Journal Home > Volume 2 , Issue 1

Zn-based batteries have attracted extensive attention due to their high theoretical energy density, safety, abundant resources, environmental friendliness, and low cost. They are a new energy storage and conversion technology with significant development potential and have been widely used in renewable energy and portable electronic devices. Considerable attempts have been devoted to improving the performance of Zn-based batteries. Specifically, battery cycle life and energy efficiency can be improved by electrolyte modification and the construction of highly efficient rechargeable Zn anodes. This review compiles the progress of the research related to Zn anodes and electrolytes, especially in the last five years. This review will introduce fundamental concepts, summarize recent development, and inspire further systematic research for high-performance Zn-based batteries in the future.


menu
Abstract
Full text
Outline
About this article

Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte

Show Author's information Huaiyun Ge1,§Xilan Feng2,§Dapeng Liu1( )Yu Zhang1,3( )
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, China
Department of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China

§ Huaiyun Ge and Xilan Feng contributed equally to this work.

Abstract

Zn-based batteries have attracted extensive attention due to their high theoretical energy density, safety, abundant resources, environmental friendliness, and low cost. They are a new energy storage and conversion technology with significant development potential and have been widely used in renewable energy and portable electronic devices. Considerable attempts have been devoted to improving the performance of Zn-based batteries. Specifically, battery cycle life and energy efficiency can be improved by electrolyte modification and the construction of highly efficient rechargeable Zn anodes. This review compiles the progress of the research related to Zn anodes and electrolytes, especially in the last five years. This review will introduce fundamental concepts, summarize recent development, and inspire further systematic research for high-performance Zn-based batteries in the future.

Keywords: surface modification, cycle life, Zn-air/ion batteries, Zn anode, stripping/plating, growth control, electrolyte

References(136)

[1]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[2]

Prakoso, B.; Mahbub, M. A. A.; Yilmaz, M.; Khoiruddin; Wenten, I. G.; Handoko, A. D.; Sumboja, A. Recent progress in extending the cycle-life of secondary Zn-Air batteries. ChemNanoMat 2021, 7, 354–367.

[3]

Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

[4]

Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc–air batteries. Adv. Mater. 2019, 31, 1805230.

[5]

Li, D.; Cao, L. S.; Deng, T.; Liu, S. F.; Wang, C. S. Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem., Int. Ed. 2021, 60, 13035–13041.

[6]

Zhang, J.; Zhou, Q. X.; Tang, Y. W.; Zhang, L.; Li, Y. G. Zinc-air batteries: Are they ready for prime time? Chem. Sci. 2019, 10, 8924–8929.

[7]

Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437.

[8]

Chodankar, N. R.; Patil, S. J.; Lee, S.; Lee, J.; Hwang, S. K.; Shinde, P. A.; Bagal, I. V.; Karekar, S. V.; Raju, G. S. R.; Ranjith, K. S. et al. High energy superstable hybrid capacitor with a self-regulated Zn/electrolyte interface and 3D graphene-like carbon cathode. InfoMat 2022, 4, e12344.

[9]

Wang, D.; Sheng, L.; Jiang, M.; Jin, X.; Lin, X.; Lee, S. Y.; Shi, J.; Chen, W. Density and porosity optimization of graphene monoliths with high mass-loading for high-volumetric-capacitance electrodes. Battery Energy in press, 2022, https://doi.org/10.1002/bte2.20220017.

[10]

Pei, Z. X. Symmetric is nonidentical: Operation history matters for Zn metal anode. Nano Research Energy 2022, 1, e9120023.

[11]

Jiang, J.; Liu, J. P. Iron anode-based aqueous electrochemical energy storage devices: Recent advances and future perspectives. Interdiscipl. Mater. 2022, 1, 116–139.

[12]

Xiong, F. Y.; Jiang, Y. L.; Cheng, L.; Yu, R. H.; Tan, S. S.; Tang, C.; Zuo, C. L.; An, Q. Y.; Zhao, Y. L.; Gaumet, J. J. et al. Low-strain TiP2O7 with three-dimensional ion channels as long-life and high-rate anode material for Mg-ion batteries. Interdiscipl. Mater. 2022, 1, 140–147.

[13]

Wu, M. J.; Zhang, G. X.; Yang, H. M.; Liu, X. H.; Dubois, M.; Gauthier, M. A.; Sun, S. H. Aqueous Zn-based rechargeable batteries: Recent progress and future perspectives. InfoMat 2021, 5, e12265.

[14]

Leong, K. W.; Wang, Y. F.; Ni, M.; Pan, W. D.; Luo, S. J.; Leung, D. Y. C. Rechargeable Zn-air batteries: Recent trends and future perspectives. Renew. Sust. Energ. Rev. 2022, 154, 111771.

[15]

Li, J. F.; Hui, K. S.; Ji, S. P.; Zha, C. Y.; Yuan, C. Z.; Wu, S. X.; Bin, F.; Fan, X.; Chen, F. M.; Shao, Z. P. et al. Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum-graphite battery. Carbon Energy 2021, 4, 155–169.

[16]

Wang, Y. J.; Cao, Q. H.; Guan, C.; Cheng, C. W. Recent advances on self-supported arrayed bifunctional oxygen electrocatalysts for flexible solid-state Zn-air batteries. Small 2020, 16, 2002902.

[17]

Yang, L.; Chen, R.; Liu, Z.; Gao, Y.; Wang, X.; Wang, Z.; Chen, L. Configuration-dependent anionic redox in cathode materials. Battery Energy 2022, 1, 20210015.

[18]

Wu, J. K.; Liu, B.; Fan, X. Y.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes. Carbon Energy 2020, 2, 370–386.

[19]

Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable Zinc-Air batteries. Adv. Energy Mater. 2021, 11, 2002762.

[20]

Fang, W. G.; Zhao, J. J.; Zhang, W.; Chen, P. L.; Bai, Z. M.; Wu, M. Z. Recent progress and future perspectives of flexible Zn-Air batteries. J. Alloys Compd. 2021, 869, 158918.

[21]

Li, B.; Zhang, X. T.; Wang, T. T.; He, Z. X.; Lu, B. A.; Liang, S. Q.; Zhou, J. Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 2021, 14, 6.

[22]

Zheng, J. X.; Huang, Z. H.; Ming, F. W.; Zeng, Y.; Wei, B. B.; Jiang, Q.; Qi, Z. B.; Wang, Z. C.; Liang, H. F. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-Ion batteries. Small 2022, 18, 2200006.

[23]

Li, C. W.; Wang, L. T.; Zhang, J. C.; Zhang, D. J.; Du, J. M.; Yao, Y. G.; Hong, G. Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Mater. 2022, 44, 104–135.

[24]

Wang, J. S.; Xin, S. S.; Xiao, Y.; Zhang, Z. F.; Li, Z. M.; Zhang, W.; Li, C. J.; Bao, R.; Peng, J.; Yi, J. H. et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202202518.

[25]

Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.

[26]

Tang, K.; Hu, H. B.; Xiong, Y.; Chen, L.; Zhang, J. Y.; Yuan, C. Z.; Wu, M. Z. Hydrophobization engineering of the air–cathode catalyst for improved oxygen diffusion towards efficient zinc–air batteries. Angew. Chem., Int. Ed. 2022, 134, e202202671.

[27]

Ming, F. W.; Zhu, Y. P.; Huang, G.; Emwas, A. H.; Liang, H. F.; Cui, Y.; Alshareef, H. N. Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 2022, 144, 7160–7170.

[28]

Hong, L.; Wu, X. M.; Wang, L. Y.; Zhong, M.; Zhang, P. Y.; Jiang, L. S.; Huang, W.; Wang, Y. L.; Wang, K. X.; Chen, J. S. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-Ion selective channels. ACS Nano 2022, 16, 6906–6915.

[29]

Yang, J. Z.; Yin, B. S.; Sun, Y.; Pan, H. G.; Sun, W. P.; Jia, B. H.; Zhang, S. W.; Ma, T. Y. Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives. Nano-Micro Lett. 2022, 14, 42.

[30]

Zhang, X.; Hu, J. P.; Fu, N.; Zhou, W. B.; Liu, B.; Deng, Q.; Wu, X. W. Comprehensive review on zinc-ion battery anode: Challenges and strategies. InfoMat 2022, 4, e12306.

[31]

Liu, P. G.; Liu, W. F.; Liu, K. Y. Rational modulation of emerging MXene materials for zinc-ion storage. Carbon Energy 2022, 4, 60–76.

[32]

Naveed, A.; Rasheed, T.; Raza, B.; Chen, J. H.; Yang, J.; Yanna, N.; Wang, J. L. Addressing thermodynamic instability of Zn anode: Classical and recent advancements. Energy Storage Mater. 2022, 44, 206–230.

[33]

Shan, L. T.; Wang, Y. R.; Liang, S. Q.; Tang, B. Y.; Yang, Y. Q.; Wang, Z. Q.; Lu, B. G.; Zhou, J. Interfacial adsorption-insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. InfoMat 2021, 3, 1028–1036.

[34]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active Materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[35]

Wang, T. T.; Li, C. P.; Xie, X. S.; Lu, B. G.; He, Z. X.; Liang, S. Q.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 2020, 14, 16321–16347.

[36]

Zhou, T. P.; Zhang, N.; Wu, C. Z.; Xie, Y. Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 2020, 13, 1132–1153.

[37]

Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in Metal-Air batteries. Adv. Mater. 2019, 31, 1803800.

[38]

Roland, A.; Fullenwarth, J.; Ledeuil, J. B.; Martinez, H.; Louvain, N.; Monconduit, L. How carbon coating or continuous carbon pitch matrix influence the silicon electrode/electrolyte interfaces and the performance in Li-ion batteries. Battery Energy 2022, 1, 20210009.

[39]

Qiu, X.; Wang, N.; Wang, Z.; Wang, F.; Wang, Y. G. Towards high-performance zinc-based hybrid supercapacitors via macropores-based charge storage in organic electrolytes. Angew. Chem., Int. Ed. 2021, 60, 9610–9617.

[40]

Chen, X. C.; Zhou, Z.; Karahan, H. E.; Shao, Q.; Wei, L.; Chen, Y. Recent advances in materials and design of electrochemically rechargeable zinc–air batteries. Small 2018, 14, 1801929.

[41]

Wang, X. X.; Yang, X. X.; Liu, H.; Han, T.; Hu, J. H.; Li, H. B.; Wu, G. Air electrodes for flexible and rechargeable Zn-air batteries. Small Struct. 2022, 3, 2100103.

[42]

Wang, H. F.; Tang, C.; Zhang, Q. A Review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn–air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

[43]

Cui, B. F.; Han, X. P.; Hu, W. B. Micronanostructured design of dendrite-free zinc anodes and their applications in aqueous zinc-based rechargeable batteries. Small Struct. 2021, 2, 2000128.

[44]

Jo, Y. N.; Santhoshkumar, P.; Prasanna, K.; Vediappan, K.; Lee, C. W. Improving self-discharge and anti-corrosion performance of Zn-air batteries using conductive polymer-coated Zn active materials. J. Ind. Eng. Chem. 2019, 76, 396–402.

[45]

Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C. -Y.; Fei, B.; Pan, F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 2020, 70, 104523.

[46]

Zhang, Y. M.; Wu, Y. T.; Ding, H. R.; Yan, Y.; Zhou, Z. B.; Ding, Y.; Liu, N. Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy 2018, 53, 666–674.

[47]

Sun, P. X.; Cao, Z. J.; Zeng, Y. X.; Xie, W. W.; Li, N. W.; Luan, D. Y.; Yang, S. B.; Yu, L.; Lou, X. W. D. Formation of super-assembled TiOx/Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes. Angew. Chem., Int. Ed. 2022, 61, e202115649.

[48]

Liang, M.; Zhou, H. B.; Huang, Q. M.; Hu, S. J.; Li, W. S. Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries. J. Appl. Electrochem. 2011, 41, 991–997.

[49]

Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018, 8, 1801090.

[50]

Ma, L. T.; Li, Q.; Ying, Y. R.; Ma, F. X.; Chen, S. M.; Li, Y. Y.; Huang, H. T.; Zhi, C. Y. Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater. 2021, 33, 2007406.

[51]

Schmid, M.; Willert-Porada, M. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity. J. Power Sources 2017, 351, 115–122.

[52]

Deng, C. B.; Xie, X. S.; Han, J. W.; Tang, Y.; Gao, J. W.; Liu, C. X.; Shi, X. D.; Zhou, J.; Liang, S. Q. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 2020, 30, 2000599.

[53]

Hu, K. K.; Guan, X. Z.; Lv, R. J.; Li, G. J.; Hu, Z. L.; Ren, L. B.; Wang, A. X.; Liu, X. J.; Luo, J. Y. Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy. Chem. Eng. J. 2020, 396, 125363.

[54]

Yang, L. P.; Zhang, X.; Yu, L. X.; Hou, J. H.; Zhou, Z.; Lv, R. T. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 h. Adv. Mater. 2022, 34, 2105410.

[55]

Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-Derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

[56]

Tan, W. K.; Wada, Y.; Hayashi, K.; Kawamura, G.; Muto, H.; Matsuda, A. Fabrication of an all-solid-state Zn-air battery using electroplated Zn on carbon paper and KOH-ZrO2 solid electrolyte. Appl. Surf. Sci. 2019, 487, 343–348.

[57]

Bhoyate, S.; Mhin, S.; Jeon, J. E.; Park, K.; Kim, J.; Choi, W. Stable and high-energy-density Zn-ion rechargeable batteries based on a MoS2-coated Zn anode. ACS Appl. Mater. Interfaces 2020, 12, 27249–27257.

[58]

Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. D. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries. Adv. Mater. 2019, 31, 1902339.

[59]

Gao, Y.; Kong, D. B.; Cao, F. L.; Teng, S.; Liang, T.; Luo, B.; Wang, B.; Yang, Q. H.; Zhi, L. J. Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries. Nano Res. 2022, 15, 7959–7967.

[60]

Pan, Z. H.; Yang, J.; Zang, W. J.; Kou, Z. K.; Wang, C.; Ding, X. Y.; Guan, C.; Xiong, T.; Chen, H.; Zhang, Q. C. et al. All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Mater. 2019, 23, 375–382.

[61]

Hu, W.; Ju, J. G.; Deng, N. P.; Liu, M. Y.; Liu, W. C.; Zhang, Y. X.; Fan, L. L.; Kang, W. M.; Cheng, B. W. Recent progress in tackling Zn anode challenges for Zn ion batteries. J. Mater. Chem. A 2021, 9, 25750–25772.

[62]

Wang, D. H.; Li, Q.; Zhao, Y. W.; Hong, H.; Li, H. F.; Huang, Z. D.; Liang, G. J.; Yang, Q.; Zhi, C. Y. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 2022, 12, 2102707.

[63]

Ouyang, K. F.; Ma, D. T.; Zhao, N.; Wang, Y. Y.; Yang, M.; Mi, H. W.; Sun, L. N.; He, C. X.; Zhang, P. X. A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 2022, 32, 2109749.

[64]

Wang, H.; Chen, Y.; Yu, H.; Liu, W.; Kuang, G.; Mei, L.; Wu, Z.; Wei, W.; Ji, X.; Qu, B.; Chen, L. A. Multifunctional artificial interphase with fluorine-doped amorphous carbon layer for ultra-stable Zn anode. Adv. Funct. Mater. 2022, 32, 2205600.

[65]

Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

[66]

Zhang, Y. M.; Howe, J. D.; Ben-Yoseph, S.; Wu, Y. T.; Liu, N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 2021, 6, 404–412.

[67]

Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

[68]

Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Recent advances and perspectives of Zn-Metal Free "Rocking-Chair"-Type Zn-Ion batteries. Adv. Energy Mater. 2021, 11, 2002529.

[69]

Dong, L. B.; Yang, W.; Yang, W.; Tian, H.; Huang, Y. F.; Wang, X. L.; Xu, C. J.; Wang, C. Y.; Kang, F. Y.; Wang, G. X. Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 2020, 384, 123355.

[70]

Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous Zinc-Ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2861–2865.

[71]

Wang, A. R.; Zhou, W. J.; Huang, A. X.; Chen, M. F.; Chen, J. Z.; Tian, Q. H.; Xu, J. L. Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. J. Colloid. Interface Sci. 2020, 577, 256–264.

[72]

Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744.

[73]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473.

[74]

Ding, Y.; Zhang, C. K.; Zhang, L. Y.; Zhou, Y. G.; Yu, G. H. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69–103.

[75]

Xiao, P.; Li, H. B.; Fu, J. Z.; Zeng, C.; Zhao, Y. H.; Zhai, T. Y.; Li, H. Q. An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 2022, 15, 1638–1646.

[76]

Cui, M. W.; Xiao, Y.; Kang, L. T.; Du, W.; Gao, Y. F.; Sun, X. Q.; Zhou, Y. L.; Li, X. M.; Li, H. F.; Jiang, F. Y. et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6490–6496.

[77]

Zhang, Q.; Luan, J. Y.; Huang, X. B.; Wang, Q.; Sun, D.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.

[78]

He, H. B.; Tong, H.; Song, X. Y.; Song, X. P.; Liu, J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 7836–7846.

[79]

Yang, X. Z.; Li, C.; Sun, Z. T.; Yang, S.; Shi, Z. X.; Huang, R.; Liu, B. Z.; Li, S.; Wu, Y. H.; Wang, M. L. et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 2021, 33, 2105951.

[80]

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

[81]

Wang, S. J.; Yang, Z.; Chen, B. T.; Zhou, H.; Wan, S. F.; Hu, L. Z.; Qiu, M.; Qie, L.; Yu, Y. A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface. Energy Storage Mater. 2022, 47, 491–499.

[82]

Peng, H. L.; Liu, C. H.; Wang, N. N.; Wang, C. G.; Wang, D. D.; Li, Y. L.; Chen, B.; Yang, J.; Qian, Y. T. Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy Environ. Sci. 2022, 15, 1682–1693.

[83]

Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.

[84]

Cui, M. W.; Yan, B. X.; Mo, F. N.; Wang, X. Q.; Huang, Y.; Fan, J.; Zhi, C. Y.; Li, H. F. In-situ grown porous protective layers with high binding strength for stable Zn anodes. Chem. Eng. J. 2022, 434, 134688.

[85]

Cao, L. S.; Li, D.; Deng, T.; Li, Q.; Wang, C. S. Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 19292–19296.

[86]

Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Covalent-organic frameworks: Advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 1904199.

[87]

Guo, C.; Zhou, J.; Chen, Y. T.; Zhuang, H. F.; Li, Q.; Li, J.; Tian, X.; Zhang, Y. L.; Yao, X. M.; Chen, Y. F. et al. Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew. Chem., Int. Ed. 2022, 61, e202210871.

[88]

Zhao, Z. D.; Wang, R.; Peng, C. X.; Chen, W. J.; Wu, T. Q.; Hu, B.; Weng, W. J.; Yao, Y.; Zeng, J. X.; Chen, Z. H. et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606.

[89]

Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356, 415–418.

[90]

Li, Y.; Wu, L. S.; Dong, C.; Wang, X.; Dong, Y. F.; He, R. H.; Wu, Z. S. Manipulating horizontal Zn deposition with graphene interpenetrated Zn hybrid foils for dendrite-free aqueous zinc ion batteries. Energy Environ. Mater. in press, https://doi.org/10.1002/eem2.12423.

[91]

Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.

[92]

Zhang, Q.; Luan, J. Y.; Huang, X. B.; Zhu, L.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small 2020, 16, 2000929.

[93]

Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Kvasha, A.; De Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z. C.; Blazquez, J. A. An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J. Energy Storage 2018, 15, 304–328.

[94]

Wang, R. H.; Cui, W. S.; Chu, F. L.; Wu, F. X. Lithium metal anodes: Present and future. J. Energy Chem. 2020, 48, 145–159.

[95]

Ling, W.; Yang, Q. X.; Mo, F. N.; Lei, H.; Wang, J. Q.; Jiao, Y. J.; Qiu, Y.; Chen, T.; Huang, Y. An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn. Energy Storage Mater. 2022, 51, 453–464.

[96]

Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J. J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J. P.; Pham, D. T.; Putro, D. Y. et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 2017, 5, 23299–23309.

[97]

Hao, J. W.; Mou, J.; Zhang, J. W.; Dong, L. B.; Liu, W. B.; Xu, C. J.; Kang, F. Y. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 2018, 259, 170–178.

[98]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

[99]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[100]

Pang, Q.; Sun, C. L.; Yu, Y. H.; Zhao, K. N.; Zhang, Z. Y.; Voyles, P. M.; Chen, G.; Wei, Y. J.; Wang, X. D. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 2018, 8, 1800144.

[101]

Zeng, Z. P.; Fu, G. T.; Yang, H. B.; Yan, Y. B.; Chen, J.; Yu, Z. Z.; Gao, J. J.; Gan, L. Y.; Liu, B.; Chen, P. Bifunctional N-CoSe2/3D-MXene as highly efficient and durable cathode for rechargeable Zn–air battery. ACS Mater. Lett. 2019, 1, 432–439.

[102]

Lu, S.; Jiang, J.; Yang, H.; Zhang, Y. J.; Pei, D. N.; Chen, J. J.; Yu, Y. Phase engineering of iron-cobalt sulfides for Zn-Air and Na-Ion batteries. ACS Nano 2020, 14, 10438–10451.

[103]

Yao, X. Y.; Wang, X. Y.; Sun, L. X.; Li, L.; Kan, E. J.; Ouyang, B.; Zhang, W. M. Popcorn-like Co3O4 nanoparticles confined in a three-dimensional hierarchical N-doped carbon nanotube network as a highly-efficient trifunctional electrocatalyst for zinc-air batteries and water splitting devices. Inorg. Chem. Front. 2022, 9, 2517–2529.

[104]

Yu, N. F.; Wu, C.; Huang, W.; Chen, Y. H.; Ruan, D. Q.; Bao, K. L.; Chen, H.; Zhang, Y.; Zhu, Y. S.; Huang, Q. H. et al. Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy 2020, 77, 105200.

[105]

Sumboja, A.; Ge, X. M.; Zheng, G. Y.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. L. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. J. Power Sources 2016, 332, 330–336.

[106]

Pei, Z. X.; Huang, Y.; Tang, Z. J.; Ma, L. T.; Liu, Z. X.; Xue, Q.; Wang, Z. F.; Li, H. F.; Chen, Y.; Zhi, C. Y. Enabling highly efficient, flexible and rechargeable quasi-solid-state Zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Mater. 2019, 20, 234–242.

[107]

Li, M.; Liu, B.; Fan, X. Y.; Liu, X. R.; Liu, J.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible Zinc-Air batteries. ACS Appl. Mater. Interfaces 2019, 11, 28909–28917.

[108]

An, L.; Li, Y. X.; Luo, M. C.; Yin, J.; Zhao, Y. Q.; Xu, C. L.; Cheng, F. Y.; Yang, Y.; Xi, P. X.; Guo, S. J. Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1703779.

[109]

Zhang, Q.; Luo, F.; Long, X.; Yu, X. X.; Qu, K. G.; Yang, Z. H. N, P doped carbon nanotubes confined WN-Ni Mott-Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Appl. Catal. B Environ. 2021, 298, 120511.

[110]

He, X. Y.; Tian, Y. H.; Deng, D. J.; Chen, F.; Wu, J. C.; Qian, J. C.; Li, H. N.; Xu, L. Engineering antiperovskite Ni4N/VN heterostructure with improved intrinsic interfacial charge transfer as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Sustainable Chem. Eng. 2021, 9, 17007–17015.

[111]

Zhang, Q.; Yang, Z. F.; Ji, H. M.; Zeng, X. H.; Tang, Y. G.; Sun, D.; Wang, H. Y. Issues and rational design of aqueous electrolyte for Zn-ion batteries. SusMat 2021, 1, 432–447.

[112]

Guo, X. X.; Zhang, Z. Y.; Li, J. W.; Luo, N. J.; Chai, G. L.; Miller, T. S.; Lai, F. L.; Shearing, P.; Brett, D. J. L.; Han, D. L. et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 2021, 6, 395–403.

[113]

Meng, F. L.; Liu, K. H.; Zhang, Y.; Shi, M. M.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 2018, 14, 1703843.

[114]

Hwang, B.; Oh, E. S.; Kim, K. Observation of electrochemical reactions at Zn electrodes in Zn-air secondary batteries. Electrochim. Acta 2016, 216, 484–489.

[115]

Liu, Z.; Pulletikurthi, G.; Lahiri, A.; Cui, T.; Endres, F. Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications. Dalton Trans. 2016, 45, 8089–8098.

[116]

Wu, X. W.; Li, Y. H.; Li, C. C.; He, Z. X.; Xiang, Y. H.; Xiong, L. Z.; Chen, D.; Yu, Y.; Sun, K. T.; He, Z. Q. et al. The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive. J. Power Sources 2015, 300, 453–459.

[117]

Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

[118]

Lee, J.; Hwang, B.; Park, M. S.; Kim, K. Improved reversibility of Zn anodes for rechargeable Zn-air batteries by using alkoxide and acetate ions. Electrochim. Acta 2016, 199, 164–171.

[119]

Shang, Y.; Kumar, P.; Musso, T.; Mittal, U.; Du, Q. J.; Liang, X.; Kundu, D. Long-life Zn anode enabled by low volume concentration of a benign electrolyte additive. Adv. Funct. Mater. 2022, 32, 2200606.

[120]

Hao, J. N.; Long, J.; Li, B.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Yang, Z. H.; Pang, W. K.; Guo, Z. P. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 2019, 29, 1903605.

[121]

Chen, Z. H.; Chen, H. Z.; Che, Y. C.; Cheng, L.; Zhang, H.; Chen, J.; Xie, F. Y.; Wang, N.; Jin, Y. S.; Meng, H. Arginine cations inhibiting charge accumulation of dendrites and boosting Zn metal reversibility in aqueous rechargeable batteries. ACS Sustainable Chem. Eng. 2021, 9, 6855–6863.

[122]

Yi, Z. H.; Chen, G. Y.; Hou, F.; Wang, L. Q.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2003065.

[123]

Ghazvini, M. S.; Pulletikurthi, G.; Cui, T.; Kuhl, C.; Endres, F. Electrodeposition of Zinc from 1-ethyl-3-methylimidazolium acetate-water mixtures: Investigations on the applicability of the electrolyte for Zn-air batteries. J. Electrochem. Soc. 2018, 165, D354–D363.

[124]

Dou, H. Z.; Xu, M.; Zheng, Y.; Li, Z. Q.; Wen, G. B.; Zhang, Z.; Yang, L. X.; Ma, Q. Y.; Yu, A. P.; Luo, D. et al. Bioinspired tough solid-state electrolyte for flexible ultralong-life zinc–air battery. Adv. Mater. 2022, 34, 2110585.

[125]

Zuo, Y. Y.; Wang, K. L.; Wei, M. H.; Zhao, S. Y.; Zhang, P. F.; Pei, P. C. Starch gel for flexible rechargeable zinc-air batteries. Cell Rep. Phys. Sci. 2022, 3, 100687.

[126]

Xu, M.; Dou, H. Z.; Zhang, Z.; Zheng, Y.; Ren, B. H.; Ma, Q. Y.; Wen, G. B.; Luo, D.; Yu, A. P.; Zhang, L. H. et al. Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202117703.

[127]

An, L.; Zhang, Z. Y.; Feng, J. R.; Lv, F.; Li, Y. X.; Wang, R.; Lu, M.; Gupta, R. B.; Xi, P. X.; Zhang, S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 2018, 140, 17624–17631.

[128]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[129]

Qin, Y.; Li, H. F.; Han, C. P.; Mo, F. N.; Wang, X. Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-Life Zn-Ion batteries. Adv. Mater. 2022, 2207118.

[130]

Yang, W. H.; Yang, Y.; Yang, H. J.; Zhou, H. S. Regulating water activity for rechargeable zinc-ion batteries: Progress and perspective. ACS Energy Lett. 2022, 7, 2515–2530.

[131]

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

[132]

Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

[133]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[134]

Zhang, C.; Holoubek, J.; Wu, X. Y.; Daniyar, A.; Zhu, L. D.; Chen, C.; Leonard, D. P.; Rodríguez-Pérez, I. A.; Jiang, J. X.; Fang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. (Camb. ) 2018, 54, 14097–14099.

[135]

Chen, W. Y.; Guo, S.; Qin, L. P.; Li, L. Y.; Cao, X. X.; Zhou, J.; Luo, Z. G.; Fang, G. Z.; Liang, S. Q. Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 2022, 32, 2112609.

[136]

Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn Ion batteries achieved by a low-cost glucose additive. Angew. Chem., Int. Ed. 2021, 60, 18247–18255.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 31 August 2022
Revised: 07 October 2022
Accepted: 13 October 2022
Published: 22 November 2022
Issue date: March 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51925202 and 51972008).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return