M. et al. Surface engineering and on-site charge neutralization for the regulation of contact electrification. Nano Energy 2022, 91, 106687.

[28]

Jiang, L.; Zhao, Y.; Zhai, J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem., Int. Ed. 2004, 43, 4338–4341.

[29]

Feng, S. L.; Zhu, P. A.; Zheng, H. X.; Zhan, H. Y.; Chen, C.; Li, J. Q.; Wang, L. Q.; Yao, X.; Liu, Y. H.; Wang, Z. K. Three-dimensional capillary ratchet-induced liquid directional steering. Science 2021, 373, 1344–1348.

[30]

Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447.

[31]

Liang, Y.; Zhao, F.; Cheng, Z. H.; Deng, Y. X.; Xiao, Y. K.; Cheng, H. H.; Zhang, P. P.; Huang, Y. X.; Shao, H. B.; Qu, L. T. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy Environ. Sci. 2018, 11, 1730–1735.

[32]

Zhang, H. L.; Wang, K. Q.; Li, J. J.; Li, J. F.; Zhang, R.; Zheng, Y. L. Liquid-based nanogenerator fabricated by a self-assembled fluoroalkyl monolayer with high charge density for energy harvesting. Matter 2022, 5, 1466–1480.

[33]

Zhang, H. L.; Bu, X. Y.; Li, W. B.; Cui, M. M.; Ji, X. X.; Tao, F. R.; Gai, L. G.; Jiang, H. H.; Liu, L. B.; Wang, Z. K. A skin-inspired design integrating mechano-chemical-thermal robustness into superhydrophobic coatings. Adv. Mater. 2022, 34, 2203792.

[34]

Liu, K. S.; Tian, Y.; Jiang, L. Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Prog. Mater. Sci. 2013, 58, 503–564.

[35]

Qian, C. L.; Zhou, F.; Wang, T.; Li, Q.; Hu, D. H.; Chen, X. M.; Wang, Z. K. Pancake jumping of sessile droplets. Adv. Sci. 2022, 9, 2103834.

[36]

Wang, L. L.; Song, Y. X.; Xu, W. H.; Li, W. B.; Jin, Y. K.; Gao, S. W.; Yang, S. Y.; Wu, C. Y.; Wang, S.; Wang, Z. K. Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator. EcoMat 2021, 3, e12116.

[37]
Bunker, B. C.; Casey, W. H.; Bunker, B. C.; Casey, W. H. The structure and properties of water. In The Aqueous Chemistry of Oxides. Bunker, B. C.; Casey, W. H., Eds.; Oxford University Press: New York, 2016; pp 51–60.
DOI
[38]

Park, T.; Song, I. H.; Park, D. S.; You, B. H.; Murphy, M. C. Thermoplastic fusion bonding using a pressure-assisted boiling point control system. Lab Chip 2012, 12, 2799–2802.

[39]

Jin, H. R.; Lim, H.; Lim, D. H.; Kang, Y.; Jun, K. W. Heat transfer in a liquid-solid circulating fluidized bed reactor with low surface tension media. Chin. J. Chem. Eng. 2013, 21, 844–849.

[40]

Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

[41]

Touchard, G. G.; Patzek, T. W.; Radke, C. J. A physicochemical explanation for flow electrification in low-conductivity liquids in contact with a corroding wall. IEEE Trans. Ind. Appl. 1996, 32, 1051–1057.

[42]

Zimmermann, R.; Dukhin, S.; Werner, C. Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions. J. Phys. Chem. B 2001, 105, 8544–8549.

[43]

Kitabayashi, H.; Tsuji, K.; Itoh, K. A streaming electrification model based on differences of work function between solid materials and insulating oil. J. Electrost. 2005, 63, 735–741.

[44]

Liu, C. Y.; Bard, A. J. Electrons on dielectrics and contact electrification. Chem. Phys. Lett. 2009, 480, 145–156.

[45]

Harper, W. R. Contact and Frictional Electrification; Oxford at the Clarendon Press: London, 1967; pp 70.

[46]

Nie, J. H.; Ren, Z. W.; Xu, L.; Lin, S. Q.; Zhan, F.; Chen, X. Y.; Wang, Z. L. Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Adv. Mater. 2020, 32, 1905696.

[47]

Xu, C.; Wang, A. C.; Zou, H. Y.; Zhang, B. B.; Zhang, C. L.; Zi, Y. L.; Pan, L.; Wang, P. H.; Feng, P. Z.; Lin, Z. Q. et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 2018, 30, 1803968.

[48]

Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W.; Wang, Z. L. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

[49]

Wang, K. Q.; Wu, C. Y.; Zhang, H. L.; Li, J. F.; Li, J. J. Cylindrical bearing inspired oil enhanced rolling friction based nanogenerator. Nano Energy 2022, 99, 107372.

[50]

Xu, Y.; Tian, B. K.; Fang, S. M.; Guo, W. L.; Zhang, Z. H. Probing the interaction of water molecules with oxidized graphene by first principles. J. Phys. Chem. C 2021, 125, 4580–4587.

[51]

Wang, Y.; Gao, S. W.; Xu, W. H.; Wang, Z. K. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Adv. Funct. Mater. 2020, 30, 1908252.

[52]

Stern, H. O. Zur theorie der elektrolytischen doppelschicht. Z. Elektrochem. Angew. Phys. Chem. 1924, 30, 508–516.

[53]

Yin, J.; Li, X. M.; Yu, J.; Zhang, Z. H.; Zhou, J. X.; Guo, W. L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383.

[54]

Fuerstenau, D. W. Adsorption and electrical double layer phenomena at mineral-water interfaces. AIP Conf. Proc. 1984, 107, 209–223.

[55]

Uesugi, E.; Goto, H.; Eguchi, R.; Fujiwara, A.; Kubozono, Y. Electric double-layer capacitance between an ionic liquid and few-layer graphene. Sci. Rep. 2013, 3, 1595.

[56]

Chatterji, S.; Kawamura, M. Electrical double layer, ion transport and reactions in hardened cement paste. Cem. Concr. Res. 1992, 22, 774–782.

[57]

Matsumura, H.; Watanabe, T.; Furusawa, K.; Inokuma, S.; Kuwamura, T. Electrical double layer formed on the monolayer of crown ether compounds. Bull. Chem. Soc. Japan 1987, 60, 2747–2750.

[58]

Verwey, E. J. W. The electrical double layer and the stability of lyophobic colloids. Chem. Rev. 1935, 16, 363–415.

[59]

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

[60]

Bockris, J. O. M.; Devanathan, M. A. V.; Müller, K. On the structure of charged interfaces. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 1963, 274, 55–79.

[61]
Bockris, J. O. M.; Devanathan, M. A. V.; Müller, K. On the structure of charged interfaces. In Electrochemistry. Friend, J. A.; Gutmann. F., Eds.; Elsevier: Amsterdam, 1965, pp 832–863.
DOI
[62]

Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501.

[63]

Chapman, D. L. LI. A contribution to the theory of electrocapillarity. Lond, Edinburgh, Dublin Philos. Mag. J. Sci. 1913, 25, 475–481.

[64]

Gouy, M. Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. Theor. Appl. 1910, 9, 457–468.

[65]

Helmholtz, H. Studien über electrische grenzschichten. Ann. Phys. 1879, 243, 337–382.

[66]

Damaskin, B. B.; Petrii, O. A. Historical development of theories of the electrochemical double layer. J. Solid State Electrochem. 2011, 15, 1317–1334.

[67]

Wall, S. The history of electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 2010, 15, 119–124.

[68]

Wang, Z. L. On maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[69]

Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031–6037.

[70]

Fan, B.; Bandaru, P. R. Modulation of the streaming potential and slip characteristics in electrolyte flow over liquid-filled surfaces. Langmuir 2019, 35, 6203–6210.

[71]

Liu, C.; Wang, S. J.; Wang, X.; Mao, J. J.; Chen, Y.; Fang, N. X.; Feng, S. P. Hydrovoltaic energy harvesting from moisture flow using an ionic polymer-hydrogel-carbon composite. Energy Environ. Sci. 2022, 15, 2489–2498.

[72]

Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.

[73]

Gao, X. F.; Jiang, L. Water-repellent legs of water striders. Nature 2004, 432, 36.

[74]

Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

[75]

Li, X.; Chen, L.; Ma, Y.; Weng, D.; Li, Z. X.; Song, L. L.; Zhang, X. H.; Yu, G. X.; Wang, J. D. Ultrafast fabrication of large-area colloidal crystal micropatterns via self-assembly and transfer printing. Adv. Funct. Mater. 2022, 32, 2205462.

[76]

Du, J. Y.; Wang, X.; Li, Y. Z.; Min, Q. How an oxide layer influences the impact dynamics of galinstan droplets on a superhydrophobic surface. Langmuir 2022, 38, 5645–5655.

[77]

Du, J. Y.; Wang, X.; Li, Y. Z.; Min, Q. Surface design of superhydrophobic parallel grooves for controllable petal bouncing and contact time reduction. Phys. Fluids 2022, 34, 082105.

[78]

Du, J. Y.; Chamakos, N. T.; Papathanasiou, A. G.; Li, Y. Z.; Min, Q. Jumping velocity of an electrowetting-actuated droplet: A theoretical and numerical study. Phys. Rev. Fluids 2021, 6, 123603.

[79]

Du, J. Y.; Wang, X.; Li, Y. Z.; Min, Q.; Wu, X. X. Analytical consideration for the maximum spreading factor of liquid droplet impact on a smooth solid surface. Langmuir 2021, 37, 7582–7590.

[80]

Zhang, B. P.; Wong, P. W.; Guo, J. X.; Zhou, Y. S.; Wang, Y.; Sun, J. W.; Jiang, M. N.; Wang, Z. K.; An, A. K. Transforming Ti3C2Tx MXene's intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nat. Commun. 2022, 13, 3315.

[81]

Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 2005, 38, 644–652.

[82]

Zhou, S.; Jiang, L.; Dong, Z. C. Overflow control for sustainable development by superwetting surface with biomimetic structure. Chem. Rev., in press, DOI: 10.1021/acs.chemrev.1c00976.

[83]

Chen, S. H.; Wang, R.; Wu, F. F.; Zhang, H. L.; Gao, X. F.; Jiang, L. Copper-based high-efficiency condensation heat transfer interface consisting of superhydrophobic hierarchical microgroove and nanocone structure. Mater. Today Phys. 2021, 19, 100407.

[84]

Li, X.; Chen, L.; Weng, D.; Chen, C. L.; Li, Z. X.; Wang, J. D. Tension gradient-driven rapid self-assembly method of large-area colloidal crystal film and its application in multifunctional structural color displays. Chem. Eng. J. 2022, 427, 130658.

[85]

Young, T. III. An essay on the cohesion of fluids. Philos. Trans. 1805, 95, 65-87.

[86]

Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.

[87]

Du, J. Y.; Wang, X.; Li, Y. Z.; Min, Q. Maximum spreading of liquid droplets impact on concentric ring-textured surfaces: Theoretical analysis and numerical simulation. Colloids Surf. A: Physicochem. Eng. Aspects 2021, 630, 127647.

[88]

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

[89]

Park, S. J.; Seol, M. L.; Kim, D.; Jeon, S. B.; Choi, Y. K. Triboelectric nanogenerator with nanostructured metal surface using water-assisted oxidation. Nano Energy 2016, 21, 258–264.

[90]

Cheng, X. L.; Meng, B.; Chen, X. X.; Han, M. D.; Chen, H. T.; Su, Z. M.; Shi, M. Y.; Zhang, H. X. Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small 2016, 12, 229–236.

[91]

Lee, J. W.; Hwang, W. Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy 2018, 52, 315–322.

[92]

Moon, J. K.; Jeong, J.; Lee, D.; Pak, H. K. Electrical power generation by mechanically modulating electrical double layers. Nat. Commun. 2013, 4, 1487.

[93]

Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481–2491.

[94]

Lee, S.; Chung, J.; Kim, D. Y.; Jung, J. Y.; Lee, S. H.; Lee, S. Cylindrical water triboelectric nanogenerator via controlling geometrical shape of anodized aluminum for enhanced electrostatic induction. ACS Appl. Mater. Interfaces 2016, 8, 25014–25018.

[95]

Zou, Y.; Tan, P. C.; Shi, B. J.; Ouyang, H.; Jiang, D. J.; Liu, Z.; Li, H.; Yu, M.; Wang, C.; Qu, X. C. et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 2019, 10, 2695.

[96]

Ding, T. P.; Liu, K.; Li, J.; Xue, G. B.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551.

[97]

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

[98]

Liu, K.; Ding, T. P.; Li, J.; Chen, Q.; Xue, G. B.; Yang, P. H.; Xu, M.; Wang, Z. L.; Zhou, J. Thermal-electric nanogenerator based on the electrokinetic effect in porous carbon film. Adv. Energy Mater. 2018, 8, 1702481.

[99]

Xu, J.; Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 2008, 3, 666–670.

[100]

Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 2010, 20, 1339–1344.

[101]

Xu, J.; Sigworth, F. J.; LaVan, D. A. Synthetic protocells to mimic and test cell function. Adv. Mater. 2010, 22, 120–127.

[102]

Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455–458.

[103]

Guo, W.; Cheng, C.; Wu, Y. Z.; Jiang, Y. N.; Gao, J.; Li, D.; Jiang, L. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 2013, 25, 6064–6068.

[104]

Chen, X.; Goodnight, D.; Gao, Z. H.; Cavusoglu, A. H.; Sabharwal, N.; DeLay, M.; Driks, A.; Sahin, O. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 2015, 6, 7346.

[105]

Sun, J. C.; Li, P. D.; Qu, J. Y.; Lu, X.; Xie, Y. Q.; Gao, F.; Li, Y.; Gang, M. F.; Feng, Q. J.; Liang, H. W. et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 2019, 57, 269–278.

[106]

Zhou, X. B.; Zhang, W. L.; Zhang, C. L.; Tan, Y.; Guo, J. C.; Sun, Z. N.; Deng, X. Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl. Mater. Interfaces 2020, 12, 11232–11239.

[107]

van der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 2007, 7, 1022–1025.

[108]

Xie, Y. B.; Wang, X. W.; Xue, J. M.; Jin, K.; Chen, L.; Wang, Y. G. Electric energy generation in single track-etched nanopores. Appl. Phys. Lett. 2008, 93, 163116.

[109]

Chen, Y.; Xie, B.; Long, J. Y.; Kuang, Y. C.; Chen, X.; Hou, M. X.; Gao, J.; Zhou, S.; Fan, B.; He, Y. B. et al. Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator. Adv. Mater. 2021, 33, 2104290.

[110]

Wang, H. J.; Zhang, Z. H.; Wang, Z. K.; Zhao, J.; Liang, Y. H.; Li, X. J.; Ren, L. Q. Improved dynamic stability of superomniphobic surfaces and droplet transport on slippery surfaces by dual-scale re-entrant structures. Chem. Eng. J. 2020, 394, 124871.

[111]

Ahn, J.; Zhao, Z. J.; Choi, J.; Jeong, Y.; Hwang, S.; Ko, J.; Gu, J. M.; Jeon, S.; Park, J.; Kang, M. G. et al. Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator. Nano Energy 2021, 85, 105978.

[112]

Du, J. Y.; Chamakos, N. T.; Papathanasiou, A. G.; Min, Q. Initial spreading dynamics of a liquid droplet: The effects of wettability, liquid properties, and substrate topography. Phys. Fluids 2021, 33, 042118.

[113]

Chung, J.; Heo, D.; Kim, B.; Lee, S. Superhydrophobic water-solid contact triboelectric generator by simple spray-on fabrication method. Micromachines 2018, 9, 593.

[114]

Cho, H.; Chung, J.; Shin, G.; Sim, J. Y.; Kim, D. S.; Lee, S.; Hwang, W. Toward sustainable output generation of liquid-solid contact triboelectric nanogenerators: The role of hierarchical structures. Nano Energy 2019, 56, 56–64.

[115]

Varanasi, K. K.; Deng, T.; Smith, J. D.; Hsu, M.; Bhate, N. Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 2010, 97, 234102.

[116]

Wang, P.; Zhang, D.; Lu, Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application. Colloids Surf. B: Biointerfaces 2015, 136, 240–247.

[117]

Zhang, J. P.; Wu, L.; Li, B. C.; Li, L. X.; Seeger, S.; Wang, A. Q. Evaporation-induced transition from Nepenthes pitcher-inspired slippery surfaces to lotus leaf-inspired superoleophobic surfaces. Langmuir 2014, 30, 14292–14299.

[118]

Jiang, Y. Y.; Xiao, C.; Chen, L.; Li, J. J.; Zhang, C. H.; Zhou, N. N.; Qian, L. M.; Luo, J. B. Temporary or permanent liquid superlubricity failure depending on shear-induced evolution of surface topography. Tribol. Int. 2021, 161, 107076.

[119]

Liu, Y. F.; Li, J. F.; Li, J. J.; Yi, S.; Ge, X. Y.; Zhang, X.; Luo, J. B. Shear-induced interfacial structural conversion triggers macroscale superlubricity: From black phosphorus nanoflakes to phosphorus oxide. ACS Appl. Mater. Interfaces 2021, 13, 31947–31956.

[120]

Xu, W. H.; Zhou, X. F.; Hao, C. L.; Zheng, H. X.; Liu, Y.; Yan, X. T.; Yang, Z. B.; Leung, M.; Zeng, X. C.; Xu, R. X. et al. SLIPS-TENG: Robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl. Sci. Rev. 2019, 6, 540–550.

[121]

Yoo, D.; Park, S. C.; Lee, S.; Sim, J. Y.; Song, I.; Choi, D.; Lim, H.; Kim, D. S. Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies. Nano Energy 2019, 57, 424–431.

[122]

Xu, Y. F.; Chen, P. N.; Peng, H. S. Generating electricity from water through carbon nanomaterials. Chem. -Eur. J. 2018, 24, 6287–6294.

[123]

Li, M. J.; Zong, L.; Yang, W. Q.; Li, X. K.; You, J.; Wu, X. C.; Li, Z. H.; Li, C. X. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 2019, 29, 1901798.

[124]

Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

[125]

Edelmann, H. G.; Neinhuis, C.; Jarvis, M.; Evans, B.; Fischer, E.; Barthlott, W. Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens (rhacocarpaceae): A puzzling architecture among plants. Planta 1998, 206, 315–321.

[126]

Dao, V. D.; Vu, N. H.; Choi, H. S. All day limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J. Power Sources 2020, 448, 227388.

[127]

Ahn, J. H.; Hwang, J. Y.; Kim, C. G.; Nam, G. H.; Ahn, K. K. Unsteady streaming flow based TENG using hydrophobic film tube with different charge affinity. Nano Energy 2020, 67, 104269.

[128]

Tang, Q. W.; Zhang, H. N.; He, B. L.; Yang, P. Z. An all-weather solar cell that can harvest energy from sunlight and rain. Nano Energy 2016, 30, 818–824.

[129]

Mariello, M.; Fachechi, L.; Guido, F.; De Vittorio, M. Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-EcoflexTM. Nano Energy 2021, 83, 105811.

[130]

Cheng, G.; Lin, Z. H.; Du, Z. L.; Wang, Z. L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932–1939.

[131]

Zhang, H. L.; Yang, Y.; Su, Y. J.; Chen, J.; Hu, C. G.; Wu, Z. K.; Liu, Y.; Ping Wong, C.; Bando, Y.; Wang, Z. L. Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2013, 2, 693–701.

[132]

Feng, M.; Kong, X.; Feng, Y. G.; Li, X. J.; Luo, N.; Zhang, L. Q.; Du, C. H.; Wang, D. A. A new reversible thermosensitive liquid-solid TENG based on a P(NIPAM-MMA) copolymer for triboelectricity regulation and temperature monitoring. Small 2022, 18, 2201442.

[133]

Chen, J.; Guo, H. Y.; Zheng, J. G.; Huang, Y. Z.; Liu, G. L.; Hu, C. G.; Wang, Z. L. Self-powered triboelectric micro liquid/gas flow sensor for microfluidics. ACS Nano 2016, 10, 8104–8112.

[134]

Wang, Y.; Liu, X. Y.; Wang, Y. W.; Wang, H.; Wang, H.; Zhang, S. L.; Zhao, T. C.; Xu, M. Y.; Wang, Z. L. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 2021, 15, 15700–15709.

[135]

Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H. C.; Shao, H. Y.; Xia, Y. J.; Chen, C.; Lan, H. W.; Xie, X. K. et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018, 12, 2027–2034.

[136]

Li, X. J.; Zhang, L. Q.; Feng, Y. G.; Zheng, Y. B.; Wu, Z. S.; Zhang, X. L.; Wang, N. N.; Wang, D. A.; Zhou, F. Reversible temperature-sensitive liquid-solid triboelectrification with polycaprolactone material for wetting monitoring and temperature sensing. Adv. Funct. Mater. 2021, 31, 2010220.

[137]

Schroeder, T. B. H.; Guha, A.; Lamoureux, A.; VanRenterghem, G.; Sept, D.; Shtein, M.; Yang, J.; Mayer, M. An electric-eel-inspired soft power source from stacked hydrogels. Nature 2017, 552, 214–218.

[138]

Huang, Y. X.; Cheng, H. H.; Yang, C.; Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Shi, G. Q.; Qu, L. T. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

[139]

Zhong, T. Y.; Guan, H. Y.; Dai, Y. T.; He, H. X.; Xing, L. L.; Zhang, Y.; Xue, X. Y. A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data. Nano Energy 2019, 60, 52–60.

[140]

Li, X. Y.; Tao, J.; Wang, X. D.; Zhu, J.; Pan, C. F.; Wang, Z. L. Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 2018, 8, 1800705.

[141]

Li, Y. C.; Wang, M. M.; Zhang, C.; Wang, C. C.; Xu, W. H.; Gao, S. W.; Zhou, Y. S.; Wang, C. T.; Wang, Z. K. A fully self-powered cholesteric smart window actuated by droplet-based electricity generator. Adv. Opt. Mater. 2022, 10, 2102274.

[142]

Xu, X. T.; Li, P. Y.; Ding, Y. T.; Xu, W. H.; Liu, S. Y.; Zhang, Z. M.; Wang, Z. K.; Yang, Z. B. Droplet energy harvesting panel. Energy Environ. Sci. 2022, 15, 2916–2926.

[143]

Xiong, J. Q.; Luo, H. S.; Gao, D. C.; Zhou, X. R.; Cui, P.; Thangavel, G.; Parida, K.; Lee, P. S. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy 2019, 61, 584–593.

[144]

Vo, C. P.; Shahriar, M.; Le, C. D.; Ahn, K. K. Mechanically active transducing element based on solid-liquid triboelectric nanogenerator for self-powered sensing. Int. J. Precis. Eng. Manuf. -Green Technol. 2019, 6, 741–749.

[145]

Xu, Z. Y.; Zhang, D. Z.; Liu, X. H.; Yang, Y.; Wang, X. W.; Xue, Q. Z. Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor. Nano Energy 2022, 94, 106881.

[146]

Liu, J.; Qi, Y.; Liu, D. P.; Dong, D. P.; Liu, D. D.; Li, Z. H. Moisture-enabled electricity generation from gradient polyoxometalates-modified sponge-like graphene oxide monolith. J. Mater. Sci. 2019, 54, 4831–4841.

[147]

Li, Q. J.; Zhou, M.; Yang, Q. F.; Yang, M. Y.; Wu, Q.; Zhang, Z. X.; Yu, J. W. Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. A 2018, 6, 10639–10643.

[148]

Nie, X. W.; Ji, B. X.; Chen, N.; Liang, Y.; Han, Q.; Qu, L. T. Gradient doped polymer nanowire for moistelectric nanogenerator. Nano Energy 2018, 46, 297–304.

[149]

Liu, K.; Yang, P. H.; Li, S.; Li, J.; Ding, T. P.; Xue, G. B.; Chen, Q.; Feng, G.; Zhou, J. Induced potential in porous carbon films through water vapor absorption. Angew. Chem., Int. Ed. 2016, 55, 8003–8007.

[150]

Xu, T.; Ding, X. T.; Shao, C. X.; Song, L.; Lin, T. Y.; Gao, X.; Xue, J. L.; Zhang, Z. P.; Qu, L. T. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 2018, 14, 1704473.

[151]

Han, C. B.; Jiang, T.; Zhang, C.; Li, X. H.; Zhang, C. Y.; Cao, X.; Wang, Z. L. Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 2015, 9, 12552–12561.

[152]

Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Zhang, G. J.; Gao, F. F.; Zhao, X.; Zhang, Q.; Xun, X. C.; Zhang, Z. M.; Zhang, Y. Integrated hybrid nanogenerator for gas energy recycle and purification. Nano Energy 2017, 39, 524–531.

[153]

Gu, G. Q.; Han, C. B.; Tian, J. J.; Jiang, T.; He, C.; Lu, C. X.; Bai, Y.; Nie, J. H.; Li, Z.; Wang, Z. L. Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter. Nano Res. 2018, 11, 4090–4101.

[154]

Wang, H. M.; Xu, L.; Bai, Y.; Wang, Z. L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203.

[155]

Wang, L. X.; Zhang, M.; Sun, C.; Yin, L. X.; Kang, B.; Xu, J. J.; Chen, H. Y. Transient plasmonic imaging of ion migration on single nanoparticles and insight for double layer dynamics. Angew. Chem., Int. Ed. 2022, 61, e202117177.

[156]

Tang, Z.; Lin, S. Q.; Wang, Z. L. Effect of surface pre-charging and electric field on the contact electrification between liquid and solid. J. Phys. Chem. C 2022, 126, 8897–8905.

[157]

Li, X. M.; Bista, P.; Stetten, A. Z.; Bonart, H.; Schür, M. T.; Hardt, S.; Bodziony, F.; Marschall, H.; Saal, A.; Deng, X. et al. Spontaneous charging affects the motion of sliding drops. Nat. Phys. 2022, 18, 713–719.

[158]

Stetten, A. Z.; Golovko, D. S.; Weber, S. A. L.; Butt, H. J. Slide electrification: Charging of surfaces by moving water drops. Soft Matter 2019, 15, 8667–8679.

[159]

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

[160]

Li, D.; Xu, C.; Liao, Y. J.; Cai, W. Z.; Zhu, Y. Q.; Wang, Z. L. Interface inter-atomic electron-transition induced photon emission in contact-electrification. Sci. Adv. 2021, 7, eabj0349.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 September 2022
Revised: 01 November 2022
Accepted: 01 November 2022
Published: 30 November 2022
Issue date: March 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51975502), Shenzhen Science and Technology Innovation Council (Nos. SGDX20201103093005028 and JCYJ20200109143206663), Research Grants Council of Hong Kong (Nos. C1006-20WF, 11213320, and 11219219), and the Health@InnoHK (Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE)).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return